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ABSTRACT 
 

This study introduces a method to predict the 

responsiveness performance and optimize the control 

parameters of joint modules. An integrated joint 

module was created to assess overshoot and response 

time under various operating conditions and control 

parameter values. The results reveal nonlinear impact 

of conditions and parameters on the responsiveness 

performance, indicating a complex multifactorial 

issue. An MA-BPNN model was then established by 

merging the BPNN model with the MA algorithm, 

offering improved prediction accuracy and 

computational efficiency compared to traditional 

models. The application of Latin hypercube sampling 

and the MA-BPNN model yielded the Pareto optimal 

solutions for the control parameters of the joint 

module under commonly known operating conditions. 

Notably, higher load and joint speed values require a 

suitably higher proportional gain coefficient in order 

to meet the system demands. These findings hold 

significant value for the design and optimization of 

actual joint modules. 

 

INTRODUCTION 
 

Robots play a crucial role in various fields, 

such as intelligent manufacturing, medical devices 

and aerospace (Zhao et al., 2023; Zhen et al., 2022; 

Cai et al., 2019). The joint modules, as the core 

components of robots, exhibit compact structure, 

modular design, lightweight, high precision and 

safety reliability (Hu et al., 2021).  

These joint modules drive the robot to achieve 

rotational motion, while their design and performance  

 

 

 

 

 

directly affect the motion control quality and 

accuracy of the robot system. Therefore, optimizing 

the design and performance of the joint modules can 

further improve the motion control accuracy, stability 

and responsiveness of the robot, enabling it to meet 

the demanding requirements of different fields 

(Huang et al., 2021). 

Various methods, such as analytical modeling, 

experimental testing and machine learning, can be 

used to predict the performance of robot joint 

modules (Tian et al., 2023). Analytical modeling 

involves comprehensive analysis of the joint module 

structure, its dynamic characteristics and its working 

environment, in order to establish corresponding 

mathematical models, used for performance 

prediction (Cui et al., 2022). However, analytical 

modeling faces challenges in the case of complex 

nonlinear systems. Experimental testing involves 

testing and measurement in real life environment, in 

order to collect performance data of joint modules, 

under different working conditions, followed by 

analysis and processing (Bittencourt et al., 2014). 

This approach can obtain reliable performance data 

under real working conditions, but testing costs and 

time investment need to be considered. Machine 

learning methods utilize a large amount of known 

data to train models, recognize patterns and make 

predictions. They are suitable for handling complex 

nonlinear systems and show strong flexibility and 

adaptability, allowing them to learn features and 

patterns from data (Jiang et al., 2023). 

In terms of precise motion control of robotic 

joint modules, control algorithms and parameter 

tuning play a critical role (Nohooji et al., 2024; 

Zhang et al., 2023; Ang et al., 2005). In the past, 

Proportional-Integral-Derivative (PID) control was 

most commonly used, due to its superior performance 

and ease of implementation. However, traditional 

PID control methods face difficulties in parameter 

tuning, lack of adaptability and insufficient 

robustness, when dealing with complex nonlinear 

control problems in robotics, often failing to meet 

real control requirements (Angel et al., 2018). In 

order to address these issues, researchers have 

proposed more advanced control algorithms, such as 
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fuzzy control, sliding mode control, adaptive control 

and neural network control algorithms (Zhong et al., 

2023; Nikdel et al., 2017; Baek et al., 2016). Méndez 

et al. (2020) proposed a dynamic adjustment of PID 

gains, using three interval type-1 non-singleton 

type-2 fuzzy logic systems, while parameter tuning is 

done based on a non-singleton backpropagation 

algorithm, to achieve improved performance and 

stable behavior in the control system. Han et al. 

(2023) presented a fuzzy gain scheduling PID 

controller, based on the dynamic characteristics of a 

hybrid robot, named TriMule. By deducing control 

parameters online, the impact of dynamic 

characteristics on the control system can be 

significantly reduced. Van et al. (2020) developed a 

self-tuning fuzzy mechanism and an approximate 

technique, based on time delay estimation, resulting 

in a novel control method, called self-tuning fuzzy 

PID-nonsingular fast terminal sliding mode control. 

This method enhances transient response and 

provides reduced overshoot and steady-state error. 

Liu et al. (2020) proposed a robust adaptive control 

strategy, combining fuzzy logic system and sliding 

mode control, whereas numerical simulations 

demonstrated system stability and validated the 

effectiveness and robustness of the approach. 

Carlucho et al. (2020) presented an intelligent control 

system for mobile robots that leverages deep 

reinforcement learning techniques, to facilitate 

self-adaptation of multiple PID controllers. The 

approach permits adjustment of PID controller 

parameters or gains, enhancing the robustness and 

control efficiency of the robotic control system. Son 

et al. (2017) established a control system that 

integrates an adaptive feed-forward neural controller 

and a PID controller for controlling the joint-angle 

position of a SCARA parallel robot. The parameters 

of the controller are automatically tuned online, 

during the control process, using an adaptive 

back-propagation algorithm. Zheng et al. (2023) 

proposed an adaptive memetic differential 

evolution-backpropagation-fuzzy neural network 

control method, using adaptive differential evolution 

for global parameter optimization and implementing 

online optimization, using backpropagation 

algorithm. 

Among these control approaches, neural 

network control algorithms stand out with some 

advantageous characteristics (Liang et al., 2021; Jian 

et al., 2019). They possess strong nonlinear 

approximation capabilities, which allow for accurate 

modeling of the nonlinear dynamic characteristics of 

complex systems. Additionally, neural networks have 

adaptive learning capabilities, parallel processing 

abilities and can serve well generalization scenarios. 

Thereby, they can improve control performance, 

efficiency, response speed, as well as adapt better to 

unknown operating or environmental conditions. The 

selection of suitable training algorithms is crucial for 

the training process of neural networks (Wang et al., 

2022). Rahideh et al. (2008) proposed a neural 

network-based method for nonlinear dynamics 

modeling of a dual-rotor multi-input multi-output 

system, utilizing the Powell-Beale version of 

conjugate gradient and scaled conjugate gradient 

learning algorithms to train the feedforward neural 

network. The trained neural network model can 

effectively capture the highly nonlinear 

characteristics of the system, making it suitable for 

the development of complex controllers. Wang et al. 

(2018) used an improved parallel 

Levenberg-Marquardt (LM) algorithm to train 

recursive neural networks, in order to improve the 

learning convergence speed of the recursive neural 

network in robot control systems and reduce control 

latency. Zuo et al. (2019) used a neural network 

trained with back-propagation (BP) to compensate for 

errors in the external force detection model of a 

humanoid robotic arm, in order to obtain more 

precise external force values for the robotic arm. 

Back-propagation neural networks (BPNNs) 

demonstrate outstanding capabilities in nonlinear 

analysis, generalization, and fault tolerance, 

especially in situations requiring flexibility and 

adaptation to large-scale data. However, BPNNs may 

have slower convergence speeds and carry the risk of 

falling into local optimal solutions. Regarding the 

search for global optimal solutions, metaheuristic 

algorithms demonstrate powerful capabilities and 

excel in various complex problems (Lin et al., 2020). 

Ning et al. (2022) proposed a small obstacle size 

prediction method based on a genetic algorithm-back 

propagation (GA-BP) neural network, used for 

quantitative perception of the environment by mobile 

robots. Bai et al. (2021) proposed a dynamic weight 

particle swarm optimization-based sine map 

(SDWPSO) method for optimizing the BPNN 

algorithm. The proposed SDWPSO-BPNN model has 

been applied to reliability prediction in turbocharger 

and industrial robot systems, leading to significantly 

improved prediction accuracy compared to 

commonly used reliability prediction methods. 

Shirzadeh et al. (2021) proposed an adaptive robust 

controller based on type-2 fuzzy neural network 

(T2FNN), which utilized the cuckoo optimization 

algorithm (COA) to optimize the relevant parameters 

of the controller, achieving the tracking of desired 

trajectories for a quadrotor. Yan et al. (2024) used a 

BP neural network model optimized by the Sparrow 

Search Algorithm (SSA) to predict the clamping 

force of a minimally invasive surgical robot system.  

These metaheuristic algorithms optimization 

algorithms have demonstrated good performance in 

enhancing the performance of neural networks and 

avoiding falling into local optima. In order to 

effectively avoid local optima, simplify the parameter 

selection process, and enhance the ability to handle 

outliers, ultimately improving the predictive accuracy 
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and robustness of neural networks. This study 

proposes a method based on the mayfly algorithm 

(MA) and the BPNN, for responsiveness performance 

prediction and control parameters optimization in the 

joint module. The remaining content of the article is 

organized as follows. In Section 2, an integrated joint 

module is developed and tested, while the influence 

of operating conditions and control parameters, on its 

responsiveness performance, is discussed. In Section 

3, an MA-BPNN model is established for predicting 

the responsiveness performance of the joint module, 

whereas its superiority is validated based on 

comparisons to the BPNN and PSO-BPNN models. 

In Section 4, the optimization of control parameters 

of the joint module, under common operating 

conditions, is carried out. Finally, the main 

conclusions are summarized in Section 5. The 

proposed MA-BPNN model and the optimization 

method for control parameters of the joint module 

provide important guidance and reference for the 

design of control systems, the improvement of 

control performance and the optimization of system 

stability. 

 

RESPONSIVENESS PERFORMANCE 

TESTS OF THE JOINT MODULE 
 

This study is about the development of an 

integrated joint module, where the goal is to simplify 

system integration, enhance system performance, 

provide convenient control interfaces and improve 

intelligent capabilities. The responsiveness 

performance plays a critical role in the efficiency, 

accuracy and stability of the joint module. 

Responsiveness performance tests, conducted under 

various operating conditions and control parameter 

settings, provide useful data sets that serve as 

foundation for control parameters optimization 

methods. 

 

Development of the Integrated Joint Module 

The main hardware components, including a 

harmonic drive, a brushless torque motor, a drive 

controller, an electromagnetic brake and an angle 

encoder, were designed and assembled to form a joint 

module with driving and control functions provided 

through real-time communication with a main 

computer unit. 

The development process for the joint module 

is illustrated in Fig. 1 and can be described in detail 

as follows: 

(1) Hardware structural design. A model 

SHG-14-100 harmonic drive was selected to improve 

the transmission accuracy of the joint module. 

Additionally, improvements were made to the wave 

generator structure, by increasing its axial dimensions, 

allowing direct coupling with the electromagnetic 

brake and reducing assembly errors. 

(2) Hardware selection. The technical features 

of the designed joint module are an outer diameter of 

70 mm, output torque of 50 Nm and transmission 

accuracy of 10". The main hardware components 

were chosen as follows: a brushless torque motor 

(TBSM60), a drive controller (STM32), an 

electromagnetic brake (S060GL) and an angle 

encoder (ECODER35). 

(3) Drive control system design. The drive 

control system, with the STM32F103C8T6 chip at its 

core, operates the brushless torque motor and controls 

the electromagnetic brake by forwarding commands 

generated by the software running on the main 

computer. Additionally, it periodically collects data 

from the angle encoder, the zero-position sensor, the 

gyro accelerometer and the temperature sensor, 

transmitting these and the driver feedback data, via 

the controller area network-bus (CAN-BUS), to the 

main computer unit. 

(4) Implementation and debugging. The motion 

control algorithm debugging was done on the main 

computer, in order to validate the motion capabilities 

of the joint module. 
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Fig. 1. The development process of the joint module: 

(a) the overall structure; (b) the development 

process. 

 

Responsiveness Performance Tests 

The study of the responsiveness performance of 

joint modules contributes to optimizing control 

strategies and improving system stability, motion 

efficiency, and control accuracy. The overshoot 

(Oshoot) and response time (Rtime) factors serve as 

critical performance indicators for joint modules and 

play a significant role in evaluating the dynamic 
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behavior of the system and in the control parameters 

calibration. 

A testing platform was constructed, to explore 

the responsiveness performance (Oshoot and Rtime) of 

the joint module, under different operating conditions, 

as shown in Fig. 2a. The testing platform consists of 

the joint module, a foundation, an adjustable 

regulated power supply, a main computer unit, a 

CAN debugger and a load. The load size can be 

adjusted by changing the weights. The joint module 

can achieve precise speed loop control, by receiving 

suitable commands from the software running on the 

main computer unit. 

The time-domain curve of the output angular 

velocity, as derived by the testing platform, is 

depicted in Fig. 2b. Oshoot is defined as the maximum 

deviation of the actual output angular velocity Vc of 

the joint module from the ideal output angular 

velocity V'
c. Rtime represents the time required for the 

joint module to reach a steady-state operating speed, 

from the start of operation. 
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Fig. 2. The process of the evaluation of the joint 

module responsiveness performance: (a) the 

responsiveness performance testing platform of 

the joint module; (b) the time-domain curve of 

the Vc and V'
c. 

 

The responsiveness performance of the joint 

module is influenced by operating conditions and 

control parameters. The operating conditions include 

the load (Wl) and the angular velocity (Vc), while the 

control parameters consist of the proportional gain 

coefficient (kp) and the integral gain coefficient (ki). 

As the presented joint module is primarily intended 

for a 5 kg robot, the Wl range is set from 1 kg to 5 kg, 

while the Vc range is set at [3.6 °/s, 10.8 °/s]. The kp 

and ki parameters are determined based on empirical 

values and are selected within the ranges of [800, 

1290] and [75, 131], respectively. The tests consist a 

total of 9 sets of Vc, kp, and ki values, evenly spaced 

within the specified ranges, as listed in Table 1. 
 

Table 1. The responsiveness performance test 

parameters of the joint module. 
 

Parameter Numerical value 

Wl (Kg) 1, 2, 3, 4, 5 

Vc (°/s) 3.6, 4.5, 5.4, 6.3, 7.2, 8.1, 9.0, 9.9, 10.8 

kp 
800, 860, 920, 980, 1040, 1100, 1160, 

1220, 1280 

ki 75, 82, 89, 96, 103, 110, 117, 124, 131 

 

The steps for testing the responsiveness 

performance of the joint module are as follows: 

Step 1: Establishing connection and operation. 

1) Establishing the connection between the 

main computer unit and the joint module, using a 

CAN debugger. 

2) Allowing uninterrupted operation of the joint 

module load-free, for 5 minutes. 

Step 2: Installation, configuration and data 

collection. 

1) Installing weights. 

2) Setting values for Vc, kp and ki. 

3) Driving the motion of the joint module using 

the main computer. 

4) Registering the values of the time-domain Vc 

curve on the main computer through an angle 

encoder. 

5) Recording Oshoot and Rtime values for the joint 

module under the specific operating condition and 

control parameters. 

Step 3: Variation of test conditions and 

iteration. 

1) Change the test conditions. 

2) Repeat Step 2 to obtain Oshoot and Rtime 

values. 

3) Turn off the main computer and power 

supply after completing all parameter values sets. 
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Fig. 3. The influence of varying operating conditions 

on the responsiveness performance of the joint 

module: (a) the influence of varying operating 

conditions on Oshoot; (b) the influence of 

varying operating conditions on Rtime. 
 

The control parameters were set to kp = 1040 

and ki = 103, while the responsiveness performance 

of the joint module was tested under different 

conditions of Wl and Vc. The test results are depicted 

in Fig. 3. 

Based on the illustrations in Fig. 3, as Wl 

increases, both Oshoot and Rtime of the joint module 

exhibit a gradual increasing trend. This is attributed 

to the increased inertia and inertial forces, caused by 

a larger load, making it more challenging for the joint 

module to respond quickly and reach a steady state. 

Similarly, an increase in Vc, Oshoot and Rtime also 

demonstrates an increasing trend. This is due to the 

higher target velocity, which requires the joint 

module to exhibit longer acceleration time. Moreover, 

the increase in velocity leads to an increase in inertial 

forces, resulting in larger values of Oshoot and Rtime. 

Next, the influence of kp on the responsiveness 

performance of the joint module was obtained, 

considering Vc = 7.3 °/s and ki = 103, as depicted in 

Fig. 4a,b. Following, at Vc = 7.3 °/s and kp = 1040, 

the influence of ki on the responsiveness performance 

of the joint module was derived, as illustrated in Fig. 

4c,d. 
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Fig. 4. The influence of control parameter variations 

on the responsiveness performance of the joint 

module: (a) the influence of kp on Oshoot; (b) the 

influence of kp on Rtime; (c) the influence of ki 

on Oshoot; (d) the influence of ki on Rtime. 

 

According to Fig. 4a, as kp increases, Oshoot 

initially decreases and then increases, indicating that 

within a certain range, an optimal increase in kp leads 

to a more responsive system, reduces the overshoot 

and enhances stability and accuracy. However, when 

kp exceeds a certain value, it leads to excessive 

response and causes overshoot rebound. Based on Fig. 

4c, as ki increases, Oshoot slowly increases.  

In Fig. 4b,d, it can be observed that, as kp or ki 

increases, Rtime demonstrates an increasing trend. This 

is attributed to the heightened sensitivity and 

instability of the system at higher values of kp or ki. In 
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order to maintain system stability, additional 

adjustments and balancing processes are required, 

resulting in an extended response time. 

It is important to note that, both operational 

conditions and control parameters exhibit clear 

nonlinear characteristics in their impact on the 

responsiveness performance of the joint module. This 

suggests that, the responsiveness performance is 

influenced by multiple factors and cannot be simply 

described by linear relationships. A MA algorithm 

optimized BPNN model, also known as the 

MA-BPNN model, is used to achieve more accurate 

predictions of the responsiveness performance. This 

model excels in nonlinear modeling and adaptability, 

effectively handling the complex factors and 

relationships involved in the responsiveness 

performance. By training the model and adjusting its 

weights and thresholds, it can learn and capture the 

nonlinear relationship between inputs and outputs, 

thereby facilitating predictions of the responsiveness 

performance of the joint module. 

Moreover, in order to obtain a larger and more 

scientifically sound sample data on the 

responsiveness performance of the joint module, 

orthogonal experiments, designed using the 

quasi-level method, were conducted. Based on the 

experiments, information about the responsiveness 

performance of the joint module, under different 

values of factors, were obtained, as listed in Table 2. 

 
Table 2. The results of the orthogonal experiments on 

the responsiveness performance of the joint 

module. 
 

Number 
Ml  

(Kg) 

Vc 

(°/s) 
kp ki 

Oshoot  

(°/s) 

Rtime 

(s) 

1 1 4.5 1280 131 0.38 0.0335 

2 1 9.9 1220 89 0.92 0.0335 

3 1 5.4 920 131 0.30 0.0260 

4 1 8.1 800 110 0.44 0.0190 
5 1 10.8 1280 96 1.91 0.0135 

6 1 6.3 860 117 0.37 0.0420 

7 1 9.0 1040 89 0.40 0.0220 
8 1 3.6 1220 103 0.19 0.0380 

9 1 9.9 1100 96 0.42 0.0225 

10 1 10.8 980 124 0.73 0.0115 
11 1 7.2 1040 117 0.36 0.0180 

12 1 6.3 980 110 0.12 0.0290 

13 1 3.6 800 75 0.21 0.0595 

14 1 4.5 860 103 0.23 0.0410 
15 1 9.0 1160 124 0.68 0.0130 

16 1 8.1 1100 82 0.42 0.0215 

17 1 7.2 920 82 0.12 0.0360 
18 1 5.4 1160 75 0.33 0.0405 

19 2 10.8 1220 75 0.48 0.0170 

… … … … … … … 
81 5 4.5 1160 89 0.27 0.0295 

 

A total of 81 sample groups, as listed in Table 2, 

were randomly selected, while 75 groups were 

designated as the training set for the establishment of 

the MA-BPNN model in the following analysis. The 

remaining 6 groups were assigned as the validation 

set for evaluating and validating the model. 

 

PREDICTION OF RESPONSIVENESS 

PERFORMANCE OF THE JOINT 

MODULE BASED ON THE MA-BPNN 

MODEL 
 

This study has developed a MA-BPNN model 

for predicting the responsiveness performance of the 

joint module that can overcome the limitations and 

drawbacks of traditional BPNN models. The 

proposed model integrates the powerful nonlinear 

mapping capability and robust adaptability of the 

BPNN model, as well as the global search and 

adaptive adjustment abilities of the MA algorithm. It 

can avoid local optimal issues and improve the 

efficiency of the model in finding global optimal 

solutions. 

 

The Optimization Process of MA Algorithm 

It is assumed that mayflies exist in an 

n-dimensional space, while their positions and 

velocities can be respectively represented by an 

n-dimensional vector. The position vector is denoted 

as ( )
T

1 2, , , nx x x x=   and the velocity vector is 

denoted as ( )
T

1 2, , , dv v v v=  . These position and 

velocity vectors can be adjusted and updated to 

perform a search and optimization loop.  

Assuming a population of mayflies comprises 

N male and female individuals. According to the t-th 

iteration, the position, velocity and historical best 

position of the i-th male mayfly in the j-th 

dimensional search space are denoted as 
t

ijx , 
t

mijv  

and 
ijbestP  respectively. The global best position of 

the population in the j-th dimensional search space is 

represented by 
jbestG . Then, the male mayflies 

update their current velocities and positions based on 

Eqs. (1) and (2), in order to optimize their movement 

within the search space. 

( ) ( )

( )

( )

22

1 2

3 31

3 3

e e ,  

if  ( )

,                                                      

if  ( )    
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ij j
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rrt t t

mij best ij best ij
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ij bestt

mij
t

mij c

t
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v a P x a G x

F x F G
v
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F x F G





−−

+

 + − + −




= 

+ 

 


(1) 
1 1t t t

ij ij mijx x v+ += +                              (2) 

where, ζ is the dynamic inertia coefficient; a
1 and a

2
 

are the attraction coefficients for male mayflies; β is 

the visibility coefficient; rP is the distance, which is 

measured in Euclidean terms, between the current 



 

Q.-S. Hu et al.: Control Parameters for Robot Integrated Joint Modules Based on an MA-BPNN Model. 

-611-- 

 

position of the male mayfly and its historical best 

position 
ijbestP ; rG is the distance between the current 

position of the male mayfly and the global best 

position 
jbestG ; da is the dance coefficient used to 

describe the process of attracting female mayflies; rc 

is a random number,  1,1cr  − ; ( )3F x  is the 

fitness function. 

After the t-th iteration, the position and velocity 

of the i-th female mayfly, in the j-th dimensional 

search space, are assumed to be represented by t

ijy  

and t

fijv , respectively. Then, the female mayflies 

update their current velocities and positions based on 

Eqs. (3) and (4). 

( )
2

3

3 31

3 3

e ,  

if  ( ) ( )

, 

if  ( ) ( )

mfrt t t

fij ij ij

t t

ij ijt

fij
t

fij c

t t

ij ij

v a x y

F y F x
v

v fl r

F y F x






−

+

 + −

 

= 
+ 




             (3) 

1 1t t t

ij ij fijy y v+ += +                              (4) 

where, a3 is the attraction coefficient for female 

mayflies; rmf is the distance between female and male 

mayflies; fl is the random flight coefficient, used to 

describe the random flight path of female mayflies, 

when they are not attracted by male mayflies. 

The mating process of mayflies involves 

randomly selecting a subset of individuals from the 

male and female populations for pairing. Superior 

males mate with superior females, while suboptimal 

males mate with the other remaining females. The 

offsprings generated using Eqs. (5) and (6) represent 

the progeny resulting from the mating process. 

( )1 1l loffspring r male r female=  + −            (5) 

( )2 1l loffspring r female r male=  + −            (6) 

where, offspring1 and offspring2 represent the two 

offspring mayflies; rl is a random number,  1,1lr  − ; 

male and female respectively represent the male and 

female mayflies. 

 

Structure Determination of the BPNN Model 
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Fig. 5. The topological structure of BPNN model. 

The topological structure of the BPNN model is 

illustrated in Fig. 5. X1,X2,…,Xh represent the input 

layer neurons, θ1,θ2,…,θg represent the hidden layer 

neurons, while Y1,Y2,…,Yk represent the output layer 

neurons. Whg represents the weight connection 

between the h-th neuron in the input layer and the 

g-th neuron in the hidden layer, while Wgk represents 

the weight connection between the g-th neuron in the 

hidden layer and the k-th neuron in the output layer. 
In this study, the BPNN model has input 

neurons represented by Wl, Vc, Kp and Ki, and output 

neurons represented by Oshoot and Rtime. The input 

layer consists of four nodes (nin = 4), while the output 

layer consists of two nodes (nout = 2). The number of 

nodes in the hidden layer, denoted as nhide, is 

determined by Eq. (7). 

( )inthide in out cn n n a= + +                    (7) 

where ac is a constant,  1,10ca  . 

The training process of the BPNN model is as 

follows: 

Step 1: Initialization. The initialization of input 

layer neuron weights is performed according to 

normal distribution with mean 0 and standard 

deviation 1. The thresholds of the hidden and output 

layer neurons are set as random real numbers within 

the range [0, 0.001]. 

Step 2: Forward propagation. The training set 

samples are introduced to the input layer of the 

BPNN model. The data are transmitted to the hidden 

layer neurons considering weights and thresholds. 

The activation function, written as 

( ) ( ) ( )1 e e e ex x x xF x − −−= + , is applied to the 

hidden layer neurons, while the g-th neuron (θg) is 

calculated as: 

1

1

hiden

g hg h g

g

TF W X
=

 
 


= −


                      (8) 

where, Tg represents the threshold value for the g-th 

neuron in the hidden layer. 

The output of the hidden layer is then 

transmitted to the output layer neurons taking into 

consideration weights and thresholds. The activation 

function, written as ( ) ( )2 e e ex xxF x −= + , is applied 

to the output layer neurons, while the k-th neuron (Yk) 

is calculated as: 

1

2

outn

k gk g k

k

Y W TF 
=

 
 


= −


                      (9) 

where, Tk represents the threshold value for the k-th 

neuron in the output layer. 

Step 3: Prediction error calculation. The 

prediction error (Eu) is computed by comparing the 

predicted output (denoted as ypt) of the output layer 

neuron to the expected output (denoted as ye) in the 

training set of samples. It can be expressed as 
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follows: 

u pt eE y y= −                             (10) 

Step 4: Backpropagation. The backpropagation 

algorithm is used to update and adjust the weights 

and thresholds of each neuron, aiming to minimize 

the Eu of the BPNN model. 

Step 5: Training iterations. The weights and 

thresholds are adjusted through the iteration of steps 

2, 3 and 4, until the convention Eu < 0.0001 is 

achieved, resulting in the output of prediction results. 

During the training process of the BPNN model, 

the mean-square-error (MSE) values of Eu, as 

obtained based on different values of nhide, are listed 

in Table 3. MSE(Eu) is defined as a dimensionless 

quantity, used to evaluate the performance of the 

model. According to Table 3, the minimum value of 

MSE(Eu), which is 0.026, is achieved when nhide = 9, 

indicating that the BPNN model performs best, in 

terms of prediction, under this configuration. 

Therefore, it is decided to set the number of nodes in 

the input layer, hidden layer and output layer of the 

BPNN model as 4, 9 and 2, respectively. 

 

Table 3. The MSE of Eu obtained under different 

values of nhide. 

 

nhide MSE(Eu) nhide MSE(Eu) 

3 0.046 8 0.039 

4 0.037 9 0.026 
5 0.055 10 0.039 

6 0.037 11 0.032 

7 0.038 12 0.030 

 

Establishment of the MA-BPNN Model 

The iterative process of the MA-BPNN model 

is illustrated in Fig. 6 and can be described in detail 

as follows: 

Step 1: Initialization. The training set samples 

are imported. The parameters for the MA algorithm 

are set as follows: N = 25, β = 2, a1 = 0.2, a2 = 0.3 

and a3 = 0.2. The position of each mayfly 

corresponds to a set of weight and threshold 

parameters for the BP neural network, while the 

velocity represents the step size for updating these 

parameters, during the iterative process. The weights 

of the BP neural network are randomly initialized 

according to the normal distribution with mean 0 and 

standard deviation 1, while the initial thresholds are 

set as random real numbers within the range [0, 

0.001]. The positions of the individuals in the 

population are initialized, while their initial velocities 

are set to 0.3. The fitness value, corresponding to the 

position of each individual element, is calculated 

using Eq. (11), whereas 
jbestG  and ( )3 jbestF G  are 

recorded. 

( ) ( )3 MSE uF x E=                         (11) 

Step 2: Update of the velocities and positions 

of male population. The 1t

mijv +  and 1t

ijx +  are updated 

using Eqs. (1) and (2). Furthermore, 
jbestG and 

( )3 jbestF G  are updated accordingly. 

Step 3: Update of the velocities and positions 

of female population. The 1t

fijv +  and 1t

ijy +  are 

updated using Eqs. (3) and (4). Furthermore, 

jbestG and ( )3 jbestF G  are updated accordingly. 

Step 4: Generation of offspring mayflies. The 

mayfly population is updated according to Eqs. (5) 

and (6). 

Step 5: Update 
jbestG  and ( )3 jbestF G . If the 

target fitness value (0.015) is achieved, the iteration 

loop stops; otherwise, the process proceeds to Step 2 

for further iterations. 

Step 6: Obtain optimized weights and 

thresholds. 

Step 7: Forward propagation of BPNN. The 

input layer data is transmitted to the hidden layer 

neurons, using the optimized weights and thresholds. 

The hidden layer neurons are computed based on Eq. 

(8). Next, the hidden layer data are transmitted to the 

output layer neurons, which have been computed 

according to Eq. (9). 

Step 8: Prediction error calculation. 

Determination of the value of Eu. 

Step 9: Backpropagation. Use of the 

backpropagation algorithm to adjust weights and 

thresholds to minimize Eu. 

Step 10: Training iteration. By repeatedly 

executing Steps 7, 8, and 9 and adjusting weights and 

thresholds until Eu < 0.0001, the final output is 

generated. 
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Fig. 6. The flowchart of the MA-BPNN model. 

 

Prediction of Responsiveness Performance 

Based on the validation set sample data, the 
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responsiveness performance of the joint module is 

predicted using the BPNN model, the PSO-BPNN 

and the MA-BPNN model. The results are presented 

in Table 4, while a comparative illustration is 

presented in Fig. 7. According to the results, the 

predictions of the MA-BPNN model for Oshoot and 

Rtime are closer to the experimental values with 

smaller errors. In contrast, the BPNN model and the 

PSO-BPNN model show significant deviations from 

the experimental values with larger errors. Therefore, 

it can be concluded that the MA-BPNN model 

provides more accurate predictions of the 

responsiveness performance of the joint module. 

 

 

Table 4. The prediction results of the responsiveness performance of the joint module using the BPNN, 

PSO-BPNN and MA-BPNN models. 
 

Number 
Wl 

(Kg) 

Vc 

(°/s) 
kp ki 

Experimental data BPNN PSO-BPNN MA-BPNN 

Oshoot 

(°/s) 

Rtime 

(s) 

Oshoot 

(°/s) 

Rtime 

(s) 

Oshoot 

(°/s) 

Rtime 

(s) 

Oshoot 

(°/s) 

Rtime 

(s) 

1 1 10.8 1280 96 0.728 0.0360 0.769 0.0380 0.754 0.0370 0.742 0.0350 

2 1 9.0 1040 89 0.426 0.0310 0.453 0.0350 0.442 0.0340 0.436 0.0330 

3 2 4.5 800 82 0.252 0.0230 0.282 0.0260 0.275 0.0250 0.265 0.0240 

4 3 3.6 860 96 0.245 0.0240 0.273 0.0264 0.255 0.0245 0.24 0.0235 

5 4 6.3 1220 124 0.704 0.0265 0.784 0.0230 0.752 0.0246 0.692 0.0260 

6 5 5.4 1220 96 0.523 0.0270 0.547 0.0250 0.535 0.0258 0.529 0.0280 
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Fig. 7. The comparison of the prediction results of the 

responsiveness performance using the BPNN, 

PSO-BPNN and MA-BPNN models: (a) the 

comparison of Oshoot results; (b) the comparison 

of Rtime results; (c) the comparison of relative 

errors for Oshoot results; (d) the comparison of 

relative errors for Rtime results. 

 
Furthermore, in order to evaluate the models, 

the coefficient of determination (R2), the MSE of 

overshoot prediction (MSE(Oshoot)), the MSE of 

response time prediction (MSE(Rtime)) and the model 

execution time (Mtime) were used as evaluation 

metrics. The results are listed in Table 5. 

Table 5 demonstrates that the R2 value of the 

MA-BPNN model surpasses that of the other models, 

suggesting a superior fit and enhanced predictive 

accuracy. Moreover, both the MSE(Oshoot) and 

MSE(Rtime) values, obtained by the MA-BPNN model, 

are lower than those of the other models, indicating 

smaller errors and improved performance. 
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Additionally, the MA-BPNN model exhibits a shorter 

execution time. Therefore, it can be inferred that the 

MA-BPNN model performs better in terms of 

predictive accuracy, error control and computational 

efficiency. 
 

Table 5. The comparison of the evaluation metrics for 

the BPNN, PSO-BPNN and MA-BPNN 

models. 

 

 

OPTIMIZATION OF CONTROL 

PARAMETERS FOR THE JOINT 

MODULE BASED ON THE MA-BPNN 

MODEL 
 

Based on the Latin hypercube sampling method 

and the established MA-BPNN model, an 

optimization of the control parameters of the joint 

module, under common operating conditions, will be 

implemented. 
 

Sampling of Control Parameters 

Latin hypercube sampling is a method used to 

achieve a uniform distribution and randomness of 

parameter points, within a finite number of samples, 

aiming to improve sampling efficiency and obtain a 

representative and reliable sample set. In this study, 

the Latin hypercube sampling method is adopted, to 

sample the values of control parameters (kp and ki) for 

the joint module. The sampling process is as follows: 

(1) Determination of parameter ranges and 

sample point quantity.  

The range of kp was set to [800, 1290] and for 

the ki values, it was set to [75, 131]. The number of 

sample points, ns, was set to be 200. 

(2) Construction of Latin hypercube matrix L.  

L has a size of 200×2. For the f-th column of L, 

generate a random permutation Pf within the range [0, 

1, 2, ..., ns-1]. For the q-th row of L, the following 

equation was applied: 

    ( )( ) ( ), random 0,1f f f s fq f q b a n a= +  − +L P  

(12) 

where, af and bf are the lower and upper bounds of 

the range for control parameters. 

The resulting distribution of the Latin 

hypercube sampling points is shown in Fig. 8. 
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Fig. 8. The distribution of Latin hypercube sampling 

points. 

 

Optimization of Control Parameters 

In order to enhance the comparability and 

interpretability of the data, normalization was applied 

to the control parameters data of kp and ki in Fig. 8, 

mapping them to the range [0,1]. In this study, the 

goal of control parameter optimization is to achieve 

the optimal state of the joint module system, under 

specific operating conditions. In order to 

quantitatively evaluate the response performance of 

the joint module, a respective indicator K is defined, 

according to the following equation: 

O shoot R timeK O R =  +                    (13) 

where, δO and δR are the weighting coefficients for 

Oshoot and Rtime, respectively. 

Based on the analysis in Fig. 4 and the 

emphasis on system stability and fast response, it is 

set δO = 0.6 with a higher weight to emphasize 

reducing overshoot, and δR = 0.4 with a lower weight 

to prioritize fast response. 

In this study, the load (Wl) of the joint module 

is set to values of 1 kg, 2 kg, 3 kg, 4 kg, and 5 kg, 

while the velocity (Vc) is set to 3.6 °/s, 5.4 °/s, 7.2 °/s, 

9 °/s, and 10.8 °/s, resulting in a total of 25 common 

operating conditions.  

For each operating condition, the control 

parameter data of kp and ki serve as input to the 

MA-BP model, which provides the responsiveness 

performance indicators Oshoot and Rtime of the joint 

module. By minimizing the value of K, the Pareto 

front solutions for the control parameters values for 

each operating condition can be obtained. 

Indicatively, Fig. 9 shows the Pareto front solutions 

of the control parameters for the operating condition 

of the joint module where Wl = 1 kg and Vc = 3.6 °/s. 

In this study, the control parameter 

combinations with the minimum kp values are 

selected as the Pareto optimal solutions for each 

operating condition. The decision to retain the control 

parameter combinations with the minimum kp values 

was motivated by their ability to effectively balance 

factors, such as overshoot, excessive system response 

and response time, thereby achieving superior 

Model 
Evaluation indicators 

R2 
MSE(Oshoot) 

(°/s)2 

MSE(Rtime) 

(s2) 

Mtime 

(s) 
BPNN 0.973 0.0254  0.0266 0.38254 
PSO- 
BPNN 

0.982 0.0186  0.0193 0.10142 

MA- 

BPNN 
0.991 0.0138  0.0135 0.05261 
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performance. Ultimately, the Pareto optimal solutions 

for the control parameters of the joint module, under 

common operating conditions, are obtained, as listed 

in Table 6. 
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Fig. 9. The Pareto front solutions of the control 

parameters for the joint module at Wl = 1 kg 

and Vc = 3.6 °/s. 

 

Table 6. The Pareto optimal solutions for control 

parameters of the joint module under common 

operating conditions. 

 

Number 
Wl  

(Kg) 

Vc  

(°/s) 
Kp ki 

1 1 3.6 852 85 

2 1 5.4 869 110 

3 1 7.2 874 121 
4 1 9.0 888 88 

5 1 10.8 933 115 

6 2 3.6 865 111 
7 2 5.4 875 98 

8 2 7.2 897 118 

9 2 9.0 902 102 

10 2 10.8 941 85 
11 3 3.6 875 106 

12 3 5.4 884 105 

13 3 7.2 911 81 
14 3 9.0 925 92 

15 3 10.8 1013 89 

16 4 3.6 941 110 
17 4 5.4 961 84 

18 4 7.2 1024 71 

19 4 9.0 1046 77 

20 4 10.8 1106 79 
21 5 3.6 1056 98 

22 5 5.4 1058 70 

23 5 7.2 1146 112 
24 5 9.0 1159 94 

25 5 10.8 1211 78 

 

Furthermore, based on Table 6, the variation 

trends of kp and ki, in the Pareto optimal solutions set 

for the control parameters of the joint module, under 

common operating conditions, are obtained and 

illustrated in Fig. 10. 

Based on Fig. 10a, kp increases along the 

increase of Wl and Vc. However, an increase in Vc 

leads to greater fluctuations in kp. According to Fig. 

10b, ki decreases as Wl, increases and it increases 

with the increase of Vc. Overall, kp is more sensitive 

to operating conditions. This implies that, in 

designing control systems, it is necessary to consider 

appropriately increasing the proportional control 

parameter kp to meet the requirements of the system, 

when facing heavier loads and higher joint velocities. 

Additionally, the Pareto optimal solutions for 

the control parameters, under common operating 

conditions, provide designers with a range to guide 

them, allowing them to select control parameters 

based on specific requirements and achieve optimal 

control performance and stability. 

 

 k
p

 
(a) 

 k
i

 
(b) 

 

Fig. 10. The variation trends of kp and ki in the Pareto 

optimal solutions of control parameters under 

common operating conditions: (a) the trend of 

kp variation; (b) the trend of ki variation. 

 

CONCLUSIONS 
 

This study proposes a method for predicting the 

responsiveness performance of joint modules and an 

optimization approach for their control parameters, 

based on the MA-BPNN model. The following 

conclusions can be derived: 

(1) The responsiveness performance of the 

developed joint module was tested, revealing that as 

the load or angular velocity increased, there was a 

corresponding increase in overshoot and response 

time. Similarly, an increase in the proportional or 

integral gain coefficient led to longer response times. 

The proportional gain coefficient caused an initial 

decrease in overshoot, followed by an increase, while 
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the integral gain coefficient resulted in a gradual 

increase in overshoot. Notably, the joint module's 

responsiveness was influenced by both operating 

conditions and control parameters, indicating its 

complex and multifactorial character that cannot be 

easily described by linear relationships. 

(2) A predictive MA-BP model was established 

to assess the responsiveness performance of the joint 

module. The comparison of the the predictions 

generated by the MA-BPNN model, the PSO-BPNN 

model and the BPNN model, concluded that, the 

MA-BPNN model produced more accurate 

predictions with smaller errors, in terms of overshoot 

and response time. Furthermore, the MA-BPNN 

model exhibited superior fitting performance and a 

shorter runtime. Therefore, the superiority of the 

MA-BPNN model, in accuracy and efficiency, when 

predicting the responsiveness performance of the 

joint module, is evident.  

(3) This study used Latin hypercube sampling 

and the MA-BP model, to obtain Pareto optimal 

solutions for control parameters of the joint module, 

under common operating conditions. The results 

provide designers with guidelines to select control 

parameters for optimal control performance and 

stability. It is observed that, the proportional gain 

coefficient is more sensitive to variations, in 

operating conditions within these Pareto optimal 

solutions. Thus, suitable increase of the proportional 

gain coefficient is necessary, when designing control 

systems, in order to meet system requirements with 

heavier loads and faster joint speeds. 
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摘 要 

本硏究提出了一種預測關節模組響應性能幷

優化其控制參數的方法。通過測試關節模組在不同

工況與控制參數下的超調量和響應時間，揭示了工

況與控制參數對關節模組響應性能的非綫性影

響。將 BPNN 模型與 MA 算法相結合，建立了

MA-BPNN 模型，該模型相較於傳統模型，具有

更高的預測精度和計算效率。利用拉丁超立方采樣

和 MA-BPNN 模型，确定了關節模組控制參數的

Pareto 最優解。硏究指出，高負載和關節速度下，

應適當提高比例增益繫數，以滿足系統需求。該硏

究成果對關節模塊的設計和優化具有重要應用價

値。 

 

 
 
 


