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ABSTRACT 

 
    Numerous researchers have employed various 
shape descriptors in the dimensional synthesis of 
mechanisms. This study introduces a methodology for 
the path synthesis of spherical four-bar linkages 
utilizing Elliptical Fourier Descriptors (EFDs). EFDs, 
a Fourier-based shape representation method, allow 
the independent acquisition of Fourier coefficients 
through the Fourier expansion of individual 
components of the 3D coupler curve, rather than 
relying on a function as in traditional Fourier analysis. 
This approach eliminates the need to project the curve 
onto any plane for Fourier analysis, while preserving 
invariance characteristics under similarity 
transformations. Additionally, a method for 
establishing the shape signature for the open curve is 
developed. By integrating this process with traditional 
EFD and optimization algorithm, the proposed method 
becomes essentially applicable for synthesizing spatial 
four-bar linkages for both open and closed curves in a 
single-step design process. Finally, the effectiveness of 
the proposed method is demonstrated through several 
examples of spherical four-bar linkages. 
 

INTRODUCTION 
 

Spherical four-bar linkages exhibit diverse 
applications, serving not only as mechanical 
components like the Hooke joint but also functioning 
as integral subsystems within various machinery, such 
as automobiles, robots (Chablat and Angeles, 2003, 
Wang et al., 2022), and medical instruments (Lum et 

al., 2006, Arata et al., 2018). Therefore, a significant 
focus in design lies in the dimensional synthesis of 
spherical four-bar mechanisms, which primarily 
determines the dimensions of linkages that can be 
designed to produce specific types of motion. Over the 
past decades, various methods have been developed 
for the dimensional synthesis of spherical four-bar 
linkages. These approaches encompass geometric 
methods (Bagci, 1984), numerical techniques covering 
both limited and unlimited positions (Lin, 1998, 
Suixian et al., 2009, Lee et al., 2009), shape 
representation methods (McGarva and Mullineux, 
1993, McGarva, 1994, Ullah and Kota, 1997, Wu et al., 
2011, Sun and Chu, 2010, Chu and Sun, 2010, 
Mullineux, 2011, Galán-Marín et al. 2009, Sun et al., 
2015, Sun et al., 2018), and/or combinations thereof. 
A workflow of applying shape representation method 
upon path generation usually contains numerical atlas 
of the shape descriptors and/or the optimization 
algorithm that searches best shape descriptors of the 
target. Among the various shape representation 
methods, Fourier descriptor (FD) is notable as one of 
the most widely utilized techniques, involving the 
decomposition of a contour into frequency 
components through Fourier series analysis. While the 
use of FD is effective for planar curves, applying it to 
spatial curves poses a significant challenge, often 
requiring the adoption of ad hoc approaches. Sun and 
Chu (2010) introduced a three-dimensional (3D) 
Fourier series to characterize the coupler curves of 
spatial linkages. They projected the 3D data onto a 
two-dimensional y-z plane and a one-dimensional x-
axis for Fourier analysis, while also establishing 
complex geometric conditions in the process. Further, 
they applied this approach to the path synthesis of the 
spherical mechanism (Chu and Sun, 2010). However, 
the method did not eliminate the influence of the 
rotations about the y- and x-axes. Mullineux (2011) 
proposed an alternative approach to Fourier analysis 
for the curve on a sphere using gnomonic projection. 
This method involves choosing a point on the surface 
of the sphere and projecting the sphere onto the plane 
tangent to this point. Since the gnomonic projection 
originates from the center of the sphere, it can 
represent less than half of the sphere’s surface area. 
Further, the distortion of the mapping increases from 
the center (tangent point) to the periphery. Figure 1 
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illustrates a scenario in which the curve generated by a 
spherical four-bar linkage spans more than a 
hemisphere. Such a curve cannot be represented by the 
gnomonic projection, as it extends beyond a 
hemisphere. Additionally, it can be observed in Fig. 
1(b) that when the curve is distant from the z-axis 
(central axis), the projected profile more closely 
resembles a circular curve rather than a general closed 
curve. These are the shortcomings of using the 
projection method.    

Nonetheless, among various works that have 
utilized Fourier shape analysis, one noteworthy 
approach is the use of elliptical Fourier descriptors 
(EFDs) as proposed by Kuhl and Giardina (1982). EFD 
is also based on Fourier analysis. It independently 
decomposes the cumulative chordal length of the x and 
y components of the outline into harmonically related 
trigonometric series, comprising sine and cosine 
functions. For any given harmonic, it geometrically 
depicts an ellipse. Thus, the position of any point on 
the outline can be approximated by the net 
displacement of a point traversing a series of 
superimposed and successively smaller ellipses. EFDs 
have been applied in various fields such as patter 
recognition (Lin and Hwang, 1987), biology (Lestrel, 
1997, Godefroy et al., 2012, Crampton, 1995), 
anthropology (Caple et al., 2017), and dentistry (Niño-
Sandoval et al., 2018). In summarizing the works 
presented in Chapter 2 of Godefroy et al. (2012) and 
Crampton (1995), EFD method has shown notable 
features compared to the traditional Fourier descriptors 
in the following aspects: 
1. Parameterization sensitivity: Traditional Fourier 
descriptors are more sensitive to the choice of starting 
point and parameterization method than EFDs. The 
requirement of equal intervals along the outline is 
relaxed by using EFD, which allows for closer spacing 
on high-curvature portions of the curve. 
2. Handling of complex shapes: EFDs perform better 
with certain complex shapes, while traditional Fourier 
descriptors may encounter difficulties. This was 
demonstrated by the work shown in Fig. 5 of Lestrel 
and Roche1 (1986) where EFDs effectively handled 
complex shapes with multi-valued radii and curves 
that bend back, as well as the work shown in Fig. 1 of 
Chang et al. (2024) where the curve has a cusp.  
3. Normalization complexity and geometric intuition: 
Rotation, translation, and scale invariance can be 
achieved more systematically with EFDs than with 
traditional Fourier descriptors, particularly for a 3D 
curve (discussed in a later section). In addition, the 
coefficients of EFD are normalized and associated 
with intuitive geometric interpretations through 
ellipses, making it easier to visualize and understand 
the shape's features. 
4. Easy extension to three dimension: The extension of 
EFD to 3D outlines requires only a straightforward 
approach by incorporating an additional equation for 
the third dimension. 

In light of the advantages mentioned and the 
notable absence of their application in the path 
synthesis of spatial mechanisms, this paper presents a 
systematic approach to shape description for three-
dimensional curves using EFDs. Furthermore, we 
expand its applicability from closed to open curves. 
Leveraging the superior capabilities of EFDs in 
approximating complex curves with high curvature, 
we propose a novel process for the representation of 
non-periodic trajectories utilizing the EFD-based 
technique. This approach involves tracing the open 
curve, curving back at the end, and then retracing the 
path to the initial point, thereby creating a closed curve 
configuration. The converted curve is then used as the 
shape signature of the original open curve. While 
enhancing the accuracy of depicting the converted 
curve by potentially increasing the number of 
harmonics in this approach, the computational 
efficiency and effectiveness can be maintained due to 
the algebraic computing scheme employed for the EFD 
coefficients. Additionally, the similarity 
transformation remains applicable. Subsequently, an 
optimization algorithm using the Differential 
Evolution (DE) algorithm is introduced to optimize the 
linkage parameters by comparing the Fourier 
coefficients. As a result, this process establishes a 
comprehensive method for path synthesis of spherical 
four-bar linkages for both closed and open curves, via 
EFD within a unified scheme. 

The organization of the paper is as follows. The 
second section provides the mathematical background 
of EFD and its specific treatment of open curves. The 
third section elaborates on the process of normalizing 
the 3D curves under consideration. The fourth section 
discusses the linkage parameters of a spherical four-
bar linkage essential for design purposes, along with 
the algorithms employed to obtain the optimal linkage 
configuration. The fifth section presents numerical 
examples to illustrate the effectiveness of the proposed 
methodology. The final section concludes the article. 

 
SPATIAL ELLIPTICAL FOURIER 

DESCRIPTORS 
 
Approximation for a Closed Curve 

In conventional Fourier analysis, a closed curve 
is typically represented using a parametric function, 
and the function is then expanded into a Fourier series 
for further analysis. The EFA performs the analysis in 
a comparable manner with the key difference being 
that it deals with the components of a closed curve 
individually. Each of these components, comprising of 
the sine and cosine functions, depicts an ellipse within 
the domain where the curve exists. As EFA treats the 
individual components of a curve rather than the entire 
function, it can be readily extended to the three-
dimensional scenario. Consider a point P on a given 
three-dimensional curve, and denote its coordinates as 
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          (c)                 (d) 

Fig. 1. (a) Coupler curve generated by a spherical 
four-bar linkage. p1, p2, p3 and p4 are the positions of 
revolute joints while p5 is the coupler point that traces 

a coupler curve drawn by red line. (b) Curve 
projected onto y-x plane (c) Curve projected onto z-x 

plane (d) Curve projected onto y-z plane 
 
[x(t), y(t), z(t)] where t is the parameter defining the 
curve over a 2π period. Taking the Fourier expansion 
of each component and writing it in matrix form, one 
can obtain: 

 

�
𝑥𝑥(𝑡𝑡)
𝑦𝑦(𝑡𝑡)
𝑧𝑧(𝑡𝑡)

� = �
𝐴𝐴0
𝐶𝐶0
𝐸𝐸0
� + ∑ �

𝑎𝑎𝑛𝑛 𝑏𝑏𝑛𝑛
𝑐𝑐𝑛𝑛 𝑑𝑑𝑛𝑛
𝑒𝑒𝑛𝑛 𝑓𝑓𝑛𝑛

� �cos𝑛𝑛𝑛𝑛
sin𝑛𝑛𝑛𝑛�

𝑁𝑁
𝑛𝑛=1   (1) 

 
where 𝑛𝑛 is the harmonic number, 𝑁𝑁 is the maximum 
harmonic number, (𝑎𝑎𝑛𝑛 , 𝑏𝑏𝑛𝑛 , 𝑐𝑐𝑛𝑛 , 𝑑𝑑𝑛𝑛 , 𝑒𝑒𝑛𝑛 , 𝑓𝑓𝑛𝑛) are the 
coefficients of the nth harmonic, and (𝐴𝐴0, 𝐶𝐶0, 𝐸𝐸0) are 
the term that defines the shape centroid. The 
coefficients of the nth harmonic can be calculated from 
integrals of the product of the component and 
cosine/sine over the time period as in the continuous 
Fourier series. Nonetheless, Kuhl and Giardina (1982) 
took an algebraic approach to these coefficients by 
discretizing the curve into small segments, resulting in 
an efficient computation of the coefficients. A detailed 
derivation for planar case can be found in Kuhl and 
Giardina (1982). The coefficients of the nth harmonic 
for three-dimensional case can be derived in a manner 
similar to that of the 2D case as: 
 

 𝑎𝑎𝑛𝑛 = 1
𝑛𝑛2𝜋𝜋

∑ Δ𝑥𝑥𝑝𝑝
Δ𝐿𝐿𝑝𝑝

�cos𝑛𝑛𝑡𝑡𝑝𝑝+1 − cos𝑛𝑛𝑡𝑡𝑝𝑝�𝐾𝐾−1
𝑝𝑝=1    (2.a)                

 𝑏𝑏𝑛𝑛 = 1
𝑛𝑛2𝜋𝜋

∑ Δ𝑥𝑥𝑝𝑝
Δ𝐿𝐿𝑝𝑝

�sin𝑛𝑛𝑡𝑡𝑝𝑝+1 − sin 𝑛𝑛𝑡𝑡𝑝𝑝�𝐾𝐾−1
𝑝𝑝=1    (2.b)                 

 𝑐𝑐𝑛𝑛 = 1
𝑛𝑛2𝜋𝜋

∑ Δ𝑦𝑦𝑝𝑝
Δ𝐿𝐿𝑝𝑝

�cos𝑛𝑛𝑡𝑡𝑝𝑝+1 − cos𝑛𝑛𝑡𝑡𝑝𝑝�𝐾𝐾−1
𝑝𝑝=1    (2.c)                     

 𝑑𝑑𝑛𝑛 = 1
𝑛𝑛2𝜋𝜋

∑ Δ𝑦𝑦𝑝𝑝
Δ𝐿𝐿𝑝𝑝

�sin 𝑛𝑛𝑡𝑡𝑝𝑝+1 − sin𝑛𝑛𝑡𝑡𝑝𝑝�𝐾𝐾−1
𝑝𝑝=1    (2.d)                 

 𝑒𝑒𝑛𝑛 = 1
𝑛𝑛2𝜋𝜋

∑ Δ𝑧𝑧𝑝𝑝
Δ𝐿𝐿𝑝𝑝

�cos𝑛𝑛𝑡𝑡𝑝𝑝+1 − cos𝑛𝑛𝑡𝑡𝑝𝑝�𝐾𝐾−1
𝑝𝑝=1    (2.e)                  

 𝑓𝑓𝑛𝑛 = 1
𝑛𝑛2𝜋𝜋

∑ Δ𝑧𝑧𝑝𝑝
Δ𝐿𝐿𝑝𝑝

�sin 𝑛𝑛𝑡𝑡𝑝𝑝+1 − sin𝑛𝑛𝑡𝑡𝑝𝑝�𝐾𝐾−1
𝑝𝑝=1     (2.f)                    

 
where 𝑝𝑝 is the point number; 𝐾𝐾 is the total number 
of points on the curve; Δ𝑥𝑥𝑝𝑝 = 𝑥𝑥𝑝𝑝+1 − 𝑥𝑥𝑝𝑝 , Δ𝑦𝑦𝑝𝑝(=
𝑦𝑦𝑝𝑝+1 − 𝑦𝑦𝑝𝑝), and Δ𝑧𝑧𝑝𝑝(= 𝑧𝑧𝑝𝑝+1 − 𝑧𝑧𝑝𝑝) are the distance 
between two consecutive points along the x, y, and z-

axes, respectively; Δ𝐿𝐿𝑝𝑝=�(Δ𝑥𝑥𝑝𝑝)2 + (Δ𝑦𝑦𝑝𝑝)2 + (Δ𝑧𝑧𝑝𝑝)2 is 

the Euclidean distance between two points. In addition, 
the time elapsed is calculated as the current cumulative 
length divided by the total length: 
 

𝑡𝑡𝑝𝑝 = 2𝜋𝜋∑ Δ𝐿𝐿𝑖𝑖
𝑝𝑝
𝑖𝑖=1

∑ Δ𝐿𝐿𝑝𝑝𝐾𝐾
𝑝𝑝=1

             (3)                                
 

Furthermore, the constant terms (𝐴𝐴0 , 𝐶𝐶0 , 𝐸𝐸0 ) 
are actually equivalent to the zero harmonic 
coefficients (𝑎𝑎0, 𝑐𝑐0, 𝑒𝑒0), while (𝐵𝐵0,𝐷𝐷0,𝐹𝐹0) are equal 
to zero. The constant terms are calculated as:  
 

  𝐴𝐴0 = ∑ Δ𝑥𝑥𝑝𝑝
2Δ𝐿𝐿𝑝𝑝

�𝑡𝑡𝑝𝑝2 − 𝑡𝑡𝑝𝑝−12 � + �∑ Δ𝑥𝑥𝑖𝑖
𝑝𝑝−1
𝑖𝑖=1 −𝐾𝐾

𝑝𝑝=1

            Δ𝑥𝑥𝑝𝑝
Δ𝐿𝐿𝑝𝑝

∑ Δ𝑡𝑡𝑗𝑗
𝑝𝑝−1
𝑖𝑖=1 � �𝑡𝑡𝑝𝑝 − 𝑡𝑡𝑝𝑝−1�      (4.a) 

   𝐶𝐶0 = ∑ Δ𝑦𝑦𝑝𝑝
2Δ𝐿𝐿𝑝𝑝

�𝑡𝑡𝑝𝑝2 − 𝑡𝑡𝑝𝑝−12 � + �∑ Δ𝑦𝑦𝑖𝑖
𝑝𝑝−1
𝑖𝑖=1 −𝐾𝐾

𝑝𝑝=1

             Δ𝑦𝑦𝑝𝑝
Δ𝐿𝐿𝑝𝑝

∑ Δ𝑡𝑡𝑗𝑗
𝑝𝑝−1
𝑖𝑖=1 � �𝑡𝑡𝑝𝑝 − 𝑡𝑡𝑝𝑝−1�     (4.b) 

   𝐸𝐸0 = ∑ Δ𝑧𝑧𝑝𝑝
2Δ𝐿𝐿𝑝𝑝

�𝑡𝑡𝑝𝑝2 − 𝑡𝑡𝑝𝑝−12 � + �∑ Δ𝑧𝑧𝑖𝑖
𝑝𝑝−1
𝑖𝑖=1 −𝐾𝐾

𝑝𝑝=1

             Δ𝑧𝑧𝑝𝑝
Δ𝐿𝐿𝑝𝑝

∑ Δ𝑡𝑡𝑗𝑗
𝑝𝑝−1
𝑖𝑖=1 � �𝑡𝑡𝑝𝑝 − 𝑡𝑡𝑝𝑝−1�     (4.c) 

 
Fig. 2(a) illustrates the geometric meaning of the 

spatial EFDs. A curve in 3D is approximated by a 
series of spatial ellipses that superimpose upon one 
another, ranging from large to small. Each ellipse is 
constructed by the corresponding harmonic. Fig. 2(b) 
depicts the first ellipse in which u1 and v1 are the semi-
major and semi-minor axes, respectively. Angle 𝜃𝜃1 is 
the phase angle between the starting point (t=0) and 
the semi-major axis. This phase angle concerns about 
the phase shift if one wishes to shift the starting point 
from one point to another new point. On the other hand, 
the orientation of the first ellipse is now presented in 
three dimension with respect to the fixed frame. 
Therefore, a relationship between the Fourier 
coefficients and the orientation of the first ellipse must 
be established. The relations among the Fourier 
coefficients, phase shift, and orientations of the 
ellipses are essential to the normalization process and 
will be discussed in Section 2.3.  
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(a)                    (b) 

Fig. 2. Geometric meaning of the spatial EFDs (a) 
contour described by a series of ellipses (b) the first 

ellipse and phase shift 𝜃𝜃1. 
 

Approximation for an Open Curve 
The traditional FD and EFD can only be applied 

to closed curves, that is, periodic functions. Wu et al. 
(2011) used the trigonometric polynomial curve fitting 
(TPCF) technique to approximate open curves, where 
the x and y components of a point are represented by a 
finite series of sine and cosine functions. The TPCF 
for acquiring coefficients has been demonstrated to be 
less efficient compared to the original EFD by Chang 
et al. (2024), as it requires least-square curve fitting 
computation and involves two-step optimization 
searching. Moreover, the TPCF is applicable to the 
planar case. In this study, we introduce a novel method 
to establish a shape signature wherein Fourier 
coefficients can then be utilized to represent an open 
curve. As shown in Fig. 3, an open curve with K points 
is converted to a closed curve by first tracing it from 
one end to the other end and then retracing the same 
path back to the starting point. The point P on the 
forward path is made coincident with the point (2K-P) 
on the backward path and the forward path has the 
same period with the backward path. The generated 
closed curve is approximated by EFDs. Although the 
Fourier coefficients obtained is not essentially the 
Fourier coefficients for the open curve of interest, they 
can be used to reconstruct the open curve by using half 
period. As a result, the Fourier coefficients obtained 
for the converted curve can be written as 

�
𝑎𝑎𝑛𝑛 𝑏𝑏𝑛𝑛
𝑐𝑐𝑛𝑛 𝑑𝑑𝑛𝑛
𝑒𝑒𝑛𝑛 𝑓𝑓𝑛𝑛

�
cvt

=

⎣
⎢
⎢
⎢
⎢
⎡
4

𝑛𝑛2𝜋𝜋
∑ Δ𝑥𝑥𝑝𝑝

Δ𝐿𝐿𝑝𝑝
�cos 𝑛𝑛𝑡𝑡𝑝𝑝

2
− cos 𝑛𝑛𝑡𝑡𝑝𝑝−1

2
�𝐾𝐾

𝑝𝑝=1 0
4

𝑛𝑛2𝜋𝜋
∑ Δ𝑦𝑦𝑝𝑝

Δ𝐿𝐿𝑝𝑝
�cos 𝑛𝑛𝑡𝑡𝑝𝑝

2
− cos 𝑛𝑛𝑡𝑡𝑝𝑝−1

2
�𝐾𝐾

𝑝𝑝=1 0
4

𝑛𝑛2𝜋𝜋
∑ Δ𝑧𝑧𝑝𝑝

Δ𝐿𝐿𝑝𝑝
�cos 𝑛𝑛𝑡𝑡𝑝𝑝

2
− cos 𝑛𝑛𝑡𝑡𝑝𝑝−1

2
�𝐾𝐾

𝑝𝑝=1 0⎦
⎥
⎥
⎥
⎥
⎤

        (5) 

 
where the subscript “cvt” denotes the open curves of 
interest re-described by the converted model. The 
constant terms do not change since the shape center is 
the same. For detail derivations, the reader can refer to 
Chang (2024). It can be seen that each an has identical 
values for both forward and backward paths, as do 
coefficients cn and en. Meanwhile, (bn, dn, fn) remain 

consistently zero. It also implies that the ellipse drawn 
by the corresponding harmonic now degenerates into 
a line, as shown in Fig. 3(b). 
 

       
(a)                     (b) 

Fig. 3. Convert an open curve to (a) a closed curve 
model, and (b) a contour described by a series of 

degenerated ellipses (lines). 
 
Normalization Process 

To compare the dissimilarity among various 
curves, it is necessary to convert the curves into a 
normalized form so that variances in the shape 
topology can be removed. These variances include 
position, orientation, scale, and starting point of each 
curve. The normalization process can be performed as 
follows. 
1. Position. The centroid of the curve is moved to the 

origin of the coordinate system. This corresponds 
to eliminating the constant term [𝐴𝐴0 𝐶𝐶0 𝐸𝐸0]T from 
Eq. (1). 

2. Starting point. The starting point on the first ellipse 
is standardized by shifting it from its original place 
to the end of the semi-major axis 𝒖𝒖1. Such phase 
shift from t=0 to (t+ 𝜃𝜃1 ) will require a 
postmultiplication of the Fourier coefficients in 
Eq. (1) by a transformation matrix containing the 
phase shift angle 𝜃𝜃1 as 

 

�
𝑎𝑎𝑛𝑛 𝑏𝑏𝑛𝑛
𝑐𝑐𝑛𝑛 𝑑𝑑𝑛𝑛
𝑒𝑒𝑛𝑛 𝑓𝑓𝑛𝑛

�

∗

= �
𝑎𝑎𝑛𝑛 𝑏𝑏𝑛𝑛
𝑐𝑐𝑛𝑛 𝑑𝑑𝑛𝑛
𝑒𝑒𝑛𝑛 𝑓𝑓𝑛𝑛

� �cos𝑛𝑛𝜃𝜃1 − sin𝑛𝑛𝜃𝜃1
sin𝑛𝑛𝜃𝜃1 cos𝑛𝑛𝑛𝑛1

�  (6)  

                 
where the matrix with superscript “*” denotes the 
updated state. The phase shift 𝜃𝜃1 can be obtained 
from the trigonometry of the first ellipse as 

 
𝜃𝜃1 = 1

2
tan−1 2(𝑎𝑎1𝑏𝑏1+𝑐𝑐1𝑑𝑑1+𝑒𝑒1𝑓𝑓1)

𝑎𝑎1
2+𝑐𝑐1

2+𝑒𝑒1
2−𝑏𝑏1

2−𝑑𝑑1
2−𝑓𝑓1

2        (7) 

 
It can be noted that the starting point on the first 

ellipse can be classified into two types: one at the end 
of the semi-major axis and the other at a rotation of 𝜃𝜃1 
radians from the previous end, (𝜃𝜃1 + 𝜋𝜋). Choosing the 
latter classification may represent the same curve but 
yield a sign change in the coefficients for the even 
harmonics. In this study, we choose the former 
expression and thus modify the coefficients as 

�
𝑎𝑎𝑛𝑛 𝑏𝑏𝑛𝑛
𝑐𝑐𝑛𝑛 𝑑𝑑𝑛𝑛
𝑒𝑒𝑛𝑛 𝑓𝑓𝑛𝑛

�

∗

= 𝜁𝜁𝑛𝑛 �
𝑎𝑎𝑛𝑛 𝑏𝑏𝑛𝑛
𝑐𝑐𝑛𝑛 𝑑𝑑𝑛𝑛
𝑒𝑒𝑛𝑛 𝑓𝑓𝑛𝑛

� �cos𝑛𝑛𝜃𝜃1 − sin𝑛𝑛𝜃𝜃1
sin𝑛𝑛𝜃𝜃1 cos𝑛𝑛𝑛𝑛1

� 

(8.a) 



Y. Chang et al.: Path Synthesis of Spherical Four-Bar Linkages Using Spatial Elliptical Fourier Descriptors. 
 

-623- 
 

where 

𝜁𝜁𝑛𝑛 = �
(−1 )𝑛𝑛 , if (𝑁𝑁 > 1) and (|𝒖𝒖2∗ − 𝒖𝒖1∗| +
|𝒗𝒗2∗ − 𝒗𝒗1∗| > |𝒖𝒖2∗ + 𝒖𝒖1∗| + |𝒗𝒗2∗ + 𝒗𝒗1∗ |)

1, otherwise
 (8.b) 

and where 𝐮𝐮n∗ = [an∗ , cn∗ , en∗ ]T and 𝐯𝐯n∗ =
[bn∗ , dn∗ , en∗ ]T. 

3. Orientation. The orientation of the curve can be 
standardized by aligning the semi-major and semi-
minor axes with the x- and y- axes of the fixed 
coordinate system, respectively. We define a local 
coordinate system on the first ellipse whose x-axis 
is the semi-major axis and y-axis is the semi-minor 
axis. A rotation matrix R𝜓𝜓  that transforms the 
local coordinate to the fixed coordinate can be then 
established as 
 

R𝜓𝜓 = � 𝒖𝒖1
∗

�𝒖𝒖1
∗ �

𝒗𝒗1
∗

�𝒗𝒗1
∗ �

𝒖𝒖1
∗×𝒗𝒗1

∗

�𝒖𝒖1
∗×𝒗𝒗1

∗ ��        (9) 
 
As a result, the orientation normalization can be 
attained by pre-multiplying the transpose of the 
rotation matrix to the coefficient matrix as 
 

�
𝑎𝑎𝑛𝑛 𝑏𝑏𝑛𝑛
𝑐𝑐𝑛𝑛 𝑑𝑑𝑛𝑛
𝑒𝑒𝑛𝑛 𝑓𝑓𝑛𝑛

�

∗∗

= R𝜓𝜓
T �
𝑎𝑎𝑛𝑛 𝑏𝑏𝑛𝑛
𝑐𝑐𝑛𝑛 𝑑𝑑𝑛𝑛
𝑒𝑒𝑛𝑛 𝑓𝑓𝑛𝑛

�     (10) 

 
where the superscript “**” denotes the 
normalized coefficients. This also means to 
represent the coordinate of the fixed frame in 
terms of the coordinate system of the first ellipse. 
On the other hand, for the case of the open curves, 
as the semi-minor axis vanishes, we choose the 
semi-major axis of the second harmonic to replace 
the semi-minor axis in Eq. (9). Therefore, the 
rotation matrix for an open curve can be written 
as 

R𝜓𝜓,open = � 𝒖𝒖𝟏𝟏
∗

�𝒖𝒖𝟏𝟏
∗ �

�𝒖𝒖𝟏𝟏
∗×𝒖𝒖𝟐𝟐

∗�×𝒖𝒖𝟏𝟏
∗

��𝒖𝒖𝟏𝟏
∗×𝒖𝒖𝟐𝟐

∗�×𝒖𝒖𝟏𝟏
∗ �

𝒖𝒖𝟏𝟏
∗×𝒖𝒖𝟐𝟐

∗

�𝒖𝒖𝟏𝟏
∗×𝒖𝒖𝟐𝟐

∗ �
�   (11) 

 
Thus, one can obtain normalized Fourier 
coefficients in orientation for open curves by 
substituting Eq. (11) into Eq. (10).                                         

4. Scale. Finally, the scale invariance can be achieved 
by dividing the coefficients with the semi-major 
axis length of the first ellipse 𝑠𝑠 = |𝒖𝒖𝟏𝟏∗ | =

�𝑎𝑎1∗
2 + 𝑐𝑐1∗

2 , where 𝑎𝑎1∗  and 𝑐𝑐1∗  are the Fourier 
coefficient obtained in Eq. (8.a). 
From the above discussion, the normalized 
coefficients can be summarized as 

 

�
𝑎𝑎𝑛𝑛 𝑏𝑏𝑛𝑛
𝑐𝑐𝑛𝑛 𝑑𝑑𝑛𝑛
𝑒𝑒𝑛𝑛 𝑓𝑓𝑛𝑛

�
Norm

=

1
𝑠𝑠

R𝜓𝜓
T(𝜁𝜁𝑛𝑛 �

𝑎𝑎𝑛𝑛 𝑏𝑏𝑛𝑛
𝑐𝑐𝑛𝑛 𝑑𝑑𝑛𝑛
𝑒𝑒𝑛𝑛 𝑓𝑓𝑛𝑛

� �cos𝑛𝑛𝜃𝜃1 − sin𝑛𝑛𝜃𝜃1
sin 𝑛𝑛𝜃𝜃1 cos𝑛𝑛𝑛𝑛1

�) (12) 

 
Minimum Harmonic Detection 

The accuracy of the contour’s description is 
typically determined by the number of harmonics 
used. Usually, only a few initial harmonics are 
necessary to precisely describe the contour. 
Nonetheless, in specific cases such as portions with 
high curvature, more harmonics might be needed to 
ensure an accurate result. In this work, we employ 
Fourier Power Analysis (FPA) to find the minimum 
harmonic required to achieve a certain error threshold. 
The FPA process is defined as follows: 

 
𝑆𝑆𝑛𝑛 = 𝑎𝑎𝑛𝑛2 + 𝑏𝑏𝑛𝑛2 + 𝑐𝑐𝑛𝑛2 + 𝑑𝑑𝑛𝑛2 + 𝑒𝑒𝑛𝑛2 + 𝑓𝑓𝑛𝑛2   (13.a)  

argmin
𝑁𝑁∈ℤ+

∑ 𝑆𝑆𝑛𝑛𝑁𝑁
𝑛𝑛=1

∑ 𝑆𝑆𝑛𝑛𝑀𝑀
𝑛𝑛=1

≥ Threshold       (13.b) 

 
where 𝑆𝑆𝑛𝑛  is the Fourier power spectrum of the nth 
harmonic, and a “Threshold” 99.99% is used in this 
study. The initial harmonic number 𝑀𝑀  follows the 
Nyquist frequency rule, which is the half of the point 
number 𝐾𝐾  if the curve is sampled from a known 
function. Otherwise, 𝑀𝑀 is set to the point number 𝐾𝐾. 
The final harmonic number 𝑁𝑁 is determined by the 
first accumulated spectrum that satisfies the specified 
threshold. This can be achieved through the 
implementation of a binary search algorithm in the 
spectrum lookup table. 
 

SPHERICAL FOUR-BAR LINKAGE 
 
Linkage Parameters 

Figure 4 shows a general spherical four-bar 
linkage located on a sphere with a sphere center at 
Os(osx, osy, osz) and sphere radius r. Points P1, P2, P3, 
and P4 are the pivots locations while P5 is the coupler 
point on link P3P4. Moreover, position of P1 is defined 
by the spherical coordinate parameters (η, ϕ) where 𝜂𝜂 
is the polar angle, and 𝜑𝜑  is the azimuthal angle. li 
(i=1~5) represents the length of link i and is in radian 
unit. l2 serves as the input link and l4 as the output link. 
γ is an angle parameter for the coupler point on the 
coupler. α is the angle between the reference link 
(frame) P1P2 and z-x plane. Thus, there are a total of 13 
parameters to describe the spherical four-bar linkage 
as (osx, osy, osz, r, l1, l2, l3, l4, l5, η, ϕ, γ, α). Nonetheless, 
Os(osx, osy, osz), P1(η, ϕ), and α are related to the 
position and orientation of the coupler curve. They can 
be made invariant to the shape of the curve by 
normalization. Radius r can also be normalized by 
scaling. Therefore, the design parameters can be 
reduced to links lengths and angle parameter for the 
coupler point on the coupler as (l1, l2, l3, l4, l5, γ). 
Relations between the pivot positions on the sphere 
and the design parameters are given in Appendix. 

As our focus lies in creating spherical linkages 
capable of producing both closed and open curves, it 
becomes essential to determine the motion range of 
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Fig. 4. Linkage parameters of a spherical four-bar 
linkage. The link between P1 and P2 is the reference 
link and considered the ground link in the original 

design, though its orientation may change after 
normalization. 

 
the input link. Chiang (1984) proposed a technique to 
enable the classification of the driver link's range of 
motion for the spherical four-bar linkage, which is 
similar to the approach used in planar four-bar 
linkages. It is worth noting that placing the joint pivot 
on the opposite side of the sphere's surface can result 
in another configuration with the same range of crank 
motion. To prevent this, the link lengths must be 
adjusted so that, at most, one link length falls within 
the range of [π/2, π], while the lengths of the other 
links are less than π/2. Finally, the link lengths in 
radians can be treated as the planar four-bar linkage, 
which can be further classified by the Grashof 
condition and obtain the range of motion for the input 
link. Table 1 shows the relations between the links 
lengths (in radians) and types of the spherical four-bar 
linkages. 
 
Table 1. Range of motion and corresponding 
conditions of input link. 

Type Condition Range of 
Motion 

Remark 

Double-
crank, 
Crank 
Rocker 

Eq. (14.a) [0, 2π] Grashof, 2 
circuits 

Double 
Rocker 1 

Eq. (14.b) Eq. (15.a) Non-
Grashof, 1 
circuit 

Double 
Rocker 2 

Eq. (14.c) Eq. (15.b) Non-
Grashof, 1 
circuit 

Double 
Rocker 3, 
Rocker-
crank 

Eq. (14.d) Eq. (15.c) 
or Eq. 
(15.d) 

Grashof, 1 
or 2 
circuits 

 
(𝑙𝑙1 + 𝑙𝑙2 ≤ 𝑙𝑙3 + 𝑙𝑙4) and (|𝑙𝑙1 − 𝑙𝑙2| > |𝑙𝑙3 − 𝑙𝑙4|)  (14.a) 
(𝑙𝑙1 + 𝑙𝑙2 > 𝑙𝑙3 + 𝑙𝑙4) and (|𝑙𝑙1 − 𝑙𝑙2| > |𝑙𝑙3 − 𝑙𝑙4|)  (14.b) 
(𝑙𝑙1 + 𝑙𝑙2 < 𝑙𝑙3 + 𝑙𝑙4) and (|𝑙𝑙1 − 𝑙𝑙2| < |𝑙𝑙3 − 𝑙𝑙4|)  (14.c) 
(𝑙𝑙1 + 𝑙𝑙2 > 𝑙𝑙3 + 𝑙𝑙4) and (|𝑙𝑙1 − 𝑙𝑙2| < |𝑙𝑙3 − 𝑙𝑙4|)  (14.d) 

 

[− cos−1 𝑙𝑙1
2+𝑙𝑙22−(𝑙𝑙3+𝑙𝑙4)2

2𝑙𝑙1𝑙𝑙2
, cos−1 𝑙𝑙1

2+𝑙𝑙22−(𝑙𝑙3+𝑙𝑙4)2

2𝑙𝑙1𝑙𝑙2
]     (15.a) 

[cos−1 𝑙𝑙1
2+𝑙𝑙22−(𝑙𝑙3−𝑙𝑙4)2

2𝑙𝑙1𝑙𝑙2
, 2𝜋𝜋 − cos−1 𝑙𝑙1

2+𝑙𝑙22−(𝑙𝑙3−𝑙𝑙4)2

2𝑙𝑙1𝑙𝑙2
]    (15.b) 

�cos−1 𝑙𝑙1
2+𝑙𝑙22−(𝑙𝑙3−𝑙𝑙4)2

2𝑙𝑙1𝑙𝑙2
, cos−1 𝑙𝑙1

2+𝑙𝑙22−(𝑙𝑙3+𝑙𝑙4)2

2𝑙𝑙1𝑙𝑙2
�         (15.c) 

[2𝜋𝜋 − cos−1 𝑙𝑙1
2+𝑙𝑙22−(𝑙𝑙3−𝑙𝑙4)2

2𝑙𝑙1𝑙𝑙2
, 2𝜋𝜋 − cos−1 𝑙𝑙1

2+𝑙𝑙22−(𝑙𝑙3+𝑙𝑙4)2

2𝑙𝑙1𝑙𝑙2
](15.d) 

 
Optimization Method 

To find the curve closest to the target curve, an 
optimization program in this work is developed as 
 

Min 𝐸𝐸 = ∑ (|Δ𝑎𝑎𝑛𝑛| + |Δ𝑏𝑏𝑛𝑛| + |Δ𝑐𝑐𝑛𝑛| + |Δ𝑑𝑑𝑛𝑛| +𝑁𝑁
𝑛𝑛=1

|Δ𝑒𝑒𝑛𝑛| + |Δ𝑓𝑓𝑛𝑛|),        (16) 
Subject to  

lmin ≤ li (i=1~5) ≤ lmax 
γmin ≤ γ ≤ γmax 

where the prefix “Δ” represents the difference between 
the normalized coefficient of target curve and that of 
synthesized one. lmin and lmax are the lower and upper 
limits of link lengths, respectively. Further, we employ 
the Differential Evolution (DE) algorithm (Storn and 
Price, 1997) to optimize the linkage parameters 
according to the EFD error. DE is a population-based 
evolutionary algorithm that is suitable for non-
continuous optimization problems. The DE algorithm 
has three leading operators: mutation, crossover, and 
selection. The mutation operator introduces diversity 
into the population, ensuring exploration of the design 
space. It is defined as: 
 

(𝒙𝒙trial)𝑠𝑠 = (𝒙𝒙current best)𝑠𝑠 + 𝐹𝐹[(𝒙𝒙𝑟𝑟1)𝑠𝑠 − (𝒙𝒙𝑟𝑟2)𝑠𝑠]   (17) 
 
where 𝒙𝒙𝑟𝑟1,𝒙𝒙𝑟𝑟2  are the variables of two randomly 
selected individuals without repetition, 𝑠𝑠  is the 
variable index determined by the crossover operator, 
and 𝐹𝐹  is the mutation factor between 0 and 1, 
controlling the magnitude of variation. This operation 
directs the trial solution toward the best-performing 
individual while preserving population diversity. The 
trial offspring is closer to the current best with some 
random variation. The crossover operator uses a 
continuous selection method, where a randomly 
chosen index and segment length determine the 
variables to be replaced in the current individual, 
forming the trial offspring. The selection step 
evaluates the trial offspring using the objective 
function Eq. (16). If the trial offspring has a lower 
error than the current individual, it replaces the latter; 
otherwise, the original individual is retained. This 
process continues until either the error reaches a 
predefined threshold or the maximum number of 
iterations is met. At the start, initial individuals may 
have high error values, meaning poor linkage 
configurations. As iterations progress, mutation and 
crossover refine the solutions, reducing the error and 
guiding the population toward convergence. The final 
optimized linkage minimizes shape discrepancy, 
ensuring that the synthesized coupler curve closely 
follows the target path. Unless specified otherwise, our 
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parameters include 50 iterations, a population size of 
200, a mutation factor (𝐹𝐹) of 0.6, a cross probability of 
90%, and a fixed random seed set of 0 for 
reproducibility. 

The objective function receives the linkage 
parameters (𝑙𝑙1, 𝑙𝑙2, 𝑙𝑙3, 𝑙𝑙4, 𝑙𝑙5, γ) as input and first filters 
out infeasible solutions for the cases that violate  
assembly constraints or the required range of motion. 
For feasible solutions, it generates the coupler curves 
for each circuit and approximate them using 
normalized EFDs. The error between the target and the 
approximated EFDs is then calculated using the L1 
norm as shown in Eq. (16). Figure 5 illustrates the 
workflow of the objective function within the DE 
algorithm. 
 

 
Fig. 5. Workflow of DE algorithm and the objective 
function. 
 
Denormalization 

Once the optimal linkage is found, the 
denormalization process is required to convert the 
normalized data back to the data in target space, 
including the location of the sphere center Os, 
orientation, and the radius r of the sphere. This can be 
formulated as 
 

𝑂𝑂𝑠𝑠,denorm = �
𝐴𝐴0
𝐶𝐶0
𝐸𝐸0
�
tar

− �
𝐴𝐴0
𝐶𝐶0
𝐸𝐸0
�
syn

       (18.a) 

Rsphere,denorm = �R𝜓𝜓�syn�R𝜓𝜓
T �

tar
  (18.b) 

𝑟𝑟denorm = 𝑠𝑠tar
𝑠𝑠syn

                      (18.c) 

 
where the subscript “tar” denotes values in the target 
space and “syn” denotes values obtained in the 
normalization process. Next, the position of P1(p1x, p1y, 
p1z) can be calculated from  
 

𝑶𝑶𝒔𝒔𝑷𝑷𝟏𝟏 = Rsphere,denorm𝑟𝑟denorm𝒌𝒌�,         (19) 
 
Once the position of P1 is known, the rest positions of 
the pivots of the spherical four-bar linkage can be 
calculated through the equations (A.1) to (A.13) in 
Appendix where Rsphere , and 𝑟𝑟  are replaced by 
Rsphere,denorm and 𝑟𝑟denorm, respectively. 
 

EXAMPLES 
 
Example Cases and Implementations 

In this section, we present five examples to show 
the effectiveness of the synthesis method. Throughout 
this study, the link lengths li (i=1~5) are confined 
within the range [0.0001, π] while γ is defined within 
the interval [0, π]. The calculations are implemented 
on a PC with Intel i5-9400F CPU, and the software is 
developed using the Rust programming language. The 
examples have three case types: closed curve matching 
and open curve matching, both employing a full range 
of motion to traverse the target curve; and the third 
type, which mimics a flapping-wing curve. In the 
linkage plot, the sphere is rendered in gray, the links 
in front of the sphere are rendered in black, and the 
links behind the sphere (hidden from the viewer) are 
rendered as dashed lines of darker gray. 
 
Example 1 This example considers the coupler curve 
spanning more than a hemisphere as shown in Fig. 1(a) 
as a target. The synthesized result successfully 
generates the desired coupler path as shown in Fig. 6. 
The design parameters for the target and the optimized 
linkages are listed in Table 2. The optimized linkage 
exhibits a crank-rock behavior. Additionally, due to the 
path extending beyond a hemisphere, this case 
demonstrates the advantage of the spatial EFD 
approach over projection-based methods, which 
would introduce distortions in Fourier coefficient 
computation. 

 
Fig. 6. Example 1 coupler curve spanning over a 

hemisphere 
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Table 2 Linkage parameters of Example 1 
 osx osy osz r η φ 

Target 0 0 0 1 3.1191 0.8965 

Opti- 
mized 

-0.00 0.00 -0.00 0.999 2.783 1.024 

 α l1 l2 l3 l4 l5 

Target 0 0.488 2.353 1.083 2.053 2.462 

Opti- 
mized 

0.62 0.300 1.408 1.618 0.52 0.394 

 γ Circui
t 

Error 
E 

Harm
onic 

Time  

Target 2.885 II N/A N/A N/A  

Opti- 
mized 

1.946 I 0.0073 3 519 ms  

 
Example 2 This example consider a closed curve 
defined by 64 points adopted from Chu and Sun (2010). 
The reference study utilized an atlas-based search 
approach without an optimization process. In our work, 
a dataset of 102,400 samples was established as an 
atlas with uniform probability distribution, occupying 
a storage size of 96.8 MB. The DE algorithm, as 
outlined in Section 3.2, was then applied for an 
optimal linkage. Fig. 7 compares the results obtained 
from the atlas and the optimization, while Table 3 lists 
the linkage parameters. Additionally, Table 4 shows 
the normalized coefficients for the target curve, 
consisting of five harmonics and a total of 30 
coefficients. The comparison highlights the 
advantages of combining atlas-based methods with 
evolutionary optimization. While the atlas method 
provides an initial approximation, DE fine-tunes the 
linkage configuration, reducing synthesis error and 
improving the fidelity of the generated curve. 
 

 
Fig. 7. Example 2 (a) Curve comparison (b) 

Schematic of synthesized linkage. 
 

Table 3. Linkage parameters of Example 2. 
 osx osy osz r η φ 
EFD Atlas 0.01 0.00 0.00 0.98 0.93 -0.99 

Optimized 0.06 -0.02 0.01 0.93 1.65 -0.16 

 α l1 l2 l3 l4 l5 
EFD Atlas -1.94 1.17 2.69 2.02 1.23 1.97 
Optimized -1.72 1.62 0.49 0.96 1.30 1.46 

 γ Circuit Error E Harmonic Time  

EFD Atlas 2.61 II 0.0647 5 N/A  

Optimized 0.43 II 0.0522 5 292.45 
ms 

 

 
Table 4. Normalized EFD coefficients of the target 

curve of Example 2. 
Harmonic 

No. 𝒂𝒂 𝒃𝒃 𝒄𝒄 𝒅𝒅 𝒆𝒆 𝒇𝒇 

1 1 0 0 0.6439 0 0 

2 0.0001 -0.0007 -0.0020 -0.0001 -0.0901 0.0003 

3 0.0558 0.0022 0.0062 0.0519 -0.0001 0.0006 

4 -0.0002 -0.0004 0.0008 0.0008 -0.0099 -0.0022 

5 0.0092 0.0023 -0.0010 0.0092 0.0002 0 

 
Example 3 This example considers the analemma, the 
apparent path of the sun in the sky relative to an Earth 
observer, forming an asymmetrical figure-eight on a 
unit spherical surface. This trajectory, relevant to solar 
tracking mechanisms, is computed using equations 
(6)–(8) from Zhang et al. (2021) and the sunpos 
subroutine: 
 

𝑃𝑃𝑇𝑇 = sunpos(𝑇𝑇GMT , longitude, latitude) 
 
where 𝑇𝑇GMT  represents the date and time in GMT 
form and expressed as a float number. In this analysis, 
100 points were extracted from December 4, 2023 at 
8:00 am to December 4, 2024 at 8:00 am., with 
(longitude, latitude) specified by (60.960515°, 
23.69781°). All other constants in the subroutine 
remain consistent. The resulting curve is illustrated in 
Fig. 8, and the corresponding synthesized linkage 
parameters are presented in Table 5. The optimized 
spherical four-bar linkage successfully generates the 
figure-eight trajectory, demonstrating the applicability 
of the proposed method to celestial tracking problems. 
The synthesized path closely follows the target curve, 
with minimal deviation. This example further 
underscores the capability of the spatial EFD approach 
in accurately modeling real-world, non-uniform 
spherical trajectories. 

 
     Fig. 8. Linkage synthesis of Example 3. 

 
Table 5. Linkage parameters of Example 3. 

 osx osy osz r η φ 
Optimized 0.00 0.00 0.01 0.98 1.02 1.41 

 α l1 l2 l3 l4 l5 
Optimized -2.21 1.53 0.41 1.48 0.62 1.06 

 γ Circuit Error E Harmonic Time  
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Optimized 1.36 I 0.0563 10 362.81 
ms 

 

 
Example 4 This example considers an open curve 
similar to Example 2 in Sun et al. (2018) but with a 
different parametric formulation. Unlike Sun et al. 
(2018), which employed a Wavelet Transform (WT) 
approach, our method utilizes spatial EFDs to 
synthesize the mechanism. The curve is defined by the 
parametric formula: 
 

⎩
⎪
⎨

⎪
⎧
𝑥𝑥(𝜃𝜃) = sin 65° sin(−0.4685°𝜃𝜃 + 173.1994°)
𝑦𝑦(𝜃𝜃) = − cos 𝜃𝜃 cos(−0.4685°𝜃𝜃 + 173.1994°)

    + cos 65° sin𝜃𝜃 sin(−0.4685°𝜃𝜃 + 173.1994°)
𝑧𝑧(𝜃𝜃) = − sin𝜃𝜃 cos(−0.4685°𝜃𝜃 + 173.1994°)

   − cos 65° cos 𝜃𝜃 sin(−0.4685°𝜃𝜃 + 173.1994°)

 

 
where the angle argument 𝜃𝜃 ranges from 40° to 320°, 
and 40 points are collected as input. The synthesized 
result successfully reconstructs the target trajectory, as 
shown in Fig. 9, with the optimized linkage parameters 
presented in Table 6. The mechanism operates as a 
double-rock, ensuring smooth movement within the 
specified input range. The optimization results 
indicate that increasing the number of harmonics and 
iterations enhances accuracy, with only a limited 
increase in computation time (up to 1.22 seconds). 

 
Fig. 9. Synthesized linkage of Example 4 
 
Table 6. Linkage parameters of Example 4. 
 osx osy osz r η φ 
Optim-
ized 

0.00 0.00 -0.06 1.03 2.13 -3.13 

 α l1 l2 l3 l4 l5 
Optim-
ized 

-
0.44 

0.68 1.00 0.99 0.65 2.55 

 γ Circuit-
Branch 

Error 
E 

Harmonic Time  

Optim-
ized 

3.14 II-I 0.0633 19 1.458 
s 

 

 
Example 5 This example is inspired by McDonald and 
Agrawal (2010) where a spherical four-bar linkage 
was explored for flapping-wing motion. The reference 
initially used a 3-DOF serial chain with angle 
parameters 𝜙𝜙, 𝜓𝜓, and 𝜃𝜃, defined through a Denavit-
Hartenberg transformation matrix. In our work, we use 
the following parametric equations to generate our 

target motion: 
𝜙𝜙 = 0.6 sin(𝜔𝜔𝜔𝜔) + 0.5 
𝜓𝜓 = 0.8 cos(𝜔𝜔𝜔𝜔) − 0.3 

  𝜃𝜃 = 0.25 cos(𝜔𝜔𝜔𝜔) + 0.25 
where the input angle 𝜔𝜔𝜔𝜔 varies within [0, 2π]. The 
target curve is generated by a point on the end effector 
as [-0.06, 0.01, 0, 1]T, and its position in the reference 
frame is given by: 

𝑃𝑃 = TDH �

−0.06
0.01

0
1

�, 

 
where the D-H transformation matrix is 
 
TDH =

�

sin𝜙𝜙 sin𝜃𝜃 + cos 𝜎𝜎 cos𝜙𝜙 cos𝜃𝜃 sin𝜎𝜎 cos𝜙𝜙 cos𝜎𝜎 cos𝜙𝜙 sin𝜃𝜃 − cos 𝜃𝜃 sin𝜙𝜙 0.015 sin𝜙𝜙
cos 𝜎𝜎 cos 𝜃𝜃 sin𝜙𝜙 − cos𝜙𝜙 sin𝜃𝜃 sin𝜎𝜎 sin𝜙𝜙 cos𝜙𝜙 cos 𝜃𝜃 + cos 𝜎𝜎 sin𝜙𝜙 sin𝜃𝜃 −0.015 cos𝜙𝜙

sin𝜎𝜎 cos 𝜃𝜃 − cos 𝜎𝜎 sin𝜎𝜎 sin𝜃𝜃 0
0 0 0 1

�  

 
and 𝜎𝜎 = (𝜓𝜓 − 𝜋𝜋/2) . Since the target shape is not a 
spherical curve, the optimized curve serves as an 
approximate curve that closely mimics the intended 
shape. Figure 11 illustrates the comparison between 
the target and synthesized curves, while Fig. 12 depicts 
the synthesized spherical four-bar linkage. The final 
linkage parameters are listed in Table 9. The optimized 
linkage effectively replicates the flapping trajectory, 
ensuring smooth continuous motion across the defined 
input range. The synthesis demonstrates the capability 
of spatial EFDs in approximating non-spherical 
trajectories, providing an efficient alternative to serial-
chain mechanisms for flapping-wing applications. 
 

 
(a) 

 
(b) 

 
(c) 

Fig. 10. Curve comparison of Example 6 in (a) x-y 
plane, (b) x-z plane, and (c) perspective view. 
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Fig. 11. Schematic of synthesized linkage of  

Example 5. 
 

Table 7. Linkage parameters of Example 6. 
 osx osy osz r η φ 

Optimized 0.00 0.00 0.00 0.05 1.64 -2.14 
 α l1 l2 l3 l4 l5 

Optimized -2.02 1.49 0.59 0.86 1.48 0.16 
 γ Circuit Error E Harmonic Time  

Optimized 2.68 I 0.0877 6 421.49 ms  
 
Discussions 
1. Handling of Curves Spanning More than a 

Hemisphere 
Figure 1 illustrates a case where the curve extends 
beyond a hemisphere, posing challenges for traditional 
Fourier Descriptors (FDs), which often 
rely on projection-based methods that introduce 
distortions. In contrast, Elliptical Fourier Descriptors 
(EFDs) independently analyze each component in 3D 
space, preserving geometric integrity and achieving 
superior approximation accuracy. 
2. Choice of EFDs over Other Shape Representation 
Methods 
    EFDs offer a practical and efficient alternative to 
complex shape representation techniques like wavelet 
transforms (WT) (Sun et al., 2015, 2018). While WT 
handles both closed and open curves well, it requires 
careful function selection and multi-level 
decomposition, increasing computational cost. EFDs, 
in contrast, efficiently decompose curves into 
harmonic components, making them easier to apply in 
spherical mechanism design. 
3. Open Curve Approximation: Accuracy vs. 
Computation 
    Example 4 highlights the trade-off between 
accuracy and computational cost. Slight mismatches 
occur at the open curve’s lower end, with higher 
harmonics increasing search time. Fourier Power 
analysis helps balance this by selecting the minimum 
necessary harmonics to maintain accuracy while 
keeping computation time low. 
 
 

Table 8 Comparison of the Proposed Method with 
Existing Approaches 
Aspect Previous Work Current 

Work 
(Spatial 
EFD + DE) 

Contribution 

Path 
Representati
on 

Planar FDs for 
2D(McGarva, 
1994) linkages or 
projection-based 
FDs, WT (Sun, 
2018) for 
spherical linkages  

Spatial 
EFDs  

Systematic 
extension of 
EFDs to 
spherical four-
bar linkage 
synthesis 

Optimization 
Method 

Atlas-based 
search(Chu& 
Sun, 2010), 
Simulated 
annealing for 2D 

Differential 
Evolution 
(DE) 

- 

Handling of 
Open Curves 

Requires ad hoc 
modifications 

Direct shape 
signature 
approach 
using EFDs 

New unified 
approach for 
both open and 
closed curves 

Computation 
Efficiency 

Not available Less than 
1.22 sec. in 
open path 
example 

- 

 
4. Effectiveness and Limitations of DE Optimization 
    DE is highly effective for optimizing spherical 
linkage design with 6 to 8 parameters, offering a robust 
search strategy for multimodal solution spaces. While 
it does not guarantee a global optimum, mutation, 
crossover, and selection help prevent local minima. 
For higher precision, future work could explore 
multiple DE runs with varying initial populations or 
hybridizing with other optimization techniques. 
5. Table 8 highlights the key differences between 
previous approaches and the current study. 
 

CONCLUSIONS 
 

In this study, we developed a unified methodology 
for the path synthesis of spherical four-bar linkages, 
enabling the synthesis of both closed and open curves 
using a single framework. Unlike previous approaches 
that required separate treatments or modifications for 
different curve types, our method systematically 
extends Elliptical Fourier Descriptors (EFDs) to 3D 
space, eliminating the need for planar projections and 
preserving geometric integrity.  
We demonstrated the effectiveness of the proposed 
method through a range of examples, including an 
ordinary closed curve, a figure-8 shape curve, an open 
curve, and real-world applications as solar tracking 
(analemma) and flapping-wing motion. The unified 
algorithm also exhibits computationally efficient, 
solving most examples in less than 500 ms, and 
handling complex scenarios as Example 4 in just 1.22 
seconds. We anticipate its broader applicability in 
advanced spatial mechanism design. 
 

NOMENCLATURE 
𝐴𝐴0,𝐶𝐶0,𝐸𝐸0  EFD constant terms 
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𝑎𝑎𝑛𝑛 , 𝑏𝑏𝑛𝑛, 𝑐𝑐𝑛𝑛 ,𝑑𝑑𝑛𝑛 , 𝑒𝑒𝑛𝑛, 𝑓𝑓𝑛𝑛  
EFD coefficients of the nth harmonic 

𝐸𝐸    EFD error 
𝐹𝐹    Mutation factor in differential evolution 

algorithm 
𝐾𝐾    Total number of given points on a curve 
𝑙𝑙1, 𝑙𝑙2, 𝑙𝑙3, 𝑙𝑙4, 𝑙𝑙5  

Link length variables in radians 
𝑙𝑙min, 𝑙𝑙max.  

Lower and upper limits of links in the 
optimization 

𝑀𝑀    Initial harmonic number in FPA 
𝑛𝑛     Harmonic number 
𝑁𝑁    Total harmonic number 
𝑃𝑃1,𝑃𝑃2,𝑃𝑃3,𝑃𝑃4,𝑃𝑃5 

Points on the spherical linkage 
r     Radius of sphere 
s     Scale factor 
𝑆𝑆𝑛𝑛    The nth Fourier power spectrum 
𝑡𝑡     Time parameter 
𝒖𝒖1,𝒗𝒗1 First semi-major and semi-minor axes 
𝒙𝒙     Design variable vector in the optimization  

𝑥𝑥(𝑡𝑡),𝑦𝑦(𝑡𝑡), 𝑧𝑧(𝑡𝑡)  Curve components with  
time parameter t 

𝛼𝛼     Rotation angle of the ground link 
𝛾𝛾     Angle of coupler point 𝑃𝑃5 on the coupler link 
𝛥𝛥𝑥𝑥𝑝𝑝,𝛥𝛥𝑦𝑦𝑝𝑝,𝛥𝛥𝑧𝑧𝑝𝑝,𝛥𝛥𝐿𝐿𝑝𝑝 

Distance between 𝑃𝑃 and 𝑃𝑃 + 1 point along 
each component x, y, z, and the magnitude 

𝜁𝜁𝑛𝑛    Correction factor of the nth harmonic in the  
normalization 

𝜂𝜂,𝜑𝜑 Polar and azimuthal angles of point 𝑃𝑃1 to the 
sphere 

𝜃𝜃1,𝜃𝜃𝑛𝑛 Phase angle of the first and the nth harmonic in 
the normalization 

𝜓𝜓, R𝜓𝜓 Rotation angle of the shape and its rotation 
matrix in the normalization 
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Appendix  Coupler Point Calculation of 
Spherical Four-bar Linkages 

Shown in Fig. A1 is the spherical four-bar 
linkage whose sphere center is now located in the 
origin of the reference frame. The relationship 
between the input angle 𝛽𝛽 and the output angle 𝛿𝛿 of 
the follower link is (Chiang, 1986) 

 
 

Fig. A1. Linkage parameters of a spherical four-bar 
linkage. Link P1P2 is the reference link (frame). 

 

𝛿𝛿 = 2 tan−1
−ℎ3±�ℎ3

2−ℎ1
2+ℎ2

2

ℎ1−ℎ2
           (A.1) 

where 
ℎ1 = cos 𝑙𝑙2 cos 𝑙𝑙4 cos 𝑙𝑙1 − cos 𝑙𝑙3 +
        z sin 𝑙𝑙2 cos 𝑙𝑙4 sin 𝑙𝑙1 cos𝛽𝛽          (A.2) 
h2 = − cos l2 sin l4 sin l1 

          + sin l2 sin l4 cos l1 cos β       (A.3) 
ℎ3 = sin 𝑙𝑙2 sin 𝑙𝑙4 sin𝛽𝛽                    (A.4)                                             

 
(a)                   (b) 

Fig. A2. Two configurations, (a) circuit I and (b) 
circuit II, of a spherical four-bar linkage. 
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There are two solutions for Eq. (A.1), each 
equivalent to one circuit of the spherical linkages as 
shown in Fig. A2. We employ the screw-axis 
representation (Tsai, 1999) to compute the vector 
rotation in the spherical coordinate. Given a unit screw 
axis, e=[ex, ey, ez]T, and angle of rotation φ, a rotation 
matrix R⟨𝒆𝒆,𝜙𝜙⟩  that rotates a vector about the screw 
axis in space can be written as 
 
R〈𝒆𝒆,𝜙𝜙〉 =

�
𝒆𝒆𝑥𝑥2𝜇𝜇𝜙𝜙 + cos𝜙𝜙 𝒆𝒆𝑥𝑥𝒆𝒆𝑦𝑦𝜇𝜇𝜙𝜙 − 𝒆𝒆𝑧𝑧 sin𝜙𝜙 𝒆𝒆𝑥𝑥𝒆𝒆𝑧𝑧𝜇𝜇𝜙𝜙 + 𝒆𝒆𝑦𝑦 sin𝜙𝜙

𝒆𝒆𝑥𝑥𝒆𝒆𝑦𝑦𝜇𝜇𝜙𝜙 + 𝒆𝒆𝑧𝑧 sin𝜙𝜙 𝒆𝒆𝑦𝑦2𝜇𝜇𝜙𝜙 + cos𝜙𝜙 𝒆𝒆𝑦𝑦𝒆𝒆𝑧𝑧𝜇𝜇𝜙𝜙 − 𝒆𝒆𝑥𝑥 sin𝜙𝜙
𝒆𝒆𝑥𝑥𝒆𝒆𝑧𝑧𝜇𝜇𝜙𝜙 − 𝒆𝒆𝑦𝑦 sin𝜙𝜙 𝒆𝒆𝑦𝑦𝒆𝒆𝑧𝑧𝜇𝜇𝜙𝜙 + 𝒆𝒆𝑥𝑥 sin𝜙𝜙 𝒆𝒆𝑧𝑧2𝜇𝜇𝜙𝜙 + cos𝜙𝜙

�                                                        

(A.5) 
where 𝜇𝜇𝜙𝜙 = (1 − cos𝜙𝜙). Therefore, when rotating a 
vector 𝒂𝒂 to another vector 𝒃𝒃 about the axis (a×b), 
the rotation matrix, abbreviated as R𝒃𝒃 𝒂𝒂 , can be 
written as 
 

R𝒃𝒃 𝒂𝒂 = R〈 𝒂𝒂×𝒃𝒃
|𝒂𝒂×𝒃𝒃|, cos

−1 𝒂𝒂⋅𝒃𝒃
|𝒂𝒂×𝒃𝒃|〉

.         (A.6) 

 
Pivot point 𝑃𝑃1 , defined by the spherical coordinates 
(𝜂𝜂,𝜑𝜑)  with sphere radius 𝑟𝑟 , is transformed to the 
Cartesian coordinate as 
 

𝑶𝑶𝑷𝑷𝟏𝟏 = �
𝑟𝑟 sin 𝜂𝜂 cos𝜑𝜑
𝑟𝑟 sin 𝜂𝜂 sin𝜑𝜑
𝑟𝑟 cos 𝜂𝜂

�          (A.7) 

 
Positions of pivot points are computed as: 

𝑶𝑶𝑷𝑷𝟐𝟐 = RsphereR〈𝒋𝒋̂,𝑙𝑙1〉 ⋅ 𝑟𝑟𝒌𝒌�           (A.8) 
𝑶𝑶𝑷𝑷𝟑𝟑 = RsphereR〈𝒌𝒌�,𝛽𝛽〉R〈𝒋𝒋̂,𝑙𝑙2〉 ⋅ 𝑟𝑟𝒌𝒌�       (A.9) 
𝑶𝑶𝑷𝑷𝟒𝟒 = R〈 𝑶𝑶𝑷𝑷𝟐𝟐

�𝑶𝑶𝑷𝑷𝟐𝟐�
,𝛿𝛿〉

R〈𝒋𝒋̂,𝑙𝑙4〉𝑶𝑶𝑷𝑷𝟐𝟐 ,         (A.10) 

𝑶𝑶𝑷𝑷𝟓𝟓 = RcouplerR〈𝒌𝒌�,𝛾𝛾〉R〈𝒋𝒋̂,𝑙𝑙5〉 ⋅ 𝑟𝑟𝒌𝒌�      (A.11) 
where 𝒋𝒋 ̂ and 𝒌𝒌� are respectively the unit vectors of y 
and z axes of the coordinate, and 
 
Rcoupler 

= � 𝑶𝑶𝑷𝑷𝟑𝟑|𝑶𝑶𝑷𝑷𝟑𝟑|
(𝑶𝑶𝑷𝑷𝟑𝟑×𝑶𝑶𝑷𝑷𝟒𝟒)×𝑶𝑶𝑷𝑷𝟑𝟑

|(𝑶𝑶𝑷𝑷𝟑𝟑×𝑶𝑶𝑷𝑷𝟒𝟒)×𝑶𝑶𝑷𝑷𝟑𝟑|
𝑶𝑶𝑷𝑷𝟑𝟑×𝑶𝑶𝑷𝑷𝟒𝟒

|𝑶𝑶𝑷𝑷𝟑𝟑×𝑶𝑶𝑷𝑷𝟒𝟒|�      (A.12) 
 

Rsphere = R〈 𝑶𝑶𝑷𝑷𝟏𝟏
�𝑶𝑶𝑷𝑷𝟏𝟏�

,𝛼𝛼〉
R𝑶𝑶𝑷𝑷𝟏𝟏
𝒌𝒌�         (A.13) 
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