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ABSTRACT 

In this paper, we expand the energy equation of 
unsteady Euler equations as the form of mixture gas 
and carry out the numerical resolution through the 
FVM to discuss the nonphysical oscillations near the 
contact discontinuity interface and shock wave. We 
resolve the equations by using the AUSMDV 
Riemann solver with different flux limiters, the FVM 
and the second-order with two-step discrete-time 
stepping method. For the source term in the 
investigated Euler equations with multi-species, we 
discuss the facing problem of for the numerical 
treatment of gradient in different type and test the 
non-physical oscillation problem by establishing a 
new applied method of gradient control. 
 

INTRODUCTION 
The unsteady high enthalpy flow field causes 

the flow field problems in the experiment of shock 
tube, particularly in the moving process of contact 
surface between the different gases in the shock tube. 
In other words, when we carry out the numerical 
simulation by using approximate the Riemann solver 
method, it will produce the non-physical oscillations 
near the contact discontinuity and shock wave.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 In 1981, Jameson et al. (1981) has 
proposed a result that the rapid change of 
entropy and the occurrence of eddy is unable to 
be considered by approximation neglect way 
when exceeding the range of transonic. 
Therefore, for the numerical simulation problem 
of supersonic and hypersonic flow field, savants 
have made deep researches over the last three 
decades. 

For the flux vector questions of compressible 
Euler equations, van Leer (1984) discussed the type 
of shock wave under the steady state between the two 
regions based on the first order upwind scheme in 
1984. In addition, for the problems of hypersonic 
un-differential point and stagnation point, that we 
treat this kind question with the type of split fluxes 
has the equivalent advantage according to the form 
developed by Steger and Warming. 

The process of directly numerical solver will 
produce some difficulty for the Riemann problem of 
unsteady hypersonic flow field due to the non-linear 
situation when the conservation equations of flow 
status is solved by numerical solver.  Thus, in the 
1950s, Godunov (1950) proffered an opinion at the 
earliest that we can obtain the accurately exact 
solution by using the information of the previous time 
point containing the conservation frame to deal with 
the discretization conservation equation of single 
ideal gas. Additionally, van Leer developed the 
MUSCL numerical reconstruction method and 
established the TVD scheme so that the process of 
numerical computing gets a consequence of high 
order accuracy in 1979. Moreover, in 1994, Wada 
and Liou (1994) offered the approximation Riemann 
solver method of split fluxes scheme AUSMDV that 
is an improved upwind split scheme based on AUSM 
principle. Through this computing method on the 
numerical computing code of high resolution, it will 
avoid the violent oscillations in some regions, 
especially the positions of shock wave and contact 
discontinuity interface. 

To improve the above non-physical oscillation 
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problem near the contact discontinuity interface and 
shock wave, we expand the energy equation of Euler 
equations as the type of ideal mixture gas through the 
AUSMDV numerical flux scheme, see Ton (1996), 
and adding the different flux limiters as well as 
gradient control. For the pressure and velocity 
gradient of source term, we propose various gradient 
computation ways to mend the approximation error 
problem caused by the energy and pressure parameter 
of source term near the moving shock and contact 
discontinuity interface. For the pressure and velocity 
gradient of source term, we established the new 
method of gradient control to test whether it can 
make progress in the non-physical numerical 
oscillation problem.  
 

MODELLING 
Conservation Equations with Gas Mixture 

In this study, we consider 1D-Euler equations 
with gas mixture model in general form,  
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,          (1) 

where V stands for volume, U is the vector relation of 
conservation variables, ∂V represents surface, F is 
frictionless flux vector and Q depicts the vector 
parameter of source terms, see Shieh and Li (2009). 
Those vector parameters could be defined as  
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Based on gas mixture, the third vector describes 
the additional energy source term which Ton (1996) 
expand it. Therefore, the different two densities ρ1 
and ρ2 just get the energy of other species from the 
total energy and produce an extra individual energy 
ρ1E1. In the above vector matrices, mixing specific 
heat ratio γ is simplified as 

( ) ( )( )( )[ ]∑∑ ==
−+=
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Moreover, the thermodynamic function among the 
individual pressure iP , energy iE and specific heat 
ratio iγ is shown as ( ) )21)(1( 2uEP iiiii ρργ −−= . 

Pressure Gradient 

For the pressure gradient problem of source 
term in the expanding energy equation; however, we 
try to deal with this problem using some distinct 
models. We expand the distinct pressure iP  through 
the following Taylor series with the third order 
differential term  
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In order to treat the problems of pressure gradient, we 

separately estimate the difference of density iρ , 
temperature iT  and gas constant iR by the equation 
of state, RT)(P ρ∇=∇ , in two ways. In the first 
way, we consider the expression the pressure gradient 
is expressed by )( TRP ρ∇=∇ , where the gas 
constant is invariable. In the second, we consider the 
extra term RT∇ρ  with the changing gas constant 
≠R constant. In this way, we apply the expression of 

pressure gradient by RT)( ∇+∇=∇ ρρTRP . 
Moreover, we compute the pressure gradient with 
energy E and specific heat ratio γ , 

( ) )21-E1)(-(P 2uρργ∇=∇ . Discrepancy compared 
with the equation, ( ) )21-E1)(-(P 2

ii uiii ρργ∇= is 
that we do discretization before performing the 
individual difference in this form.    
 

NUMERICAL METHOD 
Finite Volume Method 

By the discretization of equations (1), we 
classify the computational domain to the distinct 
control volume K, where the boundary of individual 
computing cells could be defined by mesh border. We 
transform the difference equation into an algebraic 
equation by integrating along the computing cells. 
The equations (1) using closed volume between t∆  
and x∆ . Now, for the computing cell boundary, we 
again consider the form of conservation equations as 
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The variable Kφ  is defined by  

∫∫ ∂
−=

KKK dAtxFdxtxQt ),(),(:)(φ .  

Through the flux calculation in AUSMDV 
Riemann solver and the discretization of source term 

),( txQ , the individual control volume K is defined 
by the mean value U of every grid. For 1D space 
discretization, we can get a discretized form of first 
order time stepping by  
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Through the process of temporal iterations, we solve 
the variables of temporal discretization in every 
volume mesh after the previous temporal and space 
discretization. 

Time Stepping Procedure 

In the presenting study, the explicit method is applied 
to deal with the time discretization of Eqs. (1). The 
restriction of stepping is denoted by v  for the CFL 
number, where the numerical domain of dependence 
temporal must be lie in the physical domain,
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and the steps of temporal discretization is combined 
with the so-called CFL stability condition by a new 
type ( )xtvv ∆∆≡ max , where x∆  and maxv are the 
1-D control volume and the maximum propagation 
velocity in the calculating grid respectively. The 
computation process is stable in the range of 

10 <≤ v , and the CFL number is contained better in 
the range near 1. 

For the time stepping procedure, we recall the 
equation (4) to obtain the following explicit two-steps 
second-order Runge-Kutta method with  

( )

( ) ( )







∆
∆

+
∆
∆

+
∆
∆

+
∆
∆

+≈

),()(
!2

1),(),(
2
1

),(
2
1),(),(

1
2

2

11

112

txU
x
ttxU

x
ttxU

x
t

txU
x
ttxUtxU

KKK

KKk

φφφ

φ

                                        (5) 

Numerical Reconstruction 

The slope limiter on the both sides of grid was 
implemented in the applied approximation method in 
order to acquire the high accurate consequences. In 
this study, we treat the high gradient phenomenon 
through first order TVD mode under the following 
definition of ),( txU on the grid in some local 
extreme domain, 

∑
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The numerical treatment TVD is expressed by 
)](,[)](,[ 1 ii tUTVtUV ≤+ , but using the second order 

manner to keep the precision in the smooth domain. 
Additionally, the limiter function is inferred from the 
restriction factorϕ based on the single-side gradient 
of neighbor grid, and these functions construct based 
on the minmod limiter. For this reason, two high 
order limiters will be applied in this case. 

First, we obtain the so-called superbee limiter 
that is based on the region ratio r as 

}}2,min{},1,2min{,0max{)( rrrSB =ϕ . 

For the second scheme, we apply the van Leer limiter 
with a form rrrrvL ++= 1)(ϕ , where the 
negative of r  vanishes, and the positive of r  
keeps the smooth state as well as continuity at 0  =r . 
In addition, for the fourth-order tests, we added the 
Čada limiter (2009), and adopted the following 
compression form with .6)(r,0.5,2,1),,(r, =Φ γβα  
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                                        (6) 
Moreover, the AUSMDV numerical flux 

function is used in this study, see e.g. Liou and 
Steffen (1996), van Leer (2006), Wada and Liou 
(1994) and Xu et al. (1994). They carried out a series 
of modifications and suggested reducing the 
numerical dissipation problem on the contact 

discontinuity position, and set up a combined mixture 
momentum flux 21u)(ρ  as 

( )( )( ) ( )( )( )AUSMDAUSMV usus 22
21

2 2121)u( ρρρ −−+= , 

where s is a switching function of pressure gradient 
as 

( ) ( )( ))min(,1min21 RLRL PPPPKs −= . 

  In this form, the weight of AUSMV is more used 
to maintain the capability of catching the shock wave 
with the constant 10=K . 

Discretization of P∇ in Source Term 

 In order to reduce the error generated by the 
gradient calculating, we applied different orders and 
gradient calculating models with various difference 
types through the following Taylor expansion of 1D 
gradient of parameter f  
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Approximate methods 

For the parametric gradient, the diverse difference 
kinds were applied in the numerical calculation. In 
this way, we define ),(:),( tntxftxf n ∆+= and 

),(:),( txnxftxfi ∆+= . For the first-order derivative 

xf , we applied the forward difference method, 
central difference method and backward difference 
method respectively. In the difference form of second 
order derivative xxf which is just only considered by 
the central difference method. For the difference of 
third order derivative xxxf , because of the confinement 
of computing node amount and boundary point, we 
consider the forward difference method, central 
difference method and backward difference method. 
Besides, we developed two newly difference method 
of third order derivative to reduce the error due to the 
profuse computation nodes, that is, 

( )312 2 xffff iiixxx ∆+−= ++                (7) 

and ( )312 22 xffff iiixxx ∆+−= ++ .         (8) 

We appoint the form (7) and (8) as N1 and N2 
individually. For the difference form of fourth order 
derivative xxxxf , we just adopted the central difference 
method.  

Effective loop design 

In the calculating process, if the node position is 
incorrect, it will lead to wrong of calculation. Hence, 
we applied the following difference mode and notion 
of effective loop design: 

(a) Gradient based on the first order derivative 

For the first order derivative, if the central or 
backward difference is applied to approximate, it 
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is easy to obtain some errors on the boundary. In 
addition, because of the missing values, the 
condition for the point is possibly neglected. For 
this reason, we applied the forward difference 
method in the first order derivative to avoid that 
the error may occur at the initial position. 

(b) Gradient based on the second order derivative 

In order to better the precision on the high order 
derivative calculation, we consider the form of 
central difference in the second order derivative. 
On the early test, we almost applied the 
combination which picking the forward difference 
for the first order derivative and the central 
difference for the second order derivative to 
estimate the gradient relation of second order 
derivative. And then, on the late test, we also try 
to add the switch loop dodging the position of 

1−=t  and extending the type of second order 
derivative after 1=t . 

(c) Gradient based on the third order derivative and 
mixture difference type 

It needs more than 5 nodes to estimate the third 
order derivative. However, shock wave and 
contact discontinuity interface both are 
momentary physical characteristics for the 
discussed Riemann question. It will be lead to 
problems which are wrong estimation and acute 
oscillations as well as unable to calculate on the 
shock wave and contact discontinuity interface 
when the computing nodes are excessive. Hence, 
we employ the difference method of third order 
derivative with three nodes. Additionally, we try 
to add mixed loop; further we discuss the 
following issues. 

(i) Fix the gradient calculation of third-order 
derivative, we test the different ways and 
types of distinct difference association. 

(ii) Fix the computation of first and second order 
derivative, we add the difference methods of 
third derivative to compute the gradient 
according to the distinct difference type 
between 2=t and 4. 

(iii) Begin at the first order derivative we add the 
difference of diverse order derivative in 
accordance with the position of the earliest 
node of selected difference type. Take the 
forward difference method for the first order 
derivative and the central difference method 
for the second and third order derivative. The 
initial position of central difference of second 
order derivative is at 1−=t , and the central 
difference of third order derivative starts to 
compute at 2−=t . Therefore, we add the 
second order derivative at 1=t  such that the 
gradient computation with the second order 

difference begin at 1=t . In addition, add the 
third order derivative at 2=t  and the 
gradient will be estimated by the third order 
difference method after 2=t . 

For the discussed problem, we select the suitable 
way to compute the gradient through the above ideas 
of difference and loop design. 
 

TESTING AND INITIAL CONDITION 
SETTING 

In order to evaluate the additional energy term 
expanded by multispecies problem. We discuss and 
analyze the results of new gradient mode applied in 
the additional energy term through the shock tube 
problem of single gas. First, we discuss the merits 
and computing efficiency for the condition of shock 
tube problem with single gas as Table 2. Here, for the 
“shock tube problem”, we adopt air, and the 
foundational parameters of gas separately molecular 
weight 28.97W = , gas constant 0.287R =  and 
specific heat ratio 1.4=γ . On the other hand, for 
the boundary conditions of the problem, we 
identically set that the stepping size of the space 
discretization 01.0=∆x , the stability factor 

9.0=CFLC  and the maximal time steps equal to 
20000. 

The conditions of reference solution are shown 
as the Table 1. We adopt the minimum displacement 
step and the higher stability condition matching the 
more stable van Leer limiter as well as the 
second-order Runge-Kutta time stepping method in 
order to avoid producing the numerical oscillations 
and obtain an approximation accurate solution.  

Table 1. The initial condition of the reference solution 
 x∆  CFLC  Limiter Integration 

Reference 
0.0001 0.9 van Leer 

Second-order 

solution Runge-Kutta 
method 

Table 2. The single-gas initial condition of shock tube problem 
Air 

1ρ  2ρ  u P 1Y  
2Y  x  

Left hand 
side(L) 1 0 0 1 1 0 5.0<x

 
Right hand 

side(R) 0.8 0 0 0.2 1 0 5.0≥x
 

Because we hope that the computing code has 
the accurate and efficient catching shock capability 
and the perfect calculation model is proposed 
effectively for the testing question, we confirm the 
new gradient modes. Additionally, we adopt air to test 
for the single gas problem, and the condition on both 
sides of membrane is shown as Table 2. The 
difference is that the time stepping stops at 
time 0.33=t  and the initial position of central 
membrane is 0.5=x  between this problem and the 
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above problem. 

In order to verify the additional energy term 
expanded by the mixture gas problem, we also 
consider the two-gas condition, that is, air and helium 
(He). The molecular weight (W) of air is 28.97, gas 
constant (R) is 0.287 and specific heat ratio γ  is 1.4; 
that of helium (He) is 4.003, 2.0769 and 1.667 
separately. We identically set the boundary conditions 
of the problem as the above description of single-gas 
condition and the dual-gas condition as Table 3.  

Table 3. The dual-gas initial condition of shock tube problem 
Gas 

condition 1ρ  2ρ  u P 1Y  
2Y  x  

Left hand 
side(L) 1 0 0 1 1 0 5.0<x

 
Right hand 

side(R) 0 0.8 0 0.2 0 1 5.0≥x
 

For the presented diagram of regional locations, 
Zoom1 is the extremity position of expansion wave, 
Zoom2 stands for the starting area of contact 
discontinuity interface, Zoom3 represents the region 
between contact discontinuity interface and shock 
wave and Zoom4 shows the rear edge of shock wave. 
Moreover, for the Eρ -related diagram, Zoom2 
stands for the rear edge of expansion wave as well as 
Zoom3 is the region between contact discontinuity 
interface and shock wave. 
 

NUMERICAL RESSULTS AND 
DISCUSSION 

In order to treat the gradient problem, we 
applied the Runge-Kutta time stepping method with 
second order, van Leer limiter and Superbee limiter. 

The Gradient Computation with Different Types 
under Single Gas Condition 

For the gradient problem of source term in the 
additional equation, we carried out the gradient 
problem through the following two ways. 

 The gradient difference forms with different 
order: 
First, we analyze and discuss that increasing order 
of difference whether raise the computing 
accuracy through fixing the difference type of 
distinct order. 

 Changing types of gradient difference method: 
For the difference types of mixture loop, we 
analyze the problems that are numerical 
oscillations and failed projections on the shock 
wave and contact discontinuity interface by 
changing difference types. 

Comparison of Gradient Difference Method with 
Distinct Order 

We first discuss the results of third order 

derivative based on the gradient model through 
Taylor series. The types of difference were applied as 
Table 4, where the difference methods N1 and N2 of 
third order derivative were explained in detail by Eqs. 
(7) and (8) on the above section. In order to escape 
from the confusing difference type, we define the 
symbols as Table 5. For example, “F1B2C3” stands 
for the form that the forward, backward and central 
difference methods are separately used in the first, 
second and third order derivative. 

Table 4. The adopted difference methods 

Derivative 
Forward 

difference 
(FD) 

Backward 
difference 

(BD) 

Central 
difference 

(CD) 

Other 
difference 

method 

xf      

xxf      

xxxf     N1, N2 

xxxxf      

Table 5: The Signs of Derivatives and Parameters 
Derivative Superscript Difference method Symbol 

xf  1 Forward  F 

xxf  2 Backward  B 

xxxf  3 Central  C 

xxxxf  4 Others N1, N2 

For the part of third order derivative, we have 
carried out to estimate by adopting the common 
forward difference method, central difference method 
and backward difference method, but the excessive 
computing nodes lead to failed calculation in the code. 
Although the forward difference method is not 
affected by the initial boundary points, that the 
occurrence time of shock wave and contact 
discontinuity interface are very short but the distance 
of nodes is big causes huge oscillation problem. It 
cannot estimate the part of energy Eρ  even though 
the consequence of density ρ  can be projected. On 
the operation of initial gradient, therefore, we take the 
forward difference method for first order derivative, 
central difference method for second order derivative 
and compare the results of difference methods N1 and 
N2 for third order derivative. 

First, note the density ρ -related graph (as Fig. 
1) with considering third order gradient, we debate 
that it whether improves the catching ability of shock 
wave and contact discontinuity interface by 
increasing the accuracy of gradient. By the parts of 
Fig. 2, we find that the perpendicularity is improved 
insignificantly although the effect by changing limiter 
is better than that of this method. In the region 
between contact discontinuity interface and the front 
edge of shock wave shown as the Fig. 3, the N2 
method clearly reduces the numerical oscillation 
problem although the perpendicularity of N2 method 
is worse than that of N1 method. For the N1 and N2 
method, there are advantages and disadvantages 
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separately so we further discuss the results of 
individual energy ii Eρ . 

  
Fig. 1. The ρ -related 
diagram with considering 
third order derivative 

Fig. 2. The enlargement 
Zoom2 of Fig. 1 

  
Fig. 3. The enlargement 
Zoom3 of Fig. 1 

Fig. 4. The Eρ -related 
diagram with considering 
third order derivative 

  
Fig. 5. The enlargement 
Zoom2 of Fig. 4 

Fig. 6. The enlargement 
Zoom3 of Fig. 4 

For the individual energy ii Eρ -related figure 
(as Fig. 4), we just discussed the results in the regions 
of the rear of expansion wave and near contact 
discontinuity interface because other regions are 
similar to the ρ -related graph and the disparities of 
these regions are noticeable than that of other regions. 
By the graph of Zoom 2 (Fig. 5), we know that it can 
produce the problem of incorrect projection for 
individual energy after the expansion wave by using 
the Superbee limiter. We also obtain a consequence 
that the projection of N1 is worse than that of N2. In 
addition, by Fig. 6, we observe that using the 
difference method of N1 for third-order derivative 
produces huge oscillations and it has failed projection 
between contact discontinuity interface and the front 
edge of shock wave. Moreover, the N1 method with 
using the Superbee limiter leads to numerical 
oscillation problem in this region. Therefore, it is 
unsuitable that we deal with the discussed flow field 
problem by applying N1 method. In order to improve 
the problem of incorrect estimation for high order 

derivative, we try to modify the problems of 
oscillation and faulty projection caused by third order 
derivative by adding the difference method of 
adaptive gradient. 

Considering the Computing Loop of Adaptive 
Gradient 

In this study, we consider the needed node 
position of distinct difference types and change the 
order of computation of gradient difference as Table 
4. We try various combinative forms of difference 
and find that the original failed difference method 
becomes successful operation as well as improve the 
difference type of considering third-order gradient 
through changing the computation way of loop. 
Additionally, we will list and illustrate the logic of 
following three sorts of loop design and 
consequences, including F1C2C3, F1F2C3 and 
F1C2N23. 

(i) The computation loop of gradient F1C2C3: 

Although that the central difference method of 
third order is failure on the computing code was 
mentioned in the above section, it can operate via 
modifying the computational loop. In the code, 
we alter some setting. 
(1) If the time stepping 1≤n , then we use the 

first-order forward difference method to 
estimate the conditional parameter of 2=n . 

(2) There are some parameters under the 
condition of time stepping 2=n , and then 
we modify the operation to second-order 
gradient, where the second order derivative 
takes central difference method i.e. F1C2. 

(3) After the above two operations, we change 
the calculation of gradient into third order 
and consider the central difference method 
on the computation of third order derivative. 
In other words, we start to employ the 
computing type F1C2C3 after 4=n . 

The computational logic of other two ways is similar 
to this type, and the illustrations of their computing 
logic will be simply described as following. 

(ii) The computation loop of gradient F1C2F3: 

(1) If 1=i , then f∇  uses the difference 
operation F1 of first order gradient. 

(2) If 2=i , then f∇  uses the difference 
operation F1F2 of second order gradient. 

(3) If 4≥i  , then f∇  uses the difference 
operation F1F2C3 of third order gradient. 

(iii) The computation loop of gradient F1C2N23: 

(1) If 1=i , then f∇  uses the difference 
operation F1 of first order gradient. 

(2) If 2=i , then f∇  uses the difference 
operation F1F2 of second order gradient. 
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(3) If 4≥i , then f∇  uses the difference 
operation F1F2N23 of third order gradient. 

We do not consider the forward and backward 
difference method for third order derivative. The 
reason is that the needed computing nodes are 
excessive. For the discussed problem of high gradient 
on shock wave and contact discontinuity interface, it 
must lead to a problem of error. Although, for third 
order derivative, the central difference method needs 
5 nodes, it does not cause the failed operation in early 
stages of computation through the design of loop. In 
addition, we also adjust the initial position of 
different order gradient with the difference type. 

First, through the density ρ -related graph (Figs. 
7 - 9), we observe that the design of computing loop 
is adapted whether the catching ability of shock wave 
and contact discontinuity interface rises. In the region 
between contact discontinuity interface and the front 
edge of shock wave, we find that the difference 
method of N2 with considering Superbee limiter still 
has a notably numerical oscillation problem. 
However, the catching ability of perpendicularity of 
F1F2C3 on contact discontinuity interface is better 
than other two difference methods. Additionally, it 
improves the numerical oscillations of Superbee 
limiter in this region. However, it was affected by the 
characteristic of limit function that the van Leer 
limiter of smooth type cannot display the contrast 
significantly between distinct difference methods. 

  
Fig. 7. The ρ -related 
diagram with computation 
loop of mixed gradient 

Fig. 8. The enlargement 
Zoom2 of Fig. 7 

Observe the divergences of individual energy 
ii Eρ  (Fig. 10), by the graph of Zoom2 (as Fig. 11), 

we can notice that the approximation effect in the 
rear edge of expansion wave is the best by using the 
difference method F1F2C3. Nevertheless, it still 
cannot improve the problem of numerical error of 
energy  before the contact discontinuity interface 
even through modifying the loop of calculation. Note 
the figure of Zoom 4 (as Fig. 12), we can clearly 
perceive that the disparity between these three 
difference methods with various limiters. In the 
above section, the best difference method F1C2N23 of 
third order derivative has no capability to project the 
numerical values of energy in the region between 
contact discontinuity interface and the front edge of 
shock wave. Thus, through modifying the loop of 

computation, the oscillation problem also cannot be 
improved in the front of contact discontinuity 
interface. Hence, in this region, the error of energy 
estimation is pretty outstanding. Oppositely, the 
results of original other difference methods are better 
than that of F1C2N23 clearly in this region. 

  
Fig. 9. The enlargement 
Zoom4 of Fig. 7 

Fig. 10. The Eρ -related 
diagram with computation 
loop of mixed gradient 

  
Fig.11. The enlargement 
Zoom2 of Fig. 10 

Fig.12. The enlargement 
Zoom4 of Fig. 10 

It is worth noting that the numerical method 
with van Leer limiter can correctly project the 
estimation of energy in this region. Although there is 
a problem of numerical oscillation, the gradient 
operation extends to the accuracy of third order and 
has appropriate reliability through this modificatory 
method of loop. By the above section, we will discuss 
and integrate the results of better difference method 
of gradient operation. 

Comparison of Difference Method with Distinct 
Order and Mixture Gradient 

By the above optimal computation results, we 
debate the influence of computing code including the 
additional energy term with using variant order 
difference methods. The content contains the first 
order gradient F1, second order gradient F1C2 and 
third order gradient F1F2C3 with single gas condition 
as well as van Leer and Superbee limiter. 

For the -related part as Figs. 13 - 15, we just 
detail the numerical oscillation problem in the 
regions of the front edge of expansion wave and 
between shock and contact discontinuity interface 
because the dissimilarities are fewer on the contact 
discontinuity interface and the rear edge of shock 
wave. By the front edge of expansion wave, we find 
that the consequences of second order gradient F1C2 
and third order gradient F1F2C3 with using Superbee 
limiter decrease the problem of numerical oscillation 
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slightly, although the estimation of expansion wave 
oppositely deviates the curve of the reference 
solution because of the immense slope. However, 
considering van Leer limiter, the estimation of second 
order gradient is better than other two types of 
difference method. In the region between shock and 
contact discontinuity interface, the difference type 
with high order has the numerical oscillation problem. 
Especially, for applying Superbee limiter, the 
difference method with second order accuracy causes 
the most oscillations. 

  
Fig. 13. The ρ -related 
diagram with distinct order 
difference types 

Fig. 14. The enlargement 
Zoom1 of Fig. 13 

  
Fig. 15. The enlargement 
Zoom3 of Fig. 13 

Fig. 16. The ii Eρ -related 
diagram with distinct order 
difference types 

  
Fig. 17. The enlargement 
Zoom1 of Fig. 16 

Fig. 18. The enlargement 
Zoom3 of Fig. 16 

 
For the individual energy ii Eρ -related figure 

as Fig. 16, on the front edge of expansion wave, the 
oscillation position of the difference method with 
using Superbee limiter moves onward with the 
increasing order. In other words, in this region, 
enlarging the order can improve the calculation 
accuracy of catching expansion wave and reduce the 
strength of oscillation. In addition, the projection 
capability of energy is the best through the gradient 
calculation F1C2 of second order accuracy in the 
regions where are the front edge of contact 
discontinuity interface and between the front edge of 

shock and contact discontinuity interface. However, 
augmenting the order and the problem of computing 
nodes will result in plenty of numerical oscillations. 
After the modification of the loop, as Zoom3 (Fig. 18) 
there is an apparent dissimilarity on the forecast of 
energy. 

Through this series of related diagram, for the 
gradient calculation of additional energy equation of 
multiple gases, the perpendicularity of Superbee 
limiter are better than that of van Leer limiter on the 
non-linear region, although the problems of 
numerical oscillation and inaccurate forecast are quite 
grave. By this section, we know that using the 
gradient computation method of second order 
accuracy will match the characteristic of fast 
variation of shock due to less computing nodes and 
improve the computation precision and non-physical 
numerical oscillations. 

The Numerical Results in Different Type for 
Gradient 

The following adopted difference methods are 
forward and central difference method, and the 
chosen flux limiters are van Leer, Superbee as well as 
the compressive form of Čada limiter. 

a. Comparison between the results of F1C2C3 and 
the one of F1C2C3C4 

First, we discuss the consequence of the 
fourth-order and third-order Taylor series for the 
1-dimensional gradient in this part. For the density 
ρ-related diagram Fig. 19, we directly observe the 
enlargement figure in the region before the contact 
discontinuity interface showed as Fig. 21. We find 
that the perpendicularity of the fourth-order series is 
not manifestly better than the one of third-order series. 
However, the numerical oscillations of the 
fourth-order series explicitly become more serious. 
For the region of expansion wave in Fig. 19, the 
numerical results of the Superbee limiter and van 
Leer limiter are rough, but that of Čada limiter 
comparatively approximates the reference solution. 
Besides, in the location between the contact 
discontinuity interface and shock wave as Fig. 22, the 
fourth-order result is also worse compared with the 
result of third-order. Nevertheless in the Fig. 20, there 
is almost no conspicuous difference. 

  
Fig. 19. The ρ -related 
diagram with the different 
order derivative 

Fig. 20. The enlargement of 
Fig. 19 near the expansion 
wave 
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Fig. 21. The enlargement of 
Fig. 19 near the contact 
discontinuity interface 

Fig. 22. The enlargement of 
Fig. 19 between the contact 
discontinuity interface and 
shock wave 

  
Fig. 23. The enlargement of 
Fig. 19 near the shock wave 

Fig. 24. The ρ -related 
diagram with considering 
whether there is the rd3  
order for the gradient 
treatment 

b. Comparison between the results of F1C2C4 and 
the one of F1C2C3C4 

Here, for the gradient calculation by expanding 
Taylor series into fourth order, we debate whether the 
numerical oscillations before the high-gradient 
position can be improving through removing the 
third-order part. As the density ρ -related Fig. 24, we 
discuss the above problem. In the Fig. 25, their 
tendencies are similar to the above part a. In addition, 
we find that there is almost no the difference for the 
perpendicularity capturing in the local enlargement 
diagrams Fig. 26 and Fig. 27; however, the 
non-physical numerical oscillations of the form of 
removing the third-order derivative become serious. 

  
Fig. 25. Local position 
diagram of Fig. 24 

Fig. 26. Local position 
diagram of Fig. 24 

  
Fig. 27. Local position 
diagram of Fig. 24 between 
the contact discontinuity 
interface and shock wave 

Fig. 28. Local position 
diagram of Fig. 24 near the 
shock wave 

Furthermore, the numerical oscillations of adopting 

the different limiters have discrepancies. In Fig. 26, 
the oscillation phenomena will be improved via the 
numerical computation combining with the 
compressive-form Čada limiter. Hence, we think that 
the facing oscillation problem can be improved 
through some high-order numerical method with a fit 
limiter. 

CONCLUSIONS 
In order to reduce the non-physical oscillation 

problem in the numerical process, in this study, we 
carried out several newly derived gradient difference 
method as well as different two kinds of flux limiter 
to modify the form of the high-order Taylor series in 
source term for multispecies. 

The results present that the nodes of difference 
are excessive will cause the numerical oscillation 
problem and failed computation because the high 
gradient varies sharply. Therefore, for the gradient 
computing, we raise the computing precision of 
gradient difference method by modifying 
computation loop. For the presented results of part a, 
the perpendicularity of the fourth-order series is not 
manifestly better than that of third-order series, but 
the non-physical numerical oscillations of the 
fourth-order series definitely become more serious. 
Moreover, the numerical result of Čada limiter closer 
the reference solution than that of Superbee/van Leer 
limiter. Further, in the part b, the non-physical 
numerical oscillations become aggravated for the 
form of removing the third-order derivative. The 
oscillation phenomen could be improved through 
some high-order numerical computation combining 
with a fit limiter. 
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NOMENCLATURE 

Greek Symbol 

Symbol Illustration Units 
∆  Difference [ ]−  

φ  Conservation variables KUx ′∆=φ  [ ]2mN  

Φ  Flux function [ ]2mN  

γ  Ratio of specific heats [ ]−  

ϕ  Limit function [ ]−  

ν  Courant number xtv ∆∆= maxυ  [ ]−  

ρ  Density [ ]3mkg  
ς  Specific volume ρς 1=  [ ]kgm3  

Latin Symbol 

Symbol Illustration Units 

CFLC  CFL number ( ) CFLCvxt max∆=∆  [ ]−  

e  Specific internal energy [ ]kgJ  

E  Specific energy [ ]kgJ  

F  Frictionless flux vector [ ]2mN  

h  Entropy [ ]kgkJ  

P  Pressure [ ]psi  

Q  Source term [ ]2mN  

r  Specific local flux [ ]−  

R  Gas constant [ ]KkgJ ⋅
 s  Switching function [ ]−  

t  Time [ ]sec  

T  Temperature [ ]K  

u  Velocity in x-axis [ ]sm  

U  Vector of conservation variables [ ]2mN  

maxv  Maximum propagation velocity [ ]sm  

V  Volume [ ]3m  

V∂  Unit surface [ ]2m  

iW  Molar mass [ ]kmolkg
 

iY  Mass fraction ρρ iiY =  [ ]−  

Mathematical Symbol 

Symbol Illustration Units 

U  
Mean value of conserved variable 
vector [ ]−  

max Maximum [ ]−  

min Minimum [ ]−  

 
Index Symbol 

Symbol Illustration Units 
ji,  Step number of individual 

displacement [ ]−  

K  Individual control volume [ ]3m  

s  Average [ ]−  
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摘 要 

本文將非定常 Euler 方程之能量方程擴展為混

合氣體的形式，並透過有限體積法進行數值求解，

進而討論接觸不連續界面和震波附近之非物理性

數值振盪問題。我們透過使用結合不同通量限制器

的 AUSMDV 黎曼求解法，利用有限體積法以及二

階二步時間離散步進法來求解方程。接著，本文為

了討論近似黎曼求解法在不同類型梯度數值處理

中所面臨的問題，透過建立新的梯度控制方法來檢

驗非物理性數值振盪問題。 
 


