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ABSTRACT 

 
Hardware-in-the-loop (HiL) simulation enables 

the development of electronic control units (ECUs) for 
automotive applications, requiring high-precision 
models to represent key components like 
electromechanical actuators. Most actuators 
incorporate significant friction, which is challenging 
to model. This paper proposes physical and data-
driven modeling methods for electromechanical 
actuators. Both methods successfully achieved HiL 
simulation for functionally testing ECUs. 
 

INTRODUCTION 
 

Modern combustion engine research and 
development demands constant emissions, fuel 
consumption reductions, and improved performance. 
Satisfying these demands enables increasingly 
complex engine applications. If dynamic system 
models are available, efficient, model-based analysis 
and design procedures can be developed. A vital 
application is hardware-in-the-loop (HiL) simulation, 
providing a simulated driving environment enabling 
automatic testing of control devices in a virtual setting. 
The HiL environment allows testing in extreme 
conditions without real-world risks, including 
variable-speed simulation. Modeling reportedly 
comprises 50-90% of implementing model-based 
control systems (Kroll, 2016), which motivates semi-
automated modeling method development. 

Two approaches exist to achieve mathematical 
models of dynamic processes: theoretical or physical 
modeling versus data-driven modeling. Model 
structure and parameters are determined using physical  
principles or prior knowledge for physical modeling.  
 
 
 
 
 

 
Unknown parameters are set through experimentation. 
However, modeling systems with friction is typically 
challenging and resource-intensive, motivating 
algorithm development and enabling automated or 
semi-automated dynamic model identification. 

Substantial work exists regarding friction 
description and modeling (Armstrong-Héouvry et al., 
1994; Wit et al., 1995; Olsson et al., 1998; Marques et 
al., 2016; Pennestri et al., 2016; Gagnon et al., 2020). 
Usually, static models derive from stationary speed-
friction relationships. However, recent research shows 
that dynamic friction effects must be considered in 
model development. Therefore, various dynamic 
friction models have been proposed, differing from 
static models by incorporating static friction (e.g., 
adhesive, sliding, viscous) and dynamic effects like the 
Dahl effect. Many studies address electromechanical 
actuator physical modeling, facing principal 
challenges in unknown parameters from high non-
linearity like friction. Formal modeling and friction 
identification can apply physical principles. While 
most accurately capture friction effects, some require 
detailed physics knowledge, expensive experiments 
(Nakada et al., 2005; Pavkovic et al., 2006; Grepl and 
Lee, 2010), or complex numerical methods (Nakano et 
al., 2006; Yuan et al., 2011). 

For data-driven methods, the piecewise affine 
(PWA) models have gained interest recently due to 
their high approximation ability (Vaezi and Izadian, 
2015). PWA models partition the regression space into 
polyhedral convex regions. Globally, PWA models 
approximate nonlinear systems; locally, mapping from 
regression to output is piecewise affine, enabling the 
direct application of linear theory. PWA models 
address challenging system analysis, prediction, 
simulation modeling, and control design problems 
(Breschi et al., 2016; Wang et al., 2020). Roll et al. 
(2004) identified PWA models using mixed-integer 
linear or quadratic programming, suitable only for 
limited data. Juloski et al. (2005)'s Bayesian method 
estimates model parameters as random variables but 
requires precise system knowledge. Ferrari-Trecate et 
al. (2003), Nakada et al. (2005), and Breschi et al. 
(2016) proposed clustering-based methods, classifying 
data into sub-models using clustering algorithms and 
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estimating sub-model parameters and partition 
boundaries simultaneously or subsequently. However, 
design parameters must be tuned appropriately. Local 
parameters from least-squares methods minimizing 
least-mean-square errors for series-parallel models are 
generally biased, limiting prediction quality for 
parallel evaluation (e.g., simulation) (Kroll, 2016). 
Modification of these approaches is needed, especially 
for simulation systems with friction. 

This paper proposes physical and data-driven 
methods for the semi-automated modeling of systems 
with friction. For physical modeling, simple physical 
principles inform model structure. Model parameters 
derive from input/output data in open-loop 
experiments. A novel clustering-based piecewise 
affine (PWA) method is proposed for data-driven 
modeling, requiring fewer design parameters and 
suited for large or non-Gaussian data sets. The number 
of sub-model is determined by minimizing the model 
prediction error. Bias-free parameter estimation 
employs parallel identification. Both approaches 
enabled hardware-in-the-loop simulation of 
electromechanical actuators for passenger cars.  

 
METHODS  

 
PROBLEM STATEMENT 

Friction is a nonlinear, complex, stochastic 
phenomenon essential to developing 
electromechanical actuators. Typically arising from 
interactions between two surfaces, friction effects 
encompass adhesive traction, sliding, viscous friction, 
and more. Friction introduces complications, 
including asymmetry, stick-slip effects, variable 
adhesion, and other issues. Friction is also impacted by 
temperature, humidity, aging, and other factors, 
remaining challenging to comprehend and model 
(Marques, 2016; Gagnon, 2020; Simoni, 2020).  

As a typical electromechanical actuator, a 
throttle (see Figure 1) primarily comprises a DC servo 
motor, a gearbox, a return spring, a potentiometer 
angle sensor, and a throttle plate. The DC servo motor 
actuates the throttle. The angle sensor generates an 
output signal ranging from 0.5-4.5V to indicate the 
throttle plate position. Friction arises primarily 
between gears and bearings/shafts within the gearbox. 
Physical models commonly represent friction as a 
nonlinear function of angular velocity. 

Fig. 1 A typical throttle and its technology 
scheme 

 

In order to enable data collection for model 
identification, validation, and hardware-in-the-loop 
simulation, a test stand was constructed. Figure 2 
provides a schematic illustration. The system 
incorporated National Instruments hardware for PWM 
control signal implementation and measurement data 
recording. A LabVIEW-based application program 
was developed to allow user operation of the test stand. 
Open-loop input/output measurement data was 
automatically recorded at a defined sampling rate. 

Fig. 2 Test stand 
 

PHYSICAL MODELING 
Typically, the physical model of the 

electromechanical throttle comprises a linear sub-
model representing electromechanical components 
and a nonlinear sub-model for friction effects. Friction 
is defined as follows: 

𝑀𝑀𝑅𝑅 = �𝑀𝑀𝐴𝐴 −𝑀𝑀𝐹𝐹 , if �̇�𝑦 = 0 and |𝑀𝑀𝐴𝐴 −𝑀𝑀𝐹𝐹| ≤ 𝑀𝑀𝐻𝐻
𝑀𝑀𝐺𝐺 ∙ sgn(�̇�𝜑) + 𝑘𝑘𝑅𝑅 ∙ �̇�𝜑,              otherwise   (1) 

 
M.H. is the static friction torque, M.G. is the Coulomb 
friction torque, and kR is the viscosity coefficient. The 
DC servo motor can be defined by the following 
standard model: one equation for the motor current 

ϕ⋅−⋅−⋅=
R

k
t
i

R
Lu

R
i M

d
d1        (2) 

and one equation for the motor torque 
ikM MA ⋅=              (3) 

 
where u is the duty cycle, i is the current, R is the motor 
resistance, L is the motor inductance, and kM is the 
motor constant. Since the dominant time constant 

RL /=τ  is much smaller than the sampling time
ST , 

the dynamics of the DC servo motor can be neglected, 
and (2) and (3) can be simplified and combined to: 

ϕϕ  ⋅−⋅=⋅
⋅

−⋅=⋅= EMFV
MMM

MA kuk
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kku
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kikM (4) 

 
with Rkk MV /=  and Rkkk MMEMF /⋅= . The 
return spring is utilized for safety reasons to pull the 
plate to the open position ϕo. The resulting spring 
torque is given by: 

ooFF MkM +−⋅= )( ϕϕ         (5) 
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where kF is the spring stiffness and 
oM  is the spring 

torque at the open position ϕo. When combining all the 
torques mentioned above with the inertia torque ϕ⋅J  
and a duty-free assumption )0( =LM  for modeling, 
the model has the following form: 
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with ϕϕϕ −= o'  and the affine term ( )ϕsgn10 ⋅+= ccf . 
The unknown parameters in (7) are given as: Jka F /0 = , 

Jkka EMFR /1 += , Jkb V /0 −= , JMc o /0 = , JMc G /1 =  and 

JMc HH /= . 

If the conditions �̇�𝜙 = 0  and  |𝑀𝑀𝐴𝐴 −𝑀𝑀𝐹𝐹| ≤ 𝑀𝑀𝐻𝐻  
are met, the actuator may remain stationary due to 
static friction. For the following explanation, we 
assume this condition persists during transitions from 
stiction to sliding. As the actuator closes, the motor 
torque exceeds the spring torque. As it opens, the 
spring torque dominates the motor torque. Both 
processes are defined as follows:  

 

( ) Ho
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The continuous movement of the throttle in both 
processes can also be described by: 

 

( ) 10010
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:Closing   

(10) 
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:Opening   (11) 

 
In the transition phase from sliding to stiction, the 

velocity is relatively small ( 0≈ϕ  and 0=ϕ  ), 
therefore (10) and (11) can be rewritten as: 

( ) 1000 ccuba o =+⋅+−⋅ ϕϕ:Closing         
(12)    

( ) 1000 ccuba o −=+⋅+−⋅ ϕϕ: Opening          (13) 

 
Fig. 3 Input/output characteristic of 

measurement with four fitting lines and particular 
points for identification 

 
As mentioned, the model parameters will be 

obtained in the following steps. In the first step, 
01000100 /,/,/,/ bcbcbaba  and

0/ bcH
 can be 

determined from the input/output characteristic, which 
results from a triangle-shaped test signal. Fig. 3 shows 
four L1~ L4 fitting lines (L1 for the uniform opening 
motion, L2 for the uniform closing motion, L3 for the 
transition from stiction to sliding, and L4 for the 
transition from sliding to stiction) and particular points 
A1~ D2. L1~ L4 were determined based on the 
measurement data using the RANSAC algorithm 
(Zuliani et al., 2003). The particular points A1~ D2 on 
fitting lines are used to estimate unknown parameters 
with the following relationships: 
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After rewriting (7), it follows as: 
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In order to estimate the rest parameter b0, �̈�𝜑 
should not be equal to 0. In the first step, the test signal 
with lower bandwidth drove the actuator. With this 
signal, the dynamics, like the system's second-order 
mode, cannot be sufficiently excited, and reliable 
estimation of b0 cannot be reached. Therefore, a 
further step is needed to determine b0 under �̈�𝜑 ≠ 0. 
Using the test signal with higher bandwidth, the higher 
system order can be sufficiently excited, and b0 can be 
estimated using numerical optimization. The 
identification problem can be solved by minimizing 
the following cost function:  
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PWA MODELING 

Piecewise affine (PWA) modeling is widely 
applied, especially for hybrid systems such as 
switched systems. This study employs a typical PWA 
model structure, the PWARX (Piecewise 
AutoRegressive eXogenous) model, to represent 
electromechanical actuators. The model is defined as 
follows: 

𝑓𝑓(𝒙𝒙(𝑘𝑘)) =

⎩
⎪
⎨

⎪
⎧𝜽𝜽1𝑇𝑇 �

𝒙𝒙(𝑘𝑘)
1

�  if 𝒙𝒙 ∈ 𝝌𝝌1
⋮

𝜽𝜽𝑐𝑐𝑇𝑇 �
𝒙𝒙(𝑘𝑘)

1
�  if 𝒙𝒙 ∈ 𝝌𝝌𝑐𝑐

       (21) 

with the regressor:  
𝒙𝒙(𝑘𝑘) = [𝑦𝑦(𝑘𝑘 − 1) 𝑦𝑦(𝑘𝑘 − 2). . .𝑦𝑦(𝑘𝑘 − 𝑛𝑛𝑎𝑎) 
                 𝑢𝑢(𝑘𝑘 − 1) 𝑢𝑢(𝑘𝑘 − 2). . .𝑢𝑢(𝑘𝑘 − 𝑛𝑛𝑏𝑏)]𝑇𝑇(22) 

where 𝑢𝑢(𝑘𝑘) ∈ ℜ is the model input, 𝑛𝑛𝑎𝑎 and 𝑛𝑛𝑏𝑏 are 
the numbers of used past outputs and inputs, 𝑛𝑛 =
𝑛𝑛𝑎𝑎 + 𝑛𝑛𝑏𝑏. The regression space is split into c polyhedral 
partitions. {𝜒𝜒𝑖𝑖}𝑖𝑖=1𝑐𝑐  is a polyhedral partition of the 
regression space, and 𝜽𝜽 ∈ ℜ𝑛𝑛+1 is a parameter vector. 

When applying clustering-based methods to 
identify systems exhibiting friction, particular 
attention must be paid to friction phenomena. The 
original regression model in Eq. (21) incorporates past 

inputs and outputs unsuitable for representing friction 
effects. Given the velocity-dependent features arising 
from friction, using 𝑦𝑦(𝑘𝑘 − 1) − 𝑦𝑦(𝑘𝑘 − 2)  and 
𝑢𝑢(𝑘𝑘 − 1) as regressors is more reasonable. Because 
location-dependent effects were not observed in 
measurements, y(k-1) will be excluded. The standard 
k-means clustering algorithm will then be employed 
for clustering in the new regression space. Figure 4 
depicts the allocation of measurement data given c = 8 
clusters. Points in the regression space are labeled by 
cluster index following clustering, indicating velocity-
dependent friction effects are well classified.    

 
Fig. 4 Cluster result 

 
Model parameters are then optimized through 

parallel identification because, as reported (Kroll, 
2016), parallel identification can achieve a higher 
prediction quality. Initial parameter values for 
optimization are established using serial-parallel 
identification. Serial-parallel identification calculates 
output based on past inputs and outputs, which can be 
solvable by standard least squares methods. However, 
serial-parallel identification may produce biased 
parameters.   In contrast, parallel identification 
calculated output based on past inputs and predicted 
outputs, which should be solved using optimization 
methods. 

 
RESULTS AND DISCUSSIONS 

As previously discussed, the model will undergo 
hardware-in-the-loop (HiL) simulation and must 
predict actuator output precisely to enable functional 
testing of electronic control units (ECUs). Two criteria 
were employed to evaluate model quality 
quantitatively: 

NRMSE = �∑ �𝑦𝑦(𝑘𝑘)−𝑦𝑦�(𝑘𝑘)�
2𝑁𝑁

𝑘𝑘=1
∑ (𝑦𝑦(𝑘𝑘)−�̄�𝑦)2𝑁𝑁
𝑘𝑘=1

        (23) 

‖𝑒𝑒‖∞ = 𝑚𝑚𝑚𝑚𝑚𝑚
𝑘𝑘

(|𝑦𝑦�(𝑘𝑘) − 𝑦𝑦(𝑘𝑘)|)   (24) 

For this application, the specified requirements 
are model performance ‖𝑒𝑒‖∞ ≤ 5° and normalized 
root mean square error (NRMSE) value as low as 
possible. In addition to quantitative evaluation, 
qualitative assessment of time series data and 
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histograms will be used for validation. Models must 
be validated using "fresh" measurement data not 
incorporated into the identification process. An 
amplitude-modulated multi-step signal (APRTS) will 
serve as the test signal. The case study applied Both 
proposed modeling methods to an electromechanical 
throttle. In order to determine the optimal number of 
sub-models for the PWA model, the k-Means 
clustering algorithm was initialized ten times for 
values between 2 to 10 sub-models. Based on the 
resulting model quality, c=8 sub-models were 
selected. 

 
Fig. 5 Model predictions and measurements for 

parallel evaluation of both models 
 

Table 1. Performance comparison of both models 

 
The identified models will undergo parallel 

model evaluation, in which the model output depends 
on both the current input and past outputs. Comparing 
measurement and simulation results using new test 
data (see Fig. 5) shows that the model and actual 
system are highly similar. The model accurately 
reproduces friction behaviors such as static friction. 
However, the PWA model's residuals appear 
asymmetrically distributed in the histogram of Fig. 
5.  This asymmetry could be optimized by improving 
either the test signal design or model structure 
selection. Both modeling methods were 
quantitatively compared in Table 1. The maximum 
absolute error was 4.93° for the physical model and 
3.92° for the PWA model. The normalized root mean 
square error (NRMSE) was 0.06° for both models. It 
means that the PWA model may provide superior 
model quality, with the potential to achieve the target 
of ‖𝑒𝑒‖∞ ≤ 5°. 

The identified models have already been 
implemented on a microprocessor board to enable 
functional testing of the electronic control unit (ECU). 

The results are compared with measurement data (see 
Fig. 6). 

 
Fig. 6 Comparing different models with the 

measurement 
 

A comparison of measurements and simulation in 
the open loop indicates that the hardware-in-the-loop 
(HiL) simulator can capture the real effects in principle. 
However, it is noted that there appears to be a visible 
deviation in the opening process. While the time-
continuous model shows good consistency with the 
measurement data, the time-discrete simulation shows 
a deviation from the measurements, likely due 
primarily to discretization effects. Theoretically, the 
HiL simulator's hardware should reproduce the 
identified model, but Fig. 6 shows a more significant 
deviation. As Table 2 indicates, the error ‖𝑒𝑒‖∞  is 
about 12° for the HiL simulator, which exceeds the 
specified 5° limit. The coding of the implemented 
model on the microprocessor and electronic 
disturbances may account for this deviation. In order 
to compensate for the deviation, minor adjustments in 
the HiL simulator were carried out, and now the 
accurate electromechanical actuators can be replaced 
by the HiL-simulator for the functional testing of ECU. 

 
Table 2. Performance comparison of different 

implementations 

Criterion 
Time-

continuous 
model 

Time-
discrete 
model 

Real-
time 

model 
NRMSE 0.06 0.07 0.12 
‖𝑒𝑒‖∞ 4.93° 5.09° 12.08° 

 
The presented modeling methods were also 

successfully applied to additional electromechanical 
actuators for passenger vehicles, such as swirl flaps, 
exhaust gas recirculation (EGR) valves, and 
electromagnetic valves, enabling real-time simulation. 
Therefore, the real-time simulator employing the 
proposed methods can be used for the hardware-in-
the-loop (HiL) simulation of multiple 
electromechanical actuators.  

Besides, both presented modeling methods are 
generally compared in Table 3. 
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‖𝑒𝑒‖∞ 4.21° 3.83° 

Validation 
data 

NRMSE 0.06 0.06 
‖𝑒𝑒‖∞ 4.93° 3.92° 
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Table 3. Performance comparison of different 

implementations 

Aspect Physical 
modeling 

Data-driven 
modeling 

Model type Physical model PWA-model 
Prior 

knowledge Medium Little 

Interpretability Good Limited 
Extrapolability Good Limited 

Prediction 
quality Good Very good 

Transferability Application 
specified Universal 

 
The physical modeling method employs natural 

and engineering principles based on necessary prior 
knowledge to develop differential equations 
describing the system. In contrast, the data-driven 
modeling method approximates the behavior of a 
nonlinear system based on limited prior knowledge. A 
typical data-driven model approximates a nonlinear 
system using a piecewise affine modeling method, 
which is achieved by composing affine and locally 
valid piecewise affine (PWA) sub-models as 
difference equations. Compared to the physical 
modeling approach, the PWA model can achieve a 
higher prediction accuracy when modeling complex 
electromechanical actuators, which tend to be more 
demanding to represent. However, the PWA model 
depicts only the target system's input-output transfer 
behavior. 

Consequently, the resulting PWA model lacks a 
physical interpretation. Unlike physical models, PWA 
model parameters cannot be mapped to physical 
quantities in the system. Instead, they reflect complex 
statistical patterns rather than physical processes. The 
PWA model provides limited insight into the target 
system's inherent properties and dynamics since it 
produces statistical approximations tuned to the 
training dataset. Additionally, the PWA model has 
constrained extrapolability. Unlike physical models, 
data-driven models do not represent the causal factors 
or relationships governing the system's behavior. They 
detect input-output patterns but fail to capture deeper 
mechanisms. Thus, their predictions break down 
outside the range of common input-output pairs in the 
training data. It is challenging to determine the level of 
uncertainty in the model's predictions under new 
conditions starkly different from the training data, 
which makes uncertainty analysis difficult.  

Overall, the presented modeling methods 
adequately capture the behavior of electromechanical 
actuators, producing model quality sufficient for 
hardware-in-the-loop (HiL) simulation and functional 
testing of electronic control units (ECUs). Both 
methods are efficient, relying on a few design 
parameters, allowing a model to be semi-automated 

and developed within 5 minutes. 
 

CONCLUSIONS 
 

This paper presented two semi-automated 
modeling approaches employing physical and data-
driven identification methods for friction systems. 
Both approaches were applied to electromechanical 
actuators in passenger vehicles. Results indicate that 
both modeling approaches can efficiently yield models 
achieving performance ‖𝑒𝑒‖∞ ≤ 5°,  adequate for 
hardware-in-the-loop simulation and functional 
electronic control unit testing. Further research will 
target improved test signal design and model-based 
controller development. 
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NOMENCLATURE 
 
𝑐𝑐    Number of clusters 
 
i    Current   
 
𝐽𝐽    Inertia 
 
𝑘𝑘𝐹𝐹   Spring stiffness 
 
𝑘𝑘𝑀𝑀   Motor constant 
 
𝑘𝑘𝑅𝑅   Viscosity friction coefficient 
 
𝑘𝑘𝐸𝐸𝑀𝑀𝐸𝐸  Coefficient of back EMF 
 
𝑀𝑀𝐺𝐺   Coulomb friction moment 
 
𝑀𝑀𝐻𝐻   Static friction moment 
 
𝑀𝑀𝑜𝑜   Spring torque at the open position 
 
𝑀𝑀𝑅𝑅   Friction moment 
 
𝑀𝑀𝑒𝑒𝑒𝑒𝑒𝑒   External moment 
 
𝑛𝑛𝑎𝑎    Number of past outputs 
 
𝑛𝑛𝑏𝑏    Number of past inputs 
 
R     Resistance 
 
𝑇𝑇𝐴𝐴    Sampling time 
 
u     Duty cycle 
 
X(k)   Regressor vector 
 
𝜑𝜑     Angular position 
 
𝜑𝜑𝑜𝑜    The open position of the throttle plate 
 
�̇�𝜑     Angular velocity 
 
�̈�𝜑     Angular acceleration 
 
𝜒𝜒     Polyhedral partition 
 
𝜃𝜃     Parameter vector 
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摘 要 

在汽車應用中，特別是在電子控製單元(ECU)

的開發中，硬件在環(HiL)發揮著重要的作用，這

就要求高精度的模型來模擬車輛的機電執行器等

關鍵部件。大多數執行器都是具有顯著摩擦效應的

系統，對此類系統進行建模並非易事。本文提出了

機電執行器的物理建模方法和數據驅動建模方法，

並將這兩種方法應用於電控單元功能測試的 HiL

仿真。結果表明，這兩種方法都能有效地實現提供

了高質量的模型，可以滿足 HiL中 ECU的功能測試

模擬。 


