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ABSTRACT 
 

Both the titanium alloy and aluminum alloy 
cutting by using Polycrystalline Diamond (PCD) 
milling cutter for obtaining mirror milling surface 
results are important processing technologies in the 
industry. To improve the production efficiency or 
enhance the cutting performance of this cutting 
technology, the Remaining Useful Life (RUL) 
prediction of PCD milling cutter becomes one of the 
major issues nowadays. The Sequence to Sequence 
Long Short-term Memory (S2S-LSTM) is used in this 
research as the prediction model to carry out PCD 
milling cutter’s RUL prediction, and two times of PCD 
milling cutting experiments for titanium and 
aluminum alloy are designed and carried out. In the 
experiments, the data of the vibration signal, sound 
signal, and the surface roughnesses of the workpieces 
are measured and used as the datasets. The prediction 
model yielded F1-scores of 98.1% and 95.8% by using 
the validation datasets of the two experiments. The 
proposed model is also compared with other AI 
(Artificial Intelligent) models, such as RNN 
(Recurrent Neural Network), GRU (Gated Recurrent 
Unit), and LSTM under the same batch size, epoch, 
learning rate, and other hyper-parameters. 

 
 
 
 
 
 

 
 
 
 
 
 
 

INTRODUCTION 
 

Nowadays, materials commonly used in the 
high-tech industry such as titanium (Ti) alloy and 
aluminum (Al) alloy require excellent surface 
roughness on specific occasions, and mirror milling 
has become an important method to achieve that 
quality. The cutter of the mirror cutting machine has a 
significant influence on the quality of the finished 
product, which needs to be replaced from time to time 
due to the accumulation of wear with the increase of 
processing time. In the current manufacturing industry, 
the experience and judgment of engineers are usually 
taken as the basis for the timing of cutter replacement. 
However, the timing of cutter replacement will even 
affect the overall efficiency of production. If the wear 
is too serious and the cutter is not replaced 
immediately, the quality of the product will be reduced. 
On the other hand, if the cutter is replaced too early, it 
does not meet the cost considerations. Besides, the 
production line has to be suspended for each tool 
change, which will reduce production efficiency and 
cause losses to the industry. 

To achieve high production efficiency, the RUL 
prediction of mirror milling cutter has become an 
important issue. The cutter usually used in mirror 
milling for Ti and Al alloy is a high hardness diamond 
cutter, PCD, or cubic boron nitride cutter, etc. E. 
Kaya's research results show that the cutting results of 
PCD cutter for mirror surface cutting have better 
quality (Kaya et al, 2020). Therefore, PCD milling 
cutter is selected as the experimental cutting tool in 
this research. 

Many previous researchers have investigated 
this topic and focused on this issue for getting a better 
cutter RUL prediction method. For example, A. Heng 
calculated RUL time by applying the sensing data 
related to tool life into the calculation of neural 
network algorithm (Heng et al, 2009). M. Kious used 
the wear degree on the flank of a cutting tool as the 
RUL evaluation basis and divided the wear of the flank 
into initial wear, normal wear, and damage wear 
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(Kious et al, 2010). To reduce the difficulty of 
measuring wear loss on the flank, Tobon-Mejia 
measured the surface roughness of the cutting result 
and used it as the evaluation basis for cutting tool RUL 
calculation (Tobon-Mejia et al, 2012). Mirror milling 
is defined as cutting results with a surface roughness 
between 0.08 μm to 0.8 μm Ra value (Lindvall et al, 
2020). In this study, the surface roughness of mirror 
milling is also used as the evaluation definition for 
PCD cutter RUL calculation. 

Recently, the usage of deep learning technology 
has risen to prominence once again due to 
advancements in hardware, data collection ability, and 
innovations in deep learning algorithms (An et al, 
2019). For the applications of deep learning 
technology, the algorithm used to build the prediction 
model must match the actual physical phenomena. 
Therefore, it is an important issue to apply appropriate 
algorithms to the physical phenomena of the problem 
to be predicted (Yu et al., 2019). 

Some researchers have already studied the RUL 
prediction of cutting tools by using artificial 
intelligence. Benkedjouh used SVR (support vector 
regression) to predict the amount of wear and the RUL 
of cutting tools (Benkedjouh et al, 2015). Drouillet 
used artificial neural networks to predict the RUL of 
milling cutters (Drouillet et al, 2016). Tobon-Mejia 
developed a two-stage RUL prediction algorithm 
based on a dynamic Bayesian network (Tobon-Mejia 
et al, 2012). Wu proposed a multi-sensor information 
integration system for online RUL prediction for 
machine tools based on an adaptive network fuzzy 
reasoning system (Wu et al, 2018). However, none of 
the scholars mentioned above have taken into 
consideration the time sequence characteristics of the 
sensing data used, which creates a greater discrepancy 
between the predictions made and the actual results. 
To overcome the above problem, a time-series model 
is used in this study to predict cutting tool RUL. 

To have the temporal characteristics of the 
sensing data which is more in line with the model 
characteristics of some applications, the LSTM of the 
temporal prediction model is used as the elevation 
basis for obtaining better model prediction accuracy. 
Ahmed Elsheikh used the Bi-LSTM model to predict 
the RUL of turbofan engines. It is reported that the 
number of network layers and the neurons can be 
adjusted to optimize model accuracy (Elsheikh et al, 
2019). Wennian Yu used an LSTM model to predict 
tool RUL, in which model training was carried out 
under the condition of Epoch and hyper-parameters 
varied (Yu et al, 2019). Bin Zhang used an LSTM 
model to predict rolling bearing RUL. In this study, no 
data preprocessing method is used, and the accuracy 
of the model was about 94.967% (Zhang et al, 2019).   

Pingyang Lyu used S2S-LSTM architecture to 
predict gas leakage (Lyu, 2020) and compared the 
mean absolute error (MAE) with other architectures, 
the results are reported to be obviously better than 

those of other architectures. Zenghui An (2020) also 
used the S2S-LSTM framework to predict the rolling 
bearing RUL and obtained 93.5% model accuracy, 
which is better than that of other deep learning models. 
However, the above research used accuracy as the 
basis to evaluate the model, and this method could not 
truly display the performance of the model. 

To improve the performance of deep learning 
models in target prediction applications, the S2S-
LSTM architecture is used in this research to predict 
the RUL of PCD cutters in mirror milling. For getting 
better model performance, hyper-parameters such as 
epoch, batch size, and learning rate are varied and 
considered. Besides, F1-Score is used as the basis in 
this research for judging the model to evaluate more 
realistic model performance. 
 

METHOD 
 

The system structure of this study is shown in 
Figure 1, which can be divided into two parts.  

 

 
Fig. 1.  System structure. 



 
S.-L. Chen et al.: PCD Milling Cutter Remaining Useful Life Prediction for Titanium and Aluminum. 

-463- 
 

The first part is the functional modules related to 
experimental design for the RUL prediction for PCD 
milling cutter in Ti alloy and Al alloy mirror milling. 
The planning for the RUL prediction experiment 
planning of PCD cutters during mirror milling 
includes cutting experiment design, practical mirror 
milling, sensor data measurement, and surface 
roughness measurement. The vibration data is 
collected from a three-axis accelerometer sensor on 
the spindle. The sound sensor is attached to the cutter’s 
handle to collect the sound data during cutting. The Ti 
alloy and Al alloy are selected and machined with a 
PCD milling cutter with mirror milling cutting 
parameters, and the spindle speed, feed rate, and 
cutting depth are fixed. The surface roughness of the 
cutting result surface is measured by a CMM machine. 
The measured results are classified according to their 
mirror level. The CNS10793 standard defines the 
mirror levels of mirror surface roughness. The mirror 
levels will be further used in the dataset for training 
and testing. 

The second part of this study is S2S-LSTM 
model construction. The collected sensor data is 
programmed into a data format that is readable by the 
model. For pre-processing the data, the Z-Score data 
and K-Fold data segmentation are then applied to the 
data here. The data is further split into training, testing, 
and validation datasets. The S2S-LSTM model will be 
supplied for subsequent calculation. With the deep 
learning model of S2S-LSTM established, the LSTM 
model is embedded in the encoder and decoder 
architecture of S2S to predict the RUL of PCD cutters. 
LSTM parameters are set, including Sample, Feature, 
Timesteps, etc. The accuracy of the model can be 
increased through the above-mentioned hybrid 
technology. The Relu activation function is used for 
data filtering between models. In the output layer, a 
Softmax activation function is used to distribute the 
output probability value to the RUL label category of 
the PCD cutter. The hyper-parameters such as Epoch, 
Batch size, and Dropout are used to test the model’s 
F1-Score. In this study, the Cross-Entropy loss 
function is used to calculate the deviation of the model. 
The Learning Rate of Adam optimization function is 
used to optimize the accuracy of F1-Scores. 

The overall process in this study is shown in 
Figure 2. An accelerometer is installed on the spindle 
of the three-axis direction and acquires data through a 
DAQ. A sound sensor is installed at the base of the 
knife holder.  And data is transmitted to a computer 
through an Arduino. This completes the setup of the 
experiment equipment, and mirror milling experiments 
are then carried out. The surface roughness of the 
finished workpieces is measured. The sensor and 
surface roughness measurement data are integrated 
into the format of three accelerometer sensor data, and 
one each of sound sensor, and surface roughness data. 
This facilitates data reading for the deep learning 
model. 

 
Fig. 2.  System Flowchart. 

 
The above sorted datasets are retrieved and 

preprocessed through Z-Score data normalization, 
reducing the difference between data so that training 
for the prediction model goes more smoothly. In this 
study, the K-Fold method is used to divide the data into 
three parts consisting of: 80% training set, 10% test set, 
and a 10% validation set. Among the models 
implemented by S2S-LSTM in this study, S2S has the 
functions as both encoder and decoder while LSTM is 
used as the neuron of S2S to complete calculations 
calculate between neurons. In addition, hyper-
parameters such as Epoch, Batch size, and Learning 
Rate are adjusted to conduct model tests to improve the 
F1-Score. At last, the 10% validation set data is used 
to calculate Recall and Precision, and to carry out the 
calculation of the F1-Score for the prediction model. 
The model is designed to predict the RUL of PCD 
cutters under mirror milling conditions. 
 
PCD Cutter RUL Experiment and Planning of Life 
Index 

In this study, a DMU-ITN530 three-axis milling 
machine is used for cutting, a PCD cutter with an 
external diameter of 10 cm is used as the experiment 
subject, and Al and Ti alloys are used as cutting 
materials. The mirror milling parameters obtained 
from the literature are set as the machining parameters 
of this study. The parameters include spindle speed, 
cutting depth, and feed rate. In this study, 
accelerometer sensors and sound sensors are arranged 
on the spindle and knife handle of the machine tool. 
The signals from the above sensors are collected 
through a DAQ and Arduino to upload to the database. 
During mirror milling, an RUL prediction model is 
constructed for PCD milling cutters. Measuring the 
surface roughness of the cutting workpiece is used as 
the RUL judgment basis for PCD cutters. The planning 
is shown in Figure 3. 

In this study, Al and Ti alloys are used for 
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experimental cutting. The material size is 100mm long, 
120mm wide, and 100mm high. The three-view 
diagram of the material before cutting, as shown in 
Figure 4(a). The clamping position of the workpiece is 
shifted 20mm upwards from the bottom, which is set 
as the safety plane. The down milling feed direction 
cutting movement is 50% of the cutter diameter. The 
design of this cutting experiment is based on the 
concept of terraces. The surface roughness of each 
terrace can then be measured. The change in tool wear 
can be shown and recorded and the RUL of PCD 
milling cutters under mirror milling condition can be 
deduced. The three-view diagram of the material after 
cutting, as shown in Figure 4(b). 
 

 
Fig. 3.  RUL experiment flowchart for PCD milling 

cutter in mirror milling. 
 

 
Fig. 4.  Milling design drawing for experiment. 

 
PCD milling cutters are considered very suitable 

for mirror milling, and it is pointed out in the literature 
that better cutting performance can be obtained. Thus, 
PCD milling cutters are selected for use in this study. 
In this study, the milling experiments of Al and Ti 
alloys are carried out with a PCD milling cutter 
combined with mirror milling parameters. The cutting 
parameters include spindle speed, cutting depth, and 
feed rate, as shown in Table 1. The material parameters 

of PCD milling cutters used in this study include the 
coefficient of friction, coefficient of elasticity, Vickers 
hardness, and coefficient of thermal expansion, as 
shown in Table 2.  
Materials commonly used in high-tech industries, 
6063-T6 aluminum alloy and Ti6Al4V titanium alloys, 
are used in this research. Aluminum alloy is often used 
in sheet metal and metal crafting industries, while 
titanium alloys are commonly used in aerospace and 
medical industries. Both materials require extremely 
high surface roughness for specific applications. That 
is why this study chooses to use the surface roughness 
of mirror milling grade as the criterion of tool. In this 
study, material selection and experimental cutting are 
carried out based on the workpiece material 
parameters in Table 3. 
 

Table 1. Parameter setup of Mirror milling 
experiment. 

 Spindle 
Speed(rpm) 

Cutting 
Depth(mm) 

Feed 
Rate(mm/t) 

Case Al 
alloys 

15000 0.1 0.1 

Case Ti 
alloys 

10000 0.05 0.05 

 
Table 2. PCD milling cutter material   

Material of Cutter Coefficient 
of Friction 

coefficient 
of Elastic  

Vickers 
Hardness 

Thermal 
Expansivity 

PolyCrystalline 
Diamond 

0.3 630Gpa 6000 0.9x10-6 

 
Table 3. Material parameter of workpiece 

 
In this study, the surface roughness of mirror 

milling is used as the hierarchical classification of the 
RUL of a PCD cutter, shown in Table 4. Lv.1-Lv.4 
mirror milling is defined as surface roughness ranging 
from 0.08μm to 0.8μm, corresponding to grade 0.1a to 
0.8a in the Ra standard of CNS10793.  In order to 
identify specifications beyond the specular cutting 
standards, Lv.5, which is 1.6a, is included in the 
standard table, bringing the total categories in this 
study to five. The surface roughness is measured 
through mirror milling experiments of Al and Ti alloys, 
and the PCD milling cutter RUL can be estimated. The 
cutting results and the estimated RUL of PCD milling 
cutters are presented in Table 4. 
 

Table 4. PCD milling cutter RUL indicator. 
PCD milling cutter 
RUL level 

 Surface    
Roughness 

 PCD milling cutter RUL  

Lv.1  0.1a (Obtained by cutting experiment) 
Lv.2  0.2a (Obtained by cutting experiment) 
Lv.3  0.4a (Obtained by cutting experiment) 
Lv.4  0.8a (Obtained by cutting experiment) 
Lv.5  1.6a (Obtained by cutting experiment) 
 
S2S-LSTM Model Architecture and Construction 

In this study, S2S-LSTM deep learning 
technology is used as the algorithm basis, and its 

Workpiece 
material 

Poisson's 
ratio 

Density Coefficient 
of Young's 

Vickers 
Hardness 

6063-T6 Al alloy  0.35 2.7 g/cm³  69 Gpa 92 
Ti6Al4VTi alloy  0.37 4.5 g/cm³ 110 Gpa 457 
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prediction model architecture is detailed in the 
following four aspects: 

Data sorting: Vibration and sound sensing 
signals are collected into a database via sensors and 
microcontrollers. The Z-Score method is used to 
standardize the data, narrowing the data gap in the 
model calculation process. The use of the Z-Score 
method can accelerate the network solution speed. The 
data is then validated using the K-Fold method, 
splitting the data set into 80% training, 10% testing, 
and 10% validation sets. 

Model establishment: In this research, the S2S-
LSTM architecture is used to build a hierarchical deep 
learning model. Data compression and prediction is 
established by building the encoder and decoder 
functions in S2S model. When S2S is used in tandem 
with the LSTM model, invalid data can be filtered out 
and gradient disappearance can be prevented. 

Training model: An LSTM network is imported 
into the encoder and decoder architecture of S2S as 
neurons. Through the encoder, input data is 
compressed into the Context Vector and would 
become the input data of the decoder. Then, the 
Softmax activation function is used to predict the 
context of input data. The loss function of the 
prediction model is finally calculated using Cross-
Entropy, and the accuracy is optimized by the Adam 
Optimization function. As a result, the model with the 
highest accuracy and lowest loss function is obtained 
by adjusting the hyper-parameters such as Epoch, 
Batch size, and Learning Rate. 

Model evaluation and validation: To verify the 
high reproducibility of the S2S-LSTM prediction 
model implemented in this research, two times cutting 
experiments are performed, and the model is validated 
through validation datasets from both experiments. 
The Precision and Recall values obtained from the 
predicted and actual data are calculated by F1-Score to 
analyze whether the accuracy of the S2S-LSTM 
prediction model is acceptable. 
Data Pre-processing 

In data pre-processing, the input data required 
for the prediction model is transferred to the database 
and its data format is unified. Vibration and sound 
signal are used as features of the model, and their 
parameter correlation format is shown in Table 5. The 
standard deviation of data with different formats and 
levels is calculated by Formula 1, and then Z-Score is 
calculated by Formula 2 to achieve data pre-
processing.  
 

Table 5. Input parameter specification of sensor. 
Dataset Range Measure Units 

Accelerometer Sensor Value  -5v~5v Voltage 
Sound Sensor Value 30db~130db Decibel 

 

𝑆𝑆𝑆𝑆 = �∑ (𝑋𝑋𝑖𝑖−𝑋𝑋�)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛−1
 .                    (1) 

 

𝑍𝑍 = (𝑋𝑋𝑖𝑖 + 𝑋𝑋�)/𝑆𝑆𝑆𝑆 .                        (2) 

 
Model Training 

For target prediction using deep learning 
technology, a model must be built and trained first. 
The model training process is shown in Figure 5. 
Eighty percent of the original data will be pre-
processed to generate the input data required by the 
model. LSTM parameters, including Sample, 
Timesteps, and Feature, should be set when the model 
is built, and the Softmax activation function should be 
used to predict the output target. The results of the 
prediction correspond to the level of surface roughness 
defined in this research. 

After the prediction, the Cross-Entropy loss 
function is used to calculate model errors, and the 
Adam Optimization function was used to optimize 
model parameters. To test the changes of F1-Scores 
under different conditions of S2S-LSTM models, this 
study sets multiple Epochs, Batch sizes, and other 
hyper-parameters when building the model. 

 

 
Fig. 5.  Flowchart of S2S-LSTM training model. 

 
Model Testing and Validation 

The model testing process is shown in Figure 6., 
and the validation process is shown in Figure 7. The 
trained S2S-LSTM model is then used to predict the 
target, and its F1-Score is calculated to observe 
whether the accuracy of the model is as projected, 
reaching 95% or more. 
 

 
Fig. 6.  Flowchart of S2S-LSTM testing model. 
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Fig. 7.  Flowchart of S2S-LSTM validation model. 

 
 Hyper-parameters Adjusting 
 By adjusting hyper-parameters (such as Learning 
Rate, Batch size, and Epoch), the model index F1-
Score is optimized, and the correlation between 
different hyper-parameters and accuracy is analyzed. 
The setting of hyper-parameters is shown in Table 6. 
The F1-Score of S2S-LSTM and other time-series 
models in Table 6 are compared to analyze the 
difference under the same hyper-parameters condition. 
 
Table 6. S2S-LSTM hyper-parameters & Time-series 

F1-Score Comparing 
Hyper 

Parameter 
Learning 

Rate Batchsize Epoch Encoder、Decoder 
Layer 

Design 
Value 

(0.01, 
0.001) 

(64, 128, 
256, 512) 

(2, 10, 
50, 100, 

200, 
500) 

3 

Model F1-Score Compare 

Type S2S-
LSTM LSTM GRU RNN 

 
Model Accuracy Evaluation 

After the model is built, the accuracy of the 
model should be calculated to show its advantages and 
disadvantages. The purpose of the F1-Score is to 
obtain the difference between model accuracy and the 
actual situation after the completion of the test model. 
Formula 3 and Formula 4 are used to calculate the 
Precision and Recall. Its F1-Score calculation is shown 
in Formula 5, The relationship between TP, FP, TN, 
and FN in the formula is shown in Table 7. Precision 
is defined as the ratio between actual and predicted 
positive results and the total events. The Recall is 
defined as the ratio between actual and predicted 
positive results and the total predicted events. F1 is the 
indicator score of the model, with the best score being 
1 and the worst score being 0. 

TPprecision
TP FP

=
+ .                      (3) 

                                                    
TPrecall

TP FN
=

+ .                (4) 
 

11 1

1F 2
2

recall precision precision recall
precision recall

−− − + ⋅
= = ⋅  +  .      (5) 

 

Table 7. Definition of Recall and Precision  
 True conditions False conditions 

Predict 

conditions 
TP(True Positives) FP(False Positives) 

Predict 

conditions 
FN(False Negatives) TN(True Negatives) 

 
 

SYSTEM TESTING AND ANALYSIS 
 

Experimental environment construction and 
development tools 

The DECKEL MAHO iTNC 530 three-axis 
milling machine is used for mirror milling experiments 
of Al and Ti alloys, and a three-axis accelerometer and 
sound sensor are used for data acquisition. The surface 
roughness of the cutting result is measured by a CMM 
machine, and a dataset is established for training and 
validation. The experimental environment and 
equipment setup are shown in Figure 8. 
 

 
Fig. 8. Experiment environment and equipment 

erection diagram 
 
PCD Milling Cutter RUL Prediction Data 
Acquisition 

This study sets up a three-axis speed gauge 
sensor on the spindle to collect vibration signals during 
the cutting of Al and Ti alloys, and a DAQ will record 
and send data back to the computer. The vibration and 
noise signals of the Ti alloy cutting are shown in 
Figure 10 and Figure 11. The vibration signals of the 
vibration sensor in Figure 10 show that the triaxial 
accelerometer detects more vibrations as the cutting 
time increases. The sound sensor signal acquisition 
figure in Figure11 shows a significant change in the 
sound signal at the mid-cutting stage, and the surface 
roughness of the interval increased from 0.139μm to 
0.366μm. 
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Fig. 10.  An accelerometer sensor signal for titanium 

alloy cutting. 
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Fig. 11.  A sound sensor signal for titanium alloy 

cutting. 
 

The sound sensor is set up on the knife handle to 
collect noise signals during Al and Ti alloy cutting, 
and the sensor data is transmitted back to the computer 
through an Arduino. The surface roughness 
measurements are taken for Al and Ti alloys after 
milling. Data for each terrace is recorded and 
classified according to the surface roughness criteria 
of mirror milling, as shown in Table 8 below. 
 
Table 8. Surface roughness measurement for cutting 

experiments (μm) 

Step 
Al alloy 

end 
surface 

Ti alloy 
surface 

Al alloy 
side 

surface 

Ti alloy side 
surface 

1 0.092 0.079 0.21 0.301 
2 0.189 0.139 0.32 0.54 
3 0.392 0.227 0.55 0.66 
4 0.568 0.366 1.63 1.24 
5 0.828 0.796 None None 

 
Test and analysis of prediction models 

The sensing data and surface roughness levels of 
Al and Ti alloys are modeled. The sensor data is used 
as the input data and the surface roughness level is 
used as the output data. The highest F1-Score is tested 
by adjusting the Learning Rate, Batch size, and Epoch, 
as shown in Table 9. 
 
Table 9. Adjust hyper-parameter include Batchsize、

Epoch and LR to calculate F1-Score 
Aluminum Alloy 

Batchsize Epoch2 Epoch10 Epoch50 Epoch100 Epoch200 Epoch500 
64 30.25% 47.25% 89.35% 90.54% 91.85% 93.21% 

128 32.56% 58.69% 89.78% 91.21% 92.63% 95.68% 
256 34.56% 59.87% 89.65% 92.43% 98.63% 97.21% 
512 35.63% 49.91% 91.37% 92.85% 95.87% 96.31% 

Titanium Alloy 
Batchsize Epoch2 Epoch10 Epoch50 Epoch100 Epoch200 Epoch500 

64 38.23% 45.21% 87.35% 90.21% 92.39% 95.67% 
128 30.21% 46.32% 88.21% 90.51% 92.14% 96.39% 
256 32.21% 47.21% 88.97% 91.03% 95.26% 97.68% 
512 34.58% 48.42% 89.92% 92.52% 95.68% 97.31% 

 
 

RESEARCH RESULTS AND 
DISCUSSIONS 

 
Relationship between PCD milling cutter wear and 
surface roughness 

The PCD milling cutter is used for mirror 
milling of Al and Ti alloys. The relationships between 

microscope imaging and tool wear of PCD milling 
cutters are shown in Figure 12 and Figure 13, and the 
relationships between the tool wear and the surface 
roughness are shown in Table 10 and Table 11. In 
Figure 12 and Figure 13, sub-pictures (a) to (d) 
represent the process of cutting tools from factory new, 
initial wear, normal wear to serious wear. It can be seen 
that the surface roughness and tool wear are directly 
related to the tool lifespan. 
 

 
Fig. 12. The relationship between microscope imaging 

and tool wear of PCD milling cutters for 
cutting Al alloy. 

 
Table 10. The relationship between the surface 

roughness and the wear of Al alloy in PCD cutting 
 The 

New 
initial wear Normal 

wear 
Serious 

wear 
Surface 

Roughness 
0.092μm 0.189μm 0.392μm 0.828μm 

 

 
Fig. 13. The relationship between microscope imaging 

and tool wear of PCD milling cutters for 
cutting Ti alloy. 

 
Table 11. The relationship between the surface 

roughness and the wear of Ti alloy in PCD cutting 
 The 

New 
initial wear Normal 

wear 
Serious 

wear 
Surface 

Roughness 
0.079μm 0.139μm 0.227μm 0.796μm 
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PCD milling cutters RUL prediction table 
The S2S-LSTM model proposed in this research 

is applied to predict the RUL of PCD milling cutters in 
mirror milling, and the results are shown in Table 12. 
The surface roughness Ra of mirror milling is used to 
divide the tool lifespan into five levels, from lv. 1 to lv. 
5. The table can be used to judge the RUL of the PCD 
milling cutter when mirror milling, to facilitate the 
optimization of the processing or overall production 
line scheduling. 

 
Table 12. PCD cutter are used to measure the cutting 

life of Al and Ti alloys mirror milling 
PCD milling cutter (Al alloy) PCD milling cutter (Ti alloy) 

RUL 
level 

Ra RUL RUL 
level 

Ra RUL 

Lv.1 0.1a 10hr~12hr Lv.1 0.1a 16hr~18hr 
Lv.2 0.2a 5hr~10hr Lv.2 0.2a 14hr~16hr 
Lv.3 0.4a 96min~5hr Lv.3 0.4a 5hr~14hr 
Lv.4 0.8a 33.6min~96min Lv.4 0.8a 40.8min~5hr 
Lv.5 1.6a Replce immediately Lv.5 1.6a Replce immediately 

 
S2S-LSTM compared to other time-series 
architecture 

As shown in Table 13 and Table 14, the proposed 
S2S-LSTM time-series architecture is compared to 
other time-series architectures include LSTM, GRU, 
and RNN in terms of the accuracy of RUL prediction.  
According to Table 13(a), it can be seen that the S2S-
LSTM realized in this study can reach a 98.63% F1-
Score by using Al alloy end face data for prediction, 
and its F1-Score is much higher than the other three 
time-series models. According to Table 13(b), it can be 
seen that the S2S-LSTM realized in this study can 
reach a 97.68% F1-Score by using the end face data of 
Ti alloy for prediction, and the accuracy of the F1-
Score is ten percent higher than that of the other three 
time-series models. 

 
Table 13. S2S-LSTM compare to other time-series by 

using Al & Ti alloys end surface data 

 
As shown in Table 14(a), the S2S-LSTM realized 

in this study can reach a 95.98% F1-Score by using 
aluminum alloy side data for prediction, which is 
much higher than the other models. It can be seen from 
Table 14(b) that the S2S-LSTM realized in this study 
can reach a 98.61% F1-Score by using the side data of 
titanium alloy for prediction. 

 
Table14. S2S-LSTM compare to other time-series by 

using Al & Ti alloys side surface data 

 To examine the high reproducibility of the 
proposed model, the second cutting experiment was 
also carried out in this research. In this experiment, a 
new PCD milling cutter is used, and the second set of 
data is constructed by cutting another piece of Al alloy 
with the same processing environment and parameters. 
As a result, a 95.8% model F1-Score was obtained by 
importing the collected data into the S2S-LSTM 
model. It is evident that the S2S-LSTM prediction 
model verified by the data from the second experiment 
has a high F1-Score, which proves that the model is 
highly reproducible. 
 

SUMMARY 
 

S2S architecture and LSTM network are taken as 
the technical core of deep learning in this study. An 
RUL prediction framework for PCD cutters in mirror 
milling conditions is proposed. The vibration and 
sound signals of aluminum and titanium alloys cutting 
using a PCD milling cutter are collected by using a 
three-axis accelerometer and a sound sensor. Under 
mirror milling conditions, a PCD milling cutter RUL 
level table is realized. The S2S-LSTM deep learning 
framework is implemented in this study for model 
training, testing, and validation. By comparing the 
predicted data with the actual data, the F1-Score of the 
model reaches as high as 95%. 

According to the analysis methods and 
experimental results mentioned in this study, the 
following points can be summarized: 
1. The data which are imported into the prediction 

model are collected and analyzed through sensors. 
Through experiments, the PCD milling cutter is 
used to predict the RUL of titanium and aluminum 
alloys. 

2.  In this study, a three-axis milling machine was 
used for aluminum and titanium alloy cutting 
under mirror milling conditions. The PCD milling 
cutter conforms to the RUL range of mirror milling. 

3. The prediction model of S2S-LSTM architecture is 
implemented. The vibration and sound data serve 
as input data and the measured surface roughness 
is taken as output data. The model is trained, tested, 
and validated with a model validation F1-score of 
93.63%. To verify that the model implemented in 
this study is highly reproducible, the secondary 
cutting data is used to validate the model, with an 
F1-Score of 95.8%. 

The future prospects of this study are as follows: 
1. Image detection of surface roughness can be 

introduced into this study. The surface roughness 
can be measured in real-time during cutting 
allowing the time between RUL levels to be more 
accurate. 

2. Wireless sensor technology can be used. By 
uploading the collected data to a cloud database, 
RUL predictions can be made remotely. 

3. Deep learning algorithms are constantly being 

 Al alloy end surface cutting 
data(a) 

Ti alloy end surface cutting 
data(b) 

Model S2S-
LSTM 

LSTM GRU RNN S2S-LSTM LSTM GRU RNN 

Precision  0.9 0.88 0.82 0.84 0.92 0.89 0.83 0.80 
Recall  0.9 0.9 0.85 0.86 0.92 0.87 0.81 0.83 

F1 Score 98.63% 88.98% 82.63% 84.94% 97.68% 87.98%  85.02% 81.47% 

 Al alloy side surface cutting 
data(a) 

Ti alloy side surface cutting 
data(b) 

Model S2S-
LSTM 

LSTM GRU RNN S2S-
LSTM 

LSTM GRU RNN 

Precision  0.92 0.87 0.78 0.82 0.93 0.89 0.82 0.84 
Recall  0.93 0.89 0.82 0.83 0.95 0.92 0.85 0.86 

F1 Score 95.98% 84.65% 79.37% 82.49% 98.61% 90.05% 83.47% 84.98% 
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updated. This prediction architecture can be 
imported into other novel algorithms, achieving 
faster operations and higher accuracy along with 
other benefits. 
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摘 要 

在製造業中，使用多晶鑽石(polycrystalline 
diamond, PCD)銑刀對鈦合金、鋁合金進行鏡面切

削是重要的加工技術，而為了提高生產效率、改善

鏡面切削技術，PCD 端銑刀的剩餘使用壽命

(remaining useful life, RUL)預測亦成為了重要的議

題。本研究設計並進行了數次鈦合金和鋁合金的

PCD 銑削實驗，於實驗中收集振動及聲音訊號以

作為 RUL 預測的資料集。本研究使用 S2S-LSTM
深度學習技術建構 PCD 銑刀 RUL 預測的模型，
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於初次實驗中以驗證集數據進行預測得到 98.1%
的 F1-Score。於第二次實驗中，本研究以相同加工

參數進行銑削實驗並以提出的 S2S-LSTM 模型對

驗證集進行預測，得到的 F1-Score 則為 95.8%。此

外，本研究亦在相同的超參數條件下 (相同的

Batchsize、Epoch 及 Learning Rate 等)，與其他 AI
模型如 RNN、GRU 及 LSTM 進行了 F1-Score 的

優劣比較。 


