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ABSTRACT 

 
In present research, firefly algorithm and 

flower pollination algorithm, two novel bio-inspired 
metaheuristic algorithms, are used to select the 
optimal parametric combinations for underwater laser 
micro-channeling process to achieve desired 
objectives. Firefly algorithm is inspired by the social 
flashing behavior of fireflies, whereas, the flower 
pollination algorithm is inspired by the pollination 
behavior of flowers. Single objective and multi 
objective optimizations are carried out using these 
algorithms, in which the objective functions are 
developed using response surface method. The 
solution of the optimization problems show that the 
algorithms are capable to find the feasible optimal 
parametric combination with high degree of accuracy. 
Both the algorisms are compared for their accuracy, 
repeatability, convergence rate and computational 
time. These algorithms are also found to be capable 
of predicting accurate trends of the parametric 
effects. 
 

 
 
 
 
 
 
 
 
 
 
 
 

INTRODUCTION 
 

Laser micro-machining has been proved as an 
effective and low cost fabrication process for 
micro-fluidic applications. Micro-channels are an 
integral part of many such micro-fluidic devices. 
Fabrication of micro-channels on different substrate 
material is a cumbersome process and may involve 
several steps of processing including the requirement 
of clean room facilities and skilled labor. However, 
laser micro-machining process can be utilized for 
micro-channel fabrication in one step without the 
need for any post processing step (Prakash et al., 
2013). Laser micro-machining is a contactless, 
energized beam based material removal process in 
which material is removed by the process of heating, 
melting and vaporization. Underwater laser 
processing has been successfully applied to fabricate 
micro-channels on different substrate materials 
(Prakash et al., 2013; Tangwarodomnukun and Chen, 
2015). In underwater processing, debris is carried 
away by thermal convection and bubble movement 
for lasers with short pulse duration (Prakash and 
Kumar, 2014). Underwater processing also minimizes 
the heat affected zone due to higher heat transfer rate 
resulting in cleaner and smoother microchannel edge. 
The underwater laser processing was first utilized in 
1975 to study material ablation during emission 
spectroscopy (Ageev, 1975). Underwater laser 
processing is a novel technique to produce clean, clog 
free micro-features on materials by utilizing local 
cooling effect as well as reducing the re-deposition of 
ablated material on the surface. The material ablation 
phenomenon underwater is entirely different from 
open air condition. During underwater ablation, the 
optical breakdown of molecules and limited 
expansion of plasma are taking place (Wang, 2006). 
Due to limited expansion of laser formed plasma, the 
recoil pressure, generated due to plasma shock waves, 
increases manifold (Chen et al., 2004; Li et al., 2005). 
This form of ablation increases the part of cold 
ablation in contrast to only thermal ablation in open 
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air condition. This also results in increase of material 
ablation rate in underwater condition. The 
re-depository materials are generally lighter than 
water and do not get re-deposited on the work-piece 
surface, and instead float in the water. Underwater 
laser processing has also been proved to be very 
beneficial in through cutting. The quality of the 
micro-channels is controlled by the process 
parameters like lamp current, pulse frequency, pulse 
width, cutting speed, etc (Prakash et al., 2014). These 
process parameters are required to be optimized for 
producing the micro-channels of desired quality. 

Firefly algorithm (FA) and flower pollination 
algorithm (FPA) are two newly developed algorithms 
used for searching global optima within a design 
space. Firefly algorithm is a bio-inspired 
swarm-intelligence based algorithm, whereas, flower 
pollination algorithm is a bio-inspired algorithm but 
not a swarm-intelligence based algorithm. Firefly 
algorithm depends upon social flashing behavior of 
fireflies, whereas, the flower pollination algorithm is 
inspired by pollination behavior of flowers.  

The usual advantage of firefly algorithm is that 
FA can automatically subdivide its population into 
subgroups, due to the fact that local attraction is 
stronger than long-distance attraction. As a result, FA 
can deal with highly non-linear, multi-modal 
optimization problems efficiently. Pal et al. (2012) 
made a comparative study of firefly algorithm and 
particle swarm optimization for noisy non-linear 
optimization problems. The study obtained that 
firefly algorithm can outperform particle swarm 
optimization for higher level of noises. Galvez and 
Iglesias (2013) applied firefly algorithm for 
polynomial bezier surface parameterization. Hashmi 
et al. (2013) employed firefly algorithm for 
unconstrained optimization to verify six unimodal 
engineering optimization problems and gave a 
detailed formulation and explanation of the algorithm. 
Fister et al. (2013) made a comprehensive review of 
firefly algorithms. Yang and He (2013) repoted recent 
advances and applications of firefly algorithm. 
Sayadi et al. (2013) applied firefly algorithm to the 
application of manufacturing cell formation for 
discrete optimization problem. Johari et al. (2013) 
applied firefly algorithm on various domains of 
optimization problem. Several categories of 
optimization problems such as discrete, chaotic, multi 
objective and many more were addressed by inspiring 
the behavior of fireflies. Talatahari et al. (2014) 
analyzed optimum design of tower structure using 
firefly algorithm. 

Flower pollination algorithm is also an efficient 
algorithm in the field of metaheuristic optimization 
inherited from the natural inspiration of pollination 
process. Pollinators such as insects can travel long 
distance, and thus they introduce the ability (into the 
algorithm) that they can escape any local landscape 
and subsequently explore larger search space. Yang et 

al. (2012) investigated flower pollination algorithm 
for global optimization of ten test functions. Ten test 
functions were used to validate flower pollination 
algorithm and it was found from the simulation 
results that FPA is more efficient than both genetic 
algorithm (GA) and particle swarm optimization 
(PSO) algorithm. Wang and Jhou (2014) investigated 
the flower pollination algorithm with dimension by 
dimension improvement to improve the convergence 
speed and quality of solutions effectively. In this 
algorithm a dimension by dimension based update 
and evaluation strategy on solutions was used with 
the progress of iterations. Sharawi et al. (2014) 
applied flower pollination optimization algorithm for 
wireless sensor network lifetime optimization. A 
wireless sensor network energy aware clustering 
formation model was proposed based upon intra 
cluster distances using FPA. It was found from the 
performance analysis that applying FPA on WSN 
(wireless sensor network) clustering was more 
efficient compared to classical LEACH approach. 
Balasubramani et al. (2014) made a study on flower 
pollination algorithm and its application. FPA has 
been extensively researched to solve integer 
programming problems (El-Henawy and Ismail, 
2014), sudoku puzzles (Raouf et al., 2014). Yang et al. 
(2014) applied flower pollination  algorithm for a 
novel approach for multi-objective optimization to 
solve a set of multi objective test functions and two bi 
objective design benchmarks. A comparison of the 
algorithm with other stochastic algorithms showed 
that FPA is an efficient algorithm in terms of fast 
convergence rate. Prathiba et al. (2014) proposed FPA 
for optimizing economic load dispatch in power 
system operation. The objective was to minimizing 
the fuel cost by effectively setting the real power 
outputs from generators.  

In this paper, laser micro-channeling 
parameters are optimized, using firefly algorithm and 
flower pollination algorithm. Response surface 
models, which correlate the quality characteristics or 
responses with process parameters, are used as 
objective functions in both the algorithms. Single as 
well as and multi objective optimizations are 
performed. Statistical analyses are performed with the 
results obtained to measure the accuracy of the 
predicted results. Results are further compared with 
the optimum results found with conventional 
optimization techniques, which shows greater 
improvement. Comparison is also made between both 
the algorithms in terms of accuracy and repeatability 
of the results, convergence rate and computational 
time. In addition to that parametric trends are also 
analyzed. 

 
METHODOLOGY 

 
Firefly algorithm (FA) 

The firefly algorithm is a nature-inspired 
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metaheuristic algorithm introduced in 2008 by Yang 
to solve optimization problems (Yang, 2009; Yang, 
2010). The algorithm is based on the social flashing 
behavior of fireflies in nature. Although the algorithm 
has many similarities with other swarm based 
algorithms such as particle swarm optimization (PSO), 
artificial bee colony optimization (ABC) and ant 
colony optimization (ACO), the firefly algorithm has 
proved to be much simpler both in concept and 
implementation. The superiority of FA over PSO is 
already established for solving noisy nonlinear 
optimization problems (Pal et al., 2012). 

 
Flashing Behavior of Fireflies 

Fireflies or lightning bugs are member of a 
family of insects that can produce natural light to 
attract a mate or prey. There are near to two thousand 
firefly species, and most of them produce short and 
rhythmic flashes (Hashmi et al., 2013). The intensity 
(I) of flashes has a negative effect with increased 
distance (r) increases conforms to the inverse square 
law and thus most fireflies can communicate only up 
to several hundred meters. That is the intensity of the 
light, I, goes on decreasing in terms of Iα1/r2, as the 
distance, r, will increase. Additionally, light is 
absorbed by air continuously, thus with increased 
distance light becomes weaker. The combination of 
these two above mentioned factors make most 
fireflies visible upto a limited distance, which is quite 
enough for fireflies to communicate with each other. 
In the firefly algorithm, there are three particular 
idealized rules, which are based on some of the major 
flashing characteristics of real fireflies. They are 
(Hashmi et al., 2013): 

1. Attraction of one firefly to other fireflies 
does not depend upon their sex. 

2. Attractiveness is proportional to brightness 
and both have a negative effect with increase 
distance. 

3. The landscape of the objective function 
determines the brightness of a firefly.  

 
Attractiveness and Light Intensity 

In the Firefly algorithm, there are two 
important issues: the variation of the light intensity 
and the formulation of the attractiveness. It has been 
mentioned above that the light intensity follows the 
inverse square law (Hashmi et al., 2013) i.e.: 

r
IrI =)(  (1) 

where I(r) denotes light intensity at a distance r and Is 
denotes the intensity at the source. 
When air is used as a medium, the light intensity can 
be determined as follows (Hashmi et al., 2013): 

γ−= eIrI 0)(  (2) 
To avoid the singularity at r = 0 in Eq. (1), the 
equations can be approximated in the following 
Gaussian form:  

2

0)( reIrI γ−=  (3) 

Since a firefly’s attractiveness is proportional to the 
light intensity seen by adjacent fireflies, we can now 
define the attractiveness β of a firefly as: 

2

0
re γββ −=  (4) 

where β0 is the attractiveness at r = 0. Since it is often 
faster to calculate1/(1+r2) than an exponential 
function, the above function, if necessary, can be 
approximated as (Yang, 2010): 

2
0

1 rγ
β

β
+

=
 (5) 

Both, Eqs. (4) and (5) define a characteristic distance 
Г= 1/√γ depending upon which the attractiveness is 
changing in a significant manner from β0 to β0e-1 for 
Eq. (4) or β0/2 for Eq. (5). In the real time 
implementation, the attractiveness function β(r) can 
be any monotonically decreasing functions such as 
the following generalized form (Yang, 2010): 

)1()( 0 ≥= − mer
nrγββ     (6) 

For a fixed γ, the characteristic length becomes (Yang, 
2010): 
Г= γ-1/m → 1, m → ∞     (7) 
Conversely, for a specific length scale Г in an 
optimization problem, the parameter γ can be used as 
a typical initial value. That is (Yang, 2010): 
γ = 1/ r m     (8) 
 
Firefly Distance 
The distance between any two fireflies i and j at xi 
and xj respectively, the Cartesian distance is 
determined by Eq. (9) where xi,k is the kth component 
of the spatial coordinate xi of the ith firefly and d is 
the number of dimensions (Pal et al., 2012). 

( )∑
=

−=−=
d
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 (9) 

In 2-dimensional case, we have (Pal et al., 2012): 
( )22 )()( jijiij yyxxr −−−=  (10) 

 
Firefly Movement 

The movement of a firefly i for the attraction to 
another more attractive (brighter) firefly j is 
determined by (Yang, 2010): 

iij
r

ii xxexx ij αεβ γ +−+= − )(
4

0
 (11) 

where the second term is due to the attraction while 
the third term is randomization with α being the 
randomization parameter and εi being the vector of 
random numbers drawn from a Gaussian distribution 
or uniform distribution.  

It is very important to point out that Eq. (11) 
is a random-walk partial towards the brighter fireflies. 
If β0 = 0, it becomes a simple random walk. 
Furthermore, the randomization term can easily be 
prolonged to other distributions such as Lévy flights. 

The parameter γ now characterizes the 
contrast of the attractiveness, and its value is 
crucially important in determining the speed of the 
convergence and how the firefly algorithm behaves. 
In theory, γє[0, ∞), but in actual practice, γ = O (1) is 
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determined by the characteristic length Г of the 
system to be optimized. Thus, for most applications, 
it typically varies from 0.1 to 10 (Yang, 2010). 
 
Convergence 

For any large number of fireflies (n), if n>>m, 
where m is the number of local optima of an 
optimization problem, the convergence of the 
algorithm can be achieved. Here, the initial location 
of n fireflies is distributed uniformly in the entire 
search space, and as the iterations of the algorithm 
continue fireflies converge into all the local optimum. 
By comparing the best solutions among all these 
optima, the global optima are achieved (Galvez and 
Iglesias, 2013). 
 
Flower pollination algorithm (FPA) 

Flower pollination algorithm is a metaheuristic 
and bio-inspired intelligence based algorithm 
developed by Xin-She Yang, 2012, based on the 
pollination process of the flower plants. It does not 
fall in the category of swarm intelligence based 
algorithms. In the flower pollination algorithm, there 
are four particular idealized rules, which are based on 
pollination characteristics of flower plants. These are 
as follows: 

1. Global pollination process can be achieved 
by pollen- carrying pollinators performing 
Levy flights for both biotic and cross 
pollination. 

2. Local pollination can take place for both 
abiotic and self pollination. 

3. The new generation reproduction probability 
depends on the flower consistency and 
proportional to flowers’ similarities / 
differences (Sharawi et al., 2014). 

4. The transformation between local 
pollination and global pollination is 
controlled by a switch probability p ∈ [0, 1].  

For abiotic, flowers do not need any pollinators for 
the pollens transferring process (Beverly, 2007). In 
general, biotic pollination form is considered to 
follow for most of the flowers. Each plant can have 
multiple flowers, and each flower patch often release 
millions, and even billions of pollen gametes. For 
simplicity, we assume that each plant has only one 
flower, and each flower produce only one pollen 
gamete (Sharawi et al., 20104). For simplicity, we 
assume that each plant has only one flower, and each 
flower produce only one pollen gamete. According to 
the rules stated above, the flower pollination 
algorithm (FPA) can be represented mathematically 
as follows:  

Flower pollens are carried by pollinators 
such as insects which can often fly and move in a 
much longer range and thus, pollens can travel over a 
long distance in the global pollination step. The 
pollinators intend to achieve the global optimization 

of reproduction based on flower consistency, this can 
mathematically achieve by (Sharawi et al., 20104): 

)( *
1 gxLxx t

i
t
i

t
i −+=+  (12) 

where, xt
i denotes solution vector xi for pollen i at 

iteration t, and g* denotes current best solution found 
so far during iterations. The parameter L denotes the 
strength of the pollination, which essentially is a step 
size. Since, insects may move over a long distance 
with various distance steps, we can use a Lévy flight 
to mimic this characteristic efficiently (Pavlyukevich, 
2009). Lévy flight using Lévy step is a powerful 
random walk because both global and local search 
capabilities can be carried out at the same time. In 
contrast with standard Random walks, Lévy flights 
have occasional long jumps, which enable the 
algorithm to jump out any local valleys. Lévy steps 
obey the following approximation (Sharawi et al., 
20104): 
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where, τ(γ) is the standard gamma function, and this 
distribution is valid for large steps s > 0. For case of 
local pollination, achieved by abiotic and 
self-pollination depending upon flower constancy, the 
mathematical representation is as follows (Sharawi et 
al., 20104): 
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k

t
j

t
i

t
i xxxx −∈+=+  (14) 

Where, xt
j and xt

k are pollens from the different 
flowers of the same plant species. These essentially 
mimic the flower constancy in a limited 
neighborhood (Yang, 2012). є is local random walk 
drawn from a uniform distribution in [0, 1].  

Though Flower pollination activities can occur at 
all scales, both local and global, in practice, adjacent 
flower patches or flowers in the not-so-far-away 
neighborhood are more likely to be pollinated by 
local flower pollens than those are far away. For this, 
the switch probability p ∈ [0, 1] is used to control the 
exchange of the pollination process from local to 
global and vice versa.  
 

DEVELOPMENT OF EMPIRICAL 
MODELS USING RSM 

 
Central composite design of response surface 
methodology is used for planning the experimental 
work. Experiments are conducted on a 3 mm thick 
PMMA (Poly-methyl-meth-acrylate) sheet using a 
Nd:YAG laser having 1.06 µm wavelength. All the 
experiments are conducted in submerged water 
condition having water level 1mm above the 
workpiece surface (Prakash et al., 2013). The 1mm of 
water level is decided based on various pilot 
experiments giving the best output results. Fig. 1 
shows the laser micromachining system used for the 
experimental work. Four key process parameters, 
which affect the process significantly, are taken as 
process parameters namely, lamp current, pulse 
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frequency, pulse width, and cutting speed. Lamp 
current directly corresponds to total laser fluence or 
energy consumed by laser to emit desired pulses. 
Pulse frequency is the number of pulses emitted by 
laser per unit time. Pulse width denotes the 
percentage of  “ON”  time duration per cycle time. 
  

 
 

 
 
Fig. 1 (a) Photographic view, and (b) schematic view 

of underwater Nd:YAG laser micro- 
machining system 

 
Table 1. Laser micro-channeling process parameters 

and their coded levels (Prakash et al., 2013) 
 

Parameter Unit Symbol Level 
-2 -1 0 +1 +2 

Lamp 
current 

A A 13 14 15 16 17 

Pulse 
frequency 

kHz B 1 2 3 4 5 

Pulse width % C 3 6 9 12 15 
Cutting 
speed 

mm/s D 0.1 0.2 0.3 0.4 0.5 

 
Cutting speed represents the speed of movement of 
laser head with respect to the workpiece or vice-versa. 
The different parameters considered and their 
RSM-coded levels are given in Table 1. Thus, each 
parameter is constrained within the values 
corresponding to -2 and +2 coded levels. The two 
responses recorded are average channel depth (CD) 
and average burr width (BW).The responses are 

measured by using Olympus-STM-6, a 3-dimensional 
optical measuring microscope. The experimental 
results are presented previously (Prakash et al., 2013). 
Fig. 2 shows photographic view of micro-channel 
fabricated on PMMA using Nd:YAG pulsed laser in 
underwater condition. RSM in combination with 
multiple regression analysis is used to develop the 
empirical models to correlate the responses with 
process parameters. The models developed in terms 
of coded factors using RSM are given below: 
 
Y(CD) (μm) = 91.554 + 7.479 A + 3.985 B + 7.461 C - 
4.909 D - 10.121 A C + 8.086 A D + 8.382 B C + 
4.658 B D - 9.916 C D - 2.166 A2 - 4.241 C2 - 4.385 
D2                                     (15) 
Y(BW) (μm) = 54.667 + 2.640 A + 3.089 B - 4.737 C + 
6.140 D + 2.789 A C - 5.006 B C - 5.238 B D + 7.078 
C D + 2.748 A2 + 3.634 B2 + 7.420 D2         (16) 

 

 
 
Fig. 2 Photographic view of micro-channel 

fabricated on PMMA (Prakash et al., 2014) 
 

OPTIMIZATION USING FA AND FPA: 
RESULTS AND DISCUSSIONS 

 
To achieve superior micro-channel quality, it is 

desired that channel depth should be maximum and 
burr width should be minimum. Thus, the process 
parameters are to be selected in such a way that both 
the conditions should satisfy, simultaneously. Two 
newly developed bio-inspired metaheuristic 
algorithms, namely firefly algorithm (FA) and flower 
pollination algorithm (FPA) are utilized to find the 
solution of single-objective optimization, as well as, 
multi objective optimization of laser 
micro-channeling process parameters, to tackle such 
optimization problems. 

For this, computer programs are developed in 
MATLAB® on an Intel® CoreTM i3-380M CPU @ 
2.53 GHz, 3.00GB RAM operating platform using 
firefly algorithm and flower pollination algorithm. 
The algorithm specific parameters used are given in 
Table 2. It is observed that both the algorithms have 
obtained optimum values for all the test functions.  
    
Single Objective Optimization 
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 At first, single objective optimization is 
considered, and the two responses, channel depth and 
burr width are optimized, independently. The 
maximum value of channel depth obtained by FA and 
FPA, both is 223.44 μm. The minimum value of burr 
width achieved is 25.17 μm. The results, along with 
the optimal parameter settings for the responses, are 
summarized in Table 3 which is same for both, FA 
and FPA, which ensures effectiveness and accuracy 
of both the algorithms. The potentiality of FA over 
PSO in nonlinear optimization problems is 
demonstrated previously (Pal et al., 2012). Table 3 
also presents the optimal micro-channeling 
parameters obtained by using RSM (Prakash et al., 
2013) and the corresponding response values. It is 
observed from Table 3 that both FA and FPA 
outperform the existing optimal value, and gives 
effective optimal parametric setting. 
 

Table 2. Algorithm specific parameters considered 
for FA and FPA 

 
Firefly algorithm Maximum iterations 500 
 Function evaluations 10000 
 Number of fireflies (n) 20 
 Light absorption 

coefficient (γ) 
1 

 Attractiveness (β) 0.2 
Flower pollination 
algorithm 

Maximum iterations 500 

 Function evaluations 10000 
 Population size (n) 20 
 Probability switch (p) 0.8 
 

Table 3: Results of single objective optimization 
 
 

Respo-
nse 

Optimi-
zation 

Techni-
que 

Optim-
al value 

Optimal parameter setting 
A B C D 

Y(CD) 
(μm) 

FA 223.44 13.00 5.00 15.00 0.10 
FPA 223.44 13.00 5.00 15.00 0.10 
RSM  156.51 13.00 1.00 15.00 0.10 

Y(BW) 
(μm) 

FA 25.17 13.51 2.96 15.00 0.16 
FPA 25.17 13.51 2.96 15.00 0.16 
RSM  32.91 13.00 1.00 15.00 0.10 

 

 
Fig. 3 shows the comparisons of functional 

evaluations for FA and FPA with respect to channel 
depth by means of (a) algorithm convergence plot, (b) 
histogram of functional evaluations and (c) pie chart 
of the functional evaluations. It is evident from Fig. 3 
(a) that both the algorithms show a fast convergence 
to its global optima, whereas FA shows faster 
convergence than FPA. During optimization of 
channel depth, the FA converges to the optima after 
only 502 evaluations, whereas 566 evaluations have 
been taken by FPA. It is seen from Fig. 3 (b) that the 

mean value of the results obtained by FA is 215.8 μm, 
which is closer to the optimum result, compared to 
the mean value obtained by FPA which is 210.1μm. It 
is further seen that the results are more scattered and 
dispersed about their mean values for FPA. As the 
population mean value of the functional evaluations 
for FA is much closer to its optima than that for FPA, 
it can be concluded that more number of evaluations 
have converged to its optima for FA as compared to 
FPA. Again it has been clearly observed during 
optimization using FPA that the evaluated responses 
are spread out over a wide range of values compared 
to FA, which ensures that FA is more effective than 
FPA for obtaining optima. The mean absolute 
deviation value (MAD), i.e. the deviation of the 
functional evaluations about their mean value is also 
a measure of variation in the evaluated results. MAD 
value obtained for FA during CD optimization is 
7.255 μm where for FPA it is 21.417 μm. From 
obtained MAD, it is quite obvious that the variation 
in the process about the mean value is more for FPA 
which ensures that the convergence quality of FA is 
far superior compared to FPA. From the pie charts in 
Fig. 3 (c) it is observe that the quality of convergence 
is better in case of FA than FPA, for the case of 
optimization of channel depth. For FA almost 7996 
evaluations have been found converged to its optimal 
value indicated by the orange region, whereas, for 
FPA it is 7283 evaluations indicated by the yellow 
region.  

Fig. 4 shows the comparisons of functional 
evaluations for FA and FPA with respect to burr width 
by means of (a) algorithm convergence plot, (b) 
histogram of functional evaluations, and (c) pie chart 
of the functional evaluations. It is observed from Fig. 
4 (a) that FPA gives faster convergence than FA for 
the case of optimizing burr width. FA takes 3901 
evaluations to reach the optima, whereas FPA takes 
only 3361 evaluations. However, both the algorithm 
takes more number of evaluations as compared to the 
case of optimization of channel depth. It is seen from 
Fig. 4 (b) that the mean value of the functional 
evaluations obtained by FA is 27.14 μm, which is 
closer to the optima compared to the mean value 
obtained by FPA which is 29.40 μm. The results are 
more dispersed about the mean value for the case of 
FPA than FA. MAD value obtained for FA and FPA 
are 3.438 μm and 8.066 μm, respectively. However, 
from Fig. 4 (c), it is observed that FPA gives more 
optimized evaluations than FA indicated by the 
orange region for both the cases. For FA it is found 
only 767 evaluations where for FPA 1067 evaluations 
have been converged to its optimal value.  

The computational time recorded for the 
optimization of channel depth is 0.76 seconds for FA 
and 0.59 seconds for FPA. The computational time 
recorded for the optimization of burr width is 1.03 
seconds for FA and 0.49 seconds for FPA. Therefore, 
the average computational time observed for single 
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objective optimization in this study is 0.90 seconds 
for FA and only 0.54 seconds for FPA. Though the 
average computational times for both the algorithms 
are less than 1second, FPA exhibits faster 
computation than FA for single objective 
optimization. An earlier investigation shows that FA 
performs better than PSO, in terms of the time taken 
to reach the optimum or near optimum value (Pal et 
al., 2012). The variations of channel depth with 
process parameters are displayed in Fig. 5. The 
parametric trends predicted by FA and FPA are in 
close agreement with the results published in earlier 

experimental research work (Parakash et al., 2013). 
FA and FPA are more advantageous than RSM, in 
prediction of parametric trend, because no parameter 
is held constant during analysis, and hence, the true 
overall trend can be predicted. It is seen from Fig. 5 
that FA and FPA give exactly same results for channel 
depth optimization i.e. channel depth has an 
optimized value for the coded level of lamp current 
and cutting speed at -2 i.e. 13A and 0.1 mm/s, 
respectively, and for the coded level of pulse 
frequency and pulse width at +2 i.e. 5 kHz and 15%, 
respectively.

 

 
  

 
 

 
 
 

Fig. 3 Comparisons of functional evaluations for FA and FPA with respect to channel depth by means of (a) 
algorithm convergence plot, (b) histogram of functional evaluations, and (c) pie chart of the functional 
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Fig. 4: Comparisons of functional evaluations for FA and FPA with respect to burr width by means of (a) 
algorithm convergence plot, (b) histogram of functional evaluations, and (c) pie chart of the functional 
evaluations 
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that FA and FPA give exactly same results for channel 
depth optimization i.e. channel depth has an 
optimized value for the coded level of lamp current 
and cutting speed at -2 i.e. 13A and 0.1 mm/s, 
respectively, and for the coded level of pulse 

Functional evaluations Functional evaluations 
(a) FA FPA 

(b) FA FPA 

(c) FA FPA 

Functional evaluation = 3901; BW (μm) = 25.165 Functional evaluation = 3361; BW (μm) = 25.165 

Av
er

ag
e 

B
W

 (μ
m

) 

Av
er

ag
e 

B
W

 (μ
m

) 

Scatter plot of average BW (μm) vs functional evaluations Scatter plot of average BW (μm) vs functional evaluations 

Histogram of BW Histogram of BW 

BW (µm) BW (µm) 

  
  

Fr
eq

ue
nc

y 
  

  
  

 
 

  
  

Fr
eq

ue
nc

y 
  

  
  

 
 

Pie chart of BW Pie chart of BW 



 
B. Acherjee et al.: Parameter Selection of Underwater Nd:YAG Laser Micro-channeling on PMMA. 

 -523- 

frequency and pulse width at +2 i.e. 5 kHz and 15%, 
respectively. It is also seen from Fig. 5 that the mean 
values of the functional evaluations are closer to its 

optima for FA than FPA, as the results are more 
dispersed about their mean value for FPA, which is 
obtained by plotting of  ymean and ystd. Thus it can be  

 

 

 
 

Fig. 5 Scatter diagrams of channel depth for (a) lamp current, (b) pulse frequency, (c) pulse width, and (d) 
cutting speed 
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Fig. 6 Scatter diagrams of burr width for (a) lamp current, (b) pulse frequency, (c) pulse width, and (d) cutting 
speed 

 
concluded that the FA shows superior quality of the 
convergence to its optima than FPA, with respect to 
all the process parameters. 

Fig. 6 shows the effects of all process 
parameters on burr width, which depict same trend as 
presented earlier (Parakash et al., 2013). FA and FPA, 
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both provide same results i.e. the burr width has an 
optimized value at the coded level of lamp current at 
-1.50 i.e. 13.51 A, at coded level of pulse frequency 
at -0.04 i.e. 2.96 kHz, at coded level of pulse width at 
+2 i.e. 15%, and at coded level of cutting speed at 

-1.38 i.e. 0.16 mm/s, respectively. It is also observed 
from the same figure that FA performs better than 
FPA in terms of convergence, as evaluated by plotting 
ymean and ystd.

 
 

  
 

  
 
 

      
 

 
Fig. 7: Comparisons of functional evaluations for FA and FPA with respect to case: 1 by means of (a) algorithm 

convergence plot, (b) histogram of functional evaluations, and (c) pie chart of the functional 
evaluations 
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Fig. 8 Comparisons of functional evaluations for FA and FPA with respect to case: 2 by means of (a) algorithm 
convergence plot, (b) histogram of functional evaluations, and (c) pie chart of the functional 
evaluations 

 
Multi objective optimization 

In this section, channel depth and burr width, 
both are optimized simultaneously, using firefly 
algorithm and flower pollination algorithm. The 
following objective function is developed for 
carrying out multi objective optimization: 
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where, w1 and w2 are the weights (relative importance) 
assigned to burr width and channel depth, 
respectively (such that w1+w2 = 1), and the min and 
max values in the denominator of the expression (Eq. 
17) are those obtained from single response 
optimization results of LTW using FA and FPA. The 
choice of weights depends entirely on the preference 
of the process engineer, or can be determined by 
analytic hierarchy process (AHP). Z is minimized in  
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Fig. 9 Comparisons of functional evaluations for FA and FPA with respect to case: 3 by means of (a) algorithm 
convergence plot, (b) histogram of functional evaluations, and (c) pie chart of the functional 
evaluations 

 
all the cases. Table 4 shows the results of multi 
response optimization according to the selected 
criteria. It is seen from Table 4 that, both, FA and FPA 
outperform the existing optimal value (Parakash et al., 
2013), and gives effective optimal parametric setting. 

Figs. 7-9 show the comparisons of functional 
evaluations for FA and FPA with respect to selected 

criteria by means of (a) algorithm convergence plot, 
(b) histogram of functional evaluations, and (c) pie 
chart of the functional evaluations. It is observed 
from Figs. 7-9 that FPA exhibits more convergence 
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optimized value after 1722 evaluations, whereas, FPA 
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converges after 2873 evaluations. For case 2, FA 
converges to its optimized value after 1622 

evaluations, whereas FPA converges only after 637 
evaluations. For case 3, FA converges to its optimized  

 

 

 

 

 

 
 
 
 
 
 
 

Fig. 10 Scatter diagrams of multi objective function (Z) with respect to (a) lamp current, (b) pulse frequency, (c) 
pulse width, and (d) cutting speed, for case: 1 
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Fig. 11 Scatter diagrams of multi objective function (Z) with respect to (a) lamp current, (b) pulse frequency, (c) 
pulse width, and (d) cutting speed, for case: 2 

 
value after 4164 evaluations, whereas FPA takes 3344 
evaluations to converge. It is evident from Figs. 7-9 
that the mean values of the multi objective 
optimization results obtained by FA are closer to their 
optima, as compared to the mean values obtained by 
FPA, which is quantified in terms standard deviations 
in the histograms. MAD values obtained for FA are 

less than FPA for all the cases. From the pie charts of 
Figs. 7-9, it is observed that FPA provides more 
optimized evaluations indicated by the orange region 
than FA, for all the cases, for same number of 
evaluations i.e. 10000. The computational times 
recorded for multi objective optimization using FA 
are 0.99 seconds, 1.01 seconds, and 1.02 seconds for 
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case: 1, case: 2, and case: 3, respectively. Times taken 
by FPA are 0.49 seconds, 0.52 seconds, and 0.50 
seconds for performing multi objective optimization 
according to case: 1, case: 2, and case: 3, respectively. 
Therefore, the average computational time observed 

for multi objective optimization in this study is 1.01 
seconds for FA and only 0.50 seconds for FPA. The 
computational time of FPA is almost half of the 
computational time exhibited by FA. Figs. 10-12 are 
the scatter plots of multi objective function (Z) with  

 
 
 
 
 
 
 

 
 

 

 

 
 
 
 
 
 
 
 
 

 
Fig. 12 Scatter diagrams of multi objective function (Z) with respect to (a) lamp current, (b) pulse frequency, (c) 

pulse width, and (d) cutting speed, for case: 3 
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respect to process parameters for case: 1, case: 2, and 
case: 3, respectively. It is obvious from the Figs. 
10-12, that for all of the three cases FA exhibit better 
accuracy than FPA, as evaluated by plotting ymean and 

ystd. The optimal setting of the process parameters for 
all the cases can be easily determined from these 
figures, which are already furnished in Table 4. 

 
Table 4. Results of multi objective optimization according to the selected criteria 

 
Conditions Optimization 

Technique 
Z min Optimal value Optimal parameter setting 

Channel 
depth 

Burr 
width 

A B C D 

Case 1:  
w1 = w2 = 0.5 

FA 0.096 189.93 26.20 13.00 3.04 15.00 0.14 
FPA 0.096 189.93 26.20 13.00 3.04 15.00 0.14 
RSM - 155.19 36.53 14.21 5.00 15.00 0.22 

Case 2:  
w1 = 0.1, w2 = 0.9 

FA -0.711 213.18 37.21 13.00 4.11 15.00 0.10 
FPA -0.711 213.22 37.21 13.00 4.11 15.00 0.10 
RSM - - - - - - - 

Case 3:  
w1 = 0.9, w2 = 0.1 

FA 0.824 171.04 25.19 13.43 2.97 15.00 0.16 
FPA 0.824 171.08 25.18 13.43 2.97 15.00 0.16 
RSM - - - - - - - 

 
CONCLUSION 

 
The following conclusions can be drawn from this 
study: 

1. Firefly algorithm and flower pollination 
algorithm, both, can be successfully 
implemented for single objective and multi 
objective optimization of laser 
micro-channeling parameters and also for 
prediction of parametric trends.  

2. FA shows faster convergence rate for the 
maximization of channel depth, whereas, 
FPA exhibits faster convergence rate in case 
of minimization of burr width, during single 
objective optimization of the process. FPA 
exhibits faster convergence rate than FA 
during multi objective optimization for all 
the cases, except for the case: 1. 

3. FA gives more optimized iterations i.e. more 
effective for the case of maximization of 
channel depth, whereas, FPA exhibits higher 
efficiency during the case of minimization 
of burr width, even for multi objective 
optimization, where the objective value has 
been minimized for all the mentioned cases.  

4. FPA exhibits much lower computational 
time than FA for both, single and multi 
objective optimization. 

5. Both the algorithms, FA and FPA, exhibit 
exceptionally low statistical variability and 
can be used efficiently for overall response 
trend prediction in case of responses 
dependent on several process parameters. 

6. Both the algorithms give superior optimal 
results, both, in case of single and multi 
objective optimization, than the results 
obtained by response surface methodology. 
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NOMENCLATURE 

 
Α Randomization parameter 
A Lamp Current 
Β Attractiveness of a firefly 
β0 Attractiveness of a firefly at a distance r = 0 
B Pulse frequency 
Γ Light absorption coefficient/ Contrast of 

attractiveness 
Г Characteristic distance 
C Pulse width 
D Cutting speed 

 Local random walk drawn from a uniform 
distribution in [0, 1] 

 Vector of random numbers drawn from 
Gaussian or normal distribution 

:  Current best solution found among all 
solutions at the current generation/iteration 

I(r) Light intensity of a firefly at a distance r 
IS Light intensity of a firefly at source 
L Strength of pollination 
M Number of local optima of an optimization 

problem 
N Number of fireflies or population size 
p  Switch probability 
R Distance between two fireflies 
rij:  Distance between two fireflies i,j 
s  Large step 

http://dx.doi.org/10.1155/2014/481791
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 Standard gamma function 
xi Position of firefly i in x coordinate 
xj Position of firefly j in x coordinate 
xi,k kth component of spatial coordinate of xi 

xj,k kth component of spatial coordinate of xj 

 Solution vector xi for pollen i at iteration t  
,  Pollens from the different flowers of the 

same plant species 
yi Position of firefly i in y coordinate 
yj Position of firefly j in y coordinate 
W Weightage 

Z Output of objective function for multi 
objective optimization 

Zmin Optimized value in case of multi-objective 
optimization 

BW Burr width 
CD Channel Depth 
FA Firefly Algorithm 
FPA Flower pollination algorithm 
MAD  Mean absolute deviation 
RSM Response Surface Methodology 
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