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Hardware-in-the-Loop-Simulation
ABSTRACT

Hardware-in-the-loop (HiL) simulation enables
the development of electronic control units (ECUs) for
automotive applications, requiring high-precision
models to represent key components like
electromechanical  actuators.  Most  actuators
incorporate significant friction, which is challenging
to model. This paper proposes physical and data-
driven modeling methods for electromechanical
actuators. Both methods successfully achieved HiL
simulation for functionally testing ECUs.

INTRODUCTION

Modern combustion engine research and
development demands constant emissions, fuel
consumption reductions, and improved performance.
Satisfying these demands enables increasingly
complex engine applications. If dynamic system
models are available, efficient, model-based analysis
and design procedures can be developed. A vital
application is hardware-in-the-loop (HiL) simulation,
providing a simulated driving environment enabling
automatic testing of control devices in a virtual setting.
The HiL environment allows testing in extreme
conditions  without real-world risks, including
variable-speed simulation. Modeling reportedly
comprises 50-90% of implementing model-based
control systems (Kroll, 2016), which motivates semi-
automated modeling method development.

Two approaches exist to achieve mathematical
models of dynamic processes: theoretical or physical
modeling versus data-driven modeling. Model
structure and parameters are determined using physical
principles or prior knowledge for physical modeling.

Paper Received April, 2023. Revised June, 2023. Accepted August,
2023. Author for Correspondence: Zhenxing Ren.

Lecturer, College of Data Science, Taiyuan University of Technology,
Jinzhong, Shanxi, PRC.

Unknown parameters are set through experimentation.
However, modeling systems with friction is typically
challenging and resource-intensive, motivating
algorithm development and enabling automated or
semi-automated dynamic model identification.

Substantial work exists regarding friction
description and modeling (Armstrong-Héouvry et al.,
1994; Wit et al., 1995; Olsson et al., 1998; Marques et
al., 2016; Pennestri et al., 2016; Gagnon et al., 2020).
Usually, static models derive from stationary speed-
friction relationships. However, recent research shows
that dynamic friction effects must be considered in
model development. Therefore, various dynamic
friction models have been proposed, differing from
static models by incorporating static friction (e.g.,
adhesive, sliding, viscous) and dynamic effects like the
Dahl effect. Many studies address electromechanical
actuator  physical ~modeling, facing principal
challenges in unknown parameters from high non-
linearity like friction. Formal modeling and friction
identification can apply physical principles. While
most accurately capture friction effects, some require
detailed physics knowledge, expensive experiments
(Nakada et al., 2005; Pavkovic et al., 2006; Grepl and
Lee, 2010), or complex numerical methods (Nakano et
al., 2006; Yuan et al., 2011).

For data-driven methods, the piecewise affine
(PWA) models have gained interest recently due to
their high approximation ability (Vaezi and lzadian,
2015). PWA models partition the regression space into
polyhedral convex regions. Globally, PWA models
approximate nonlinear systems; locally, mapping from
regression to output is piecewise affine, enabling the
direct application of linear theory. PWA models
address challenging system analysis, prediction,
simulation modeling, and control design problems
(Breschi et al., 2016; Wang et al., 2020). Roll et al.
(2004) identified PWA models using mixed-integer
linear or quadratic programming, suitable only for
limited data. Juloski et al. (2005)'s Bayesian method
estimates model parameters as random variables but
requires precise system knowledge. Ferrari-Trecate et
al. (2003), Nakada et al. (2005), and Breschi et al.
(2016) proposed clustering-based methods, classifying
data into sub-models using clustering algorithms and
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estimating sub-model parameters and partition
boundaries simultaneously or subsequently. However,
design parameters must be tuned appropriately. Local
parameters from least-squares methods minimizing
least-mean-square errors for series-parallel models are
generally biased, limiting prediction quality for
parallel evaluation (e.g., simulation) (Kroll, 2016).
Modification of these approaches is needed, especially
for simulation systems with friction.

This paper proposes physical and data-driven
methods for the semi-automated modeling of systems
with friction. For physical modeling, simple physical
principles inform model structure. Model parameters
derive from input/output data in open-loop
experiments. A novel clustering-based piecewise
affine (PWA) method is proposed for data-driven
modeling, requiring fewer design parameters and
suited for large or non-Gaussian data sets. The number
of sub-model is determined by minimizing the model
prediction error. Bias-free parameter estimation
employs parallel identification. Both approaches
enabled  hardware-in-the-loop ~ simulation  of
electromechanical actuators for passenger cars.

METHODS

PROBLEM STATEMENT

Friction is a nonlinear, complex, stochastic
phenomenon essential to developing
electromechanical actuators. Typically arising from
interactions between two surfaces, friction effects
encompass adhesive traction, sliding, viscous friction,
and more. Friction introduces complications,
including asymmetry, stick-slip effects, variable
adhesion, and other issues. Friction is also impacted by
temperature, humidity, aging, and other factors,
remaining challenging to comprehend and model
(Marques, 2016; Gagnon, 2020; Simoni, 2020).

As a typical electromechanical actuator, a
throttle (see Figure 1) primarily comprises a DC servo
motor, a gearbox, a return spring, a potentiometer
angle sensor, and a throttle plate. The DC servo motor
actuates the throttle. The angle sensor generates an
output signal ranging from 0.5-4.5V to indicate the
throttle plate position. Friction arises primarily
between gears and bearings/shafts within the gearbox.
Physical models commonly represent friction as a
nonlinear function of angular velocity.

potentiometer  throttle plate

e

S PWM| L R

gearbox

return spring
A
——DC motor

Fig. 1 A typical throttle and its technology
scheme
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In order to enable data collection for model
identification, validation, and hardware-in-the-loop
simulation, a test stand was constructed. Figure 2
provides a schematic illustration. The system
incorporated National Instruments hardware for PWM
control signal implementation and measurement data
recording. A LabVIEW-based application program
was developed to allow user operation of the test stand.
Open-loop input/output measurement data was
automatically recorded at a defined sampling rate.

Fig. 2 Test stand

PHYSICAL MODELING
Typically, the physical model of the
electromechanical throttle comprises a linear sub-
model representing electromechanical components
and a nonlinear sub-model for friction effects. Friction
is defined as follows:
M, — Mg,ify = 0and |[M, — Mg| < My
My ={

Mg - sgn(p) + kg - ¢, otherwise (1)

M. is the static friction torque, M. is the Coulomb
friction torque, and kg is the viscosity coefficient. The
DC servo motor can be defined by the following
standard model: one equation for the motor current

l_u L di ky . )

and one equation for the motor torque
M, =k, -i (3)

where u is the duty cycle, i is the current, R is the motor
resistance, L is the motor inductance, and kw is the
motor constant. Since the dominant time constant
r=L/R is much smaller than the sampling time T,

the dynamics of the DC servo motor can be neglected,
and (2) and (3) can be simplified and combined to:

k Ky -k

M, =k, .i:%.u,%.(g,:kv RTRS C)

with k, =k, /R and kg, =k, -k, /R . The
return spring is utilized for safety reasons to pull the

plate to the open position ¢,. The resulting spring
torque is given by:

M. =k (9, — @)+ M, ®)
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where ke is the spring stiffness and M is the spring
torque at the open position ¢,. When combining all the
torques mentioned above with the inertia torque J . ¢
and a duty-free assumption (M, =0) for modeling,
the model has the following form:

J-¢p=M. =M, +M,+M,
0 ifg=0andk, ‘u—ke (g, —9)-M,| <M, (6)
= kF‘((oo_(p)_'—Mo_kV.u_*—kEMF‘gb
+Mg -sgn(g)+ kg - @ otherwise
¢:{0 if(p=0and\b0-u—a0-(goo—(p)—co\ch(7)
A, ¢+a - p+by-u+f otherwise

with o= - andtheaffineterm f =c, +c, -sgn(¢).
The unknown parameters in (7) are givenas:a, =k, /J ,
a, =Kg +Keye 130y =k, 13, cg=Mo/J, ¢,=M,/J and
Cy =M, /J-

If the conditions ¢ = 0 and |[M, — My| < My
are met, the actuator may remain stationary due to
static friction. For the following explanation, we
assume this condition persists during transitions from
stiction to sliding. As the actuator closes, the motor
torque exceeds the spring torque. As it opens, the

spring torque dominates the motor torque. Both
processes are defined as follows:

Closing:M,>M; =M, =M [=M,-M_ =M, ®)
an'(¢o_¢)+b0'u+coch

Opening : M, <M. =M, -M|=~(M,-M_)=M, ©)

an'(¢0_¢)+b0'u+C0=_CH

The continuous movement of the throttle in both
processes can also be described by:

Closing : ¢ <0=sgn(¢) =-1

:>¢=a0 '(‘/’o _¢)+a1'¢+b0 U+Cy—C
(10)
Opening : ¢ > 0= sgn(¢) =1 (11)
=>¢=2a, (p,—p)+a, -@+b,-u+tc, +¢

In the transition phase from sliding to stiction, the
velocity is relatively small ( p~0 and $=0),

therefore (10) and (11) can be rewritten as:

Closing : a, - (¢, —¢)+b, -u+c, =c,

(12)

Opening: a, - (¢, —¢)+b, -u+c, =—¢, (13)
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Fig. 3 Input/output characteristic of
measurement with four fitting lines and particular
points for identification

As mentioned, the model parameters will be
obtained in the following steps. In the first step,
a,/by,a, /by,c,/0,,¢, /b, and ¢, /b, can be
determined from the input/output characteristic, which
results from a triangle-shaped test signal. Fig. 3 shows
four L1~ L4 fitting lines (L1 for the uniform opening
motion, L2 for the uniform closing motion, L3 for the
transition from stiction to sliding, and L4 for the
transition from sliding to stiction) and particular points
A1~ D,. L1~L4 were determined based on the
measurement data using the RANSAC algorithm
(Zuliani et al., 2003). The particular points A1~ D, on
fitting lines are used to estimate unknown parameters
with the following relationships:

a, . .

bfo 1(0) | —(20) [g;= &, '((/731 _(/’A1)+a1 '((/’Al _(051)(14)
o
+bo '(UAi_usl)ZO

& _ Uy —Ug

With g,y = ¢, =
Dy Pm—Pa
2 10) |y ~(12) |0y = Bry = 80 - (Par — Ppy )+ 2, -
b A2 B2= Pp2 =y "\ Py = Pp 1" Pa2
° (15)
+bo '(qu *UBZ)
withp,, = ¢g, = Pp; :ai'(rbA2+bo’(uA2_u32)
Withg,, = const. = — % = Y2 “Us2
o Pn2
C
2 ) las +( sz =2y '((Do _¢7A3)+ N '(% _¢53)
b
(16)
40y (Upg +Ugy )+2-C, =0
. C U,, +U
Withp,, = g, =@, =+ =28
b, 2



C
*1:(12) |A4 _(13) |54:> a, ’((054 _¢A4)+bo '(UAA _UB4)
: an

with@,, = @,

C
biH 18 s —(9) |g5= 2 '((085 _¢7A5)+ b, '(UAS _UBS)

° (18)
=2-C,
. Cy Ux—uU
Withg,s =g = i = %
After rewriting (7), it follows as:
a Co| €
0 if p=0andu——2-¢p'- "% <"
? b, © b, b, (19)

¢:
b, -{Z(‘j~¢'+z:-gb+u+;:+;-sgn(¢)} otherwise

In order to estimate the rest parameter by, @
should not be equal to 0. In the first step, the test signal
with lower bandwidth drove the actuator. With this
signal, the dynamics, like the system's second-order
mode, cannot be sufficiently excited, and reliable
estimation of by cannot be reached. Therefore, a
further step is needed to determine bo under ¢ =+ 0.
Using the test signal with higher bandwidth, the higher
system order can be sufficiently excited, and b, can be
estimated using numerical optimization. The
identification problem can be solved by minimizing

the following cost function:
N

1 :
bO,opt = argbomln ﬁ Z [¢sim (k1 bo) — PMeas (k)] (20)

k=1

PWA MODELING
Piecewise affine (PWA) modeling is widely
applied, especially for hybrid systems such as
switched systems. This study employs a typical PWA
model  structure, the PWARX (Piecewise
AutoRegressive eXogenous) model, to represent
electromechanical actuators. The model is defined as
follows:
(0{ [x(lk)] ifx € x4
fx(k)) = . 5 (21)
kez [x(l )] ifx € x,
with the regressor:
x(k) = [y(k =D y(k —2)...y(k —ng)
utk — D ulk —2)...u(k —n,)]"(22)
where u(k) € R is the model input, n, and n, are
the numbers of used past outputs and inputs, n =
n, + n,. The regression space is split into ¢ polyhedral
partitions. {x;}{—, is a polyhedral partition of the
regression space, and @ € R™*1 is a parameter vector.
When applying clustering-based methods to
identify systems exhibiting friction, particular
attention must be paid to friction phenomena. The
original regression model in Eq. (21) incorporates past
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inputs and outputs unsuitable for representing friction
effects. Given the velocity-dependent features arising
from friction, using y(k—1)—-y(k—2) and
u(k — 1) as regressors is more reasonable. Because
location-dependent effects were not observed in
measurements, y(k-1) will be excluded. The standard
k-means clustering algorithm will then be employed
for clustering in the new regression space. Figure 4
depicts the allocation of measurement data given ¢ =8
clusters. Points in the regression space are labeled by
cluster index following clustering, indicating velocity-
dependent friction effects are well classified.

50
Cluster 1
Cluster 2

= Cluster 3
Cluster 4
Cluster 5
Cluster 6
Cluster 7
Cluster 8

 a=yk-1)-yk-2)
Fig. 4 Cluster result

Model parameters are then optimized through
parallel identification because, as reported (Kroll,
2016), parallel identification can achieve a higher
prediction quality. Initial parameter values for
optimization are established using serial-parallel
identification. Serial-parallel identification calculates
output based on past inputs and outputs, which can be
solvable by standard least squares methods. However,
serial-parallel identification may produce biased
parameters. In contrast, parallel identification
calculated output based on past inputs and predicted
outputs, which should be solved using optimization
methods.

RESULTS AND DISCUSSIONS
As previously discussed, the model will undergo
hardware-in-the-loop (HiL) simulation and must
predict actuator output precisely to enable functional
testing of electronic control units (ECUs). Two criteria
were employed to evaluate model quality
quantitatively:

AN b w-9w)°
NRMSE ]—W @3)
llell.. = max(|9(k) — y(k)D) (24)

For this application, the specified requirements
are model performance |lel]l,, < 5° and normalized
root mean square error (NRMSE) value as low as
possible. In addition to quantitative evaluation,
qualitative assessment of time series data and
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histograms will be used for validation. Models must
be validated using "fresh" measurement data not
incorporated into the identification process. An
amplitude-modulated multi-step signal (APRTS) will
serve as the test signal. The case study applied Both
proposed modeling methods to an electromechanical
throttle. In order to determine the optimal number of
sub-models for the PWA model, the k-Means
clustering algorithm was initialized ten times for
values between 2 to 10 sub-models. Based on the

resulting model quality, ¢=8 sub-models were
selected.
M I Tl M

0 5 10 Time:t/s 15 20 25

—_  f
100F T T T Measurement
Physical model
° - — — PWA-model
50

. . . .
0 5 10 Time:t/s 15 20 25
T T

Angle position:
y/

Physical model
— — —PWA-model

Absolute error:

20
PWA-model

40 40
30 30
R 20 g

= 5]
I 10 8
5
&

Percent:

0 - 0
-0-8 6 -4 -2 0 2 4 6 8 10 -10-8 6 -4 2 0 2 4 6 8 10

Fig. 5 Model predictions and measurements for
parallel evaluation of both models

Table 1. Performance comparison of both models

Data type Criterion | Physical PWA-
model model
Identification | NRMSE 0.05 0.04
data llell 4.21° 3.83°
Validation NRMSE 0.06 0.06
data llell 4.93° 3.92°

The identified models will undergo parallel
model evaluation, in which the model output depends
on both the current input and past outputs. Comparing
measurement and simulation results using new test
data (see Fig. 5) shows that the model and actual
system are highly similar. The model accurately
reproduces friction behaviors such as static friction.
However, the PWA model's residuals appear
asymmetrically distributed in the histogram of Fig.
5. Thisasymmetry could be optimized by improving
either the test signal design or model structure
selection.  Both  modeling  methods  were
quantitatively compared in Table 1. The maximum
absolute error was 4.93° for the physical model and
3.92° for the PWA model. The normalized root mean
square error (NRMSE) was 0.06° for both models. It
means that the PWA model may provide superior
model quality, with the potential to achieve the target
of |lell, <5°.

The identified models have already been
implemented on a microprocessor board to enable
functional testing of the electronic control unit (ECU).

The results are compared with measurement data (see
Ig 6)
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measurement

A comparison of measurements and simulation in
the open loop indicates that the hardware-in-the-loop
(HiL) simulator can capture the real effects in principle.
However, it is noted that there appears to be a visible
deviation in the opening process. While the time-
continuous model shows good consistency with the
measurement data, the time-discrete simulation shows
a deviation from the measurements, likely due
primarily to discretization effects. Theoretically, the
HiL simulator's hardware should reproduce the
identified model, but Fig. 6 shows a more significant
deviation. As Table 2 indicates, the error |le||,, is
about 12° for the HiL simulator, which exceeds the
specified 5° limit. The coding of the implemented
model on the microprocessor and electronic
disturbances may account for this deviation. In order
to compensate for the deviation, minor adjustments in
the HiL simulator were carried out, and now the
accurate electromechanical actuators can be replaced
by the HiL-simulator for the functional testing of ECU.

Table 2. Performance comparison of different
implementations

Time- Time- Real-

Criterion | continuous discrete time
model model model

NRMSE 0.06 0.07 0.12
llells 4.93° 5.09° 12.08°

The presented modeling methods were also
successfully applied to additional electromechanical
actuators for passenger vehicles, such as swirl flaps,
exhaust gas recirculation (EGR) valves, and
electromagnetic valves, enabling real-time simulation.
Therefore, the real-time simulator employing the
proposed methods can be used for the hardware-in-
the-loop (HiL) simulation of multiple
electromechanical actuators.

Besides, both presented modeling methods are
generally compared in Table 3.



Table 3. Performance comparison of different
implementations

A Physical Data-driven
spect - h
modeling modeling
Model type Physical model PWA-model
Prior Medium Little
knowledge
Interpretability Good Limited
Extrapolability Good Limited
Prediction
quality Good Very good
Transferability Appll(_:a}tlon Universal
specified

The physical modeling method employs natural
and engineering principles based on necessary prior
knowledge to develop differential equations
describing the system. In contrast, the data-driven
modeling method approximates the behavior of a
nonlinear system based on limited prior knowledge. A
typical data-driven model approximates a nonlinear
system using a piecewise affine modeling method,
which is achieved by composing affine and locally
valid piecewise affine (PWA) sub-models as
difference equations. Compared to the physical
modeling approach, the PWA model can achieve a
higher prediction accuracy when modeling complex
electromechanical actuators, which tend to be more
demanding to represent. However, the PWA model
depicts only the target system's input-output transfer
behavior.

Consequently, the resulting PWA model lacks a
physical interpretation. Unlike physical models, PWA
model parameters cannot be mapped to physical
quantities in the system. Instead, they reflect complex
statistical patterns rather than physical processes. The
PWA model provides limited insight into the target
system's inherent properties and dynamics since it
produces statistical approximations tuned to the
training dataset. Additionally, the PWA model has
constrained extrapolability. Unlike physical models,
data-driven models do not represent the causal factors
or relationships governing the system's behavior. They
detect input-output patterns but fail to capture deeper
mechanisms. Thus, their predictions break down
outside the range of common input-output pairs in the
training data. It is challenging to determine the level of
uncertainty in the model's predictions under new
conditions starkly different from the training data,
which makes uncertainty analysis difficult.

Overall, the presented modeling methods
adequately capture the behavior of electromechanical
actuators, producing model quality sufficient for
hardware-in-the-loop (HiL) simulation and functional
testing of electronic control units (ECUs). Both
methods are efficient, relying on a few design
parameters, allowing a model to be semi-automated
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and developed within 5 minutes.

CONCLUSIONS

This paper presented two semi-automated
modeling approaches employing physical and data-
driven identification methods for friction systems.
Both approaches were applied to electromechanical
actuators in passenger vehicles. Results indicate that
both modeling approaches can efficiently yield models
achieving performance |le|l, < 5° adequate for
hardware-in-the-loop  simulation and functional
electronic control unit testing. Further research will
target improved test signal design and model-based
controller development.
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NOMENCLATURE
c Number of clusters
i Current
Inertia
kr  Spring stiffness
ky  Motor constant
kr  Viscosity friction coefficient
keyx Coefficient of back EMF
M;  Coulomb friction moment
My Static friction moment
M,  Spring torque at the open position
Mg  Friction moment
M,,. External moment
ng Number of past outputs
ny Number of past inputs
R Resistance
T, Sampling time
u Duty cycle
X(k)  Regressor vector
1) Angular position
@, The open position of the throttle plate
) Angular velocity

Angular acceleration

Polyhedral partition

=

7] Parameter vector
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