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ABSTRACT

Numerous researchers have employed various
shape descriptors in the dimensional synthesis of
mechanisms. This study introduces a methodology for
the path synthesis of spherical four-bar linkages
utilizing Elliptical Fourier Descriptors (EFDs). EFDs,
a Fourier-based shape representation method, allow
the independent acquisition of Fourier coefficients
through the Fourier expansion of individual
components of the 3D coupler curve, rather than
relying on a function as in traditional Fourier analysis.
This approach eliminates the need to project the curve
onto any plane for Fourier analysis, while preserving
invariance characteristics under similarity
transformations.  Additionally, a method for
establishing the shape signature for the open curve is
developed. By integrating this process with traditional
EFD and optimization algorithm, the proposed method
becomes essentially applicable for synthesizing spatial
four-bar linkages for both open and closed curves in a
single-step design process. Finally, the effectiveness of
the proposed method is demonstrated through several
examples of spherical four-bar linkages.

INTRODUCTION

Spherical four-bar linkages exhibit diverse
applications, serving not only as mechanical
components like the Hooke joint but also functioning
as integral subsystems within various machinery, such
as automobiles, robots (Chablat and Angeles, 2003,
Wang et al., 2022), and medical instruments (Lum et
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al., 2006, Arata et al., 2018). Therefore, a significant
focus in design lies in the dimensional synthesis of
spherical four-bar mechanisms, which primarily
determines the dimensions of linkages that can be
designed to produce specific types of motion. Over the
past decades, various methods have been developed
for the dimensional synthesis of spherical four-bar
linkages. These approaches encompass geometric
methods (Bagci, 1984), numerical techniques covering
both limited and unlimited positions (Lin, 1998,
Suixian et al., 2009, Lee et al., 2009), shape
representation methods (McGarva and Mullineux,
1993, McGarva, 1994, Ullah and Kota, 1997, Wu et al.,
2011, Sun and Chu, 2010, Chu and Sun, 2010,
Mullineux, 2011, Galdn-Marin et al. 2009, Sun et al.,
2015, Sun et al., 2018), and/or combinations thereof.
A workflow of applying shape representation method
upon path generation usually contains numerical atlas
of the shape descriptors and/or the optimization
algorithm that searches best shape descriptors of the
target. Among the various shape representation
methods, Fourier descriptor (FD) is notable as one of
the most widely utilized techniques, involving the
decomposition of a contour into frequency
components through Fourier series analysis. While the
use of FD is effective for planar curves, applying it to
spatial curves poses a significant challenge, often
requiring the adoption of ad hoc approaches. Sun and
Chu (2010) introduced a three-dimensional (3D)
Fourier series to characterize the coupler curves of
spatial linkages. They projected the 3D data onto a
two-dimensional y-z plane and a one-dimensional x-
axis for Fourier analysis, while also establishing
complex geometric conditions in the process. Further,
they applied this approach to the path synthesis of the
spherical mechanism (Chu and Sun, 2010). However,
the method did not eliminate the influence of the
rotations about the y- and x-axes. Mullineux (2011)
proposed an alternative approach to Fourier analysis
for the curve on a sphere using gnomonic projection.
This method involves choosing a point on the surface
of the sphere and projecting the sphere onto the plane
tangent to this point. Since the gnomonic projection
originates from the center of the sphere, it can
represent less than half of the sphere’s surface area.
Further, the distortion of the mapping increases from
the center (tangent point) to the periphery. Figure 1
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illustrates a scenario in which the curve generated by a
spherical four-bar linkage spans more than a
hemisphere. Such a curve cannot be represented by the
gnomonic projection, as it extends beyond a
hemisphere. Additionally, it can be observed in Fig.
1(b) that when the curve is distant from the z-axis
(central axis), the projected profile more closely
resembles a circular curve rather than a general closed
curve. These are the shortcomings of using the
projection method.

Nonetheless, among various works that have
utilized Fourier shape analysis, one noteworthy
approach is the use of elliptical Fourier descriptors
(EFDs) as proposed by Kuhl and Giardina (1982). EFD
is also based on Fourier analysis. It independently
decomposes the cumulative chordal length of the x and
y components of the outline into harmonically related
trigonometric series, comprising sine and cosine
functions. For any given harmonic, it geometrically
depicts an ellipse. Thus, the position of any point on
the outline can be approximated by the net
displacement of a point traversing a series of
superimposed and successively smaller ellipses. EFDs
have been applied in various fields such as patter
recognition (Lin and Hwang, 1987), biology (Lestrel,
1997, Godefroy et al., 2012, Crampton, 1995),
anthropology (Caple et al., 2017), and dentistry (Nifio-
Sandoval et al., 2018). In summarizing the works
presented in Chapter 2 of Godefroy et al. (2012) and
Crampton (1995), EFD method has shown notable
features compared to the traditional Fourier descriptors
in the following aspects:

1. Parameterization sensitivity: Traditional Fourier
descriptors are more sensitive to the choice of starting
point and parameterization method than EFDs. The
requirement of equal intervals along the outline is
relaxed by using EFD, which allows for closer spacing
on high-curvature portions of the curve.

2. Handling of complex shapes: EFDs perform better
with certain complex shapes, while traditional Fourier
descriptors may encounter difficulties. This was
demonstrated by the work shown in Fig. 5 of Lestrel
and Rochel (1986) where EFDs effectively handled
complex shapes with multi-valued radii and curves
that bend back, as well as the work shown in Fig. 1 of
Chang et al. (2024) where the curve has a cusp.

3. Normalization complexity and geometric intuition:
Rotation, translation, and scale invariance can be
achieved more systematically with EFDs than with
traditional Fourier descriptors, particularly for a 3D
curve (discussed in a later section). In addition, the
coefficients of EFD are normalized and associated
with intuitive geometric interpretations through
ellipses, making it easier to visualize and understand
the shape's features.

4. Easy extension to three dimension: The extension of
EFD to 3D outlines requires only a straightforward
approach by incorporating an additional equation for
the third dimension.

J. CSME Vol.46, No.6 (2025)

In light of the advantages mentioned and the
notable absence of their application in the path
synthesis of spatial mechanisms, this paper presents a
systematic approach to shape description for three-
dimensional curves using EFDs. Furthermore, we
expand its applicability from closed to open curves.
Leveraging the superior capabilities of EFDs in
approximating complex curves with high curvature,
we propose a novel process for the representation of
non-periodic trajectories utilizing the EFD-based
technique. This approach involves tracing the open
curve, curving back at the end, and then retracing the
path to the initial point, thereby creating a closed curve
configuration. The converted curve is then used as the
shape signature of the original open curve. While
enhancing the accuracy of depicting the converted
curve by potentially increasing the number of
harmonics in this approach, the computational
efficiency and effectiveness can be maintained due to
the algebraic computing scheme employed for the EFD
coefficients. Additionally, the similarity
transformation remains applicable. Subsequently, an
optimization algorithm using the Differential
Evolution (DE) algorithm is introduced to optimize the
linkage parameters by comparing the Fourier
coefficients. As a result, this process establishes a
comprehensive method for path synthesis of spherical
four-bar linkages for both closed and open curves, via
EFD within a unified scheme.

The organization of the paper is as follows. The
second section provides the mathematical background
of EFD and its specific treatment of open curves. The
third section elaborates on the process of normalizing
the 3D curves under consideration. The fourth section
discusses the linkage parameters of a spherical four-
bar linkage essential for design purposes, along with
the algorithms employed to obtain the optimal linkage
configuration. The fifth section presents numerical
examples to illustrate the effectiveness of the proposed
methodology. The final section concludes the article.

SPATIAL ELLIPTICAL FOURIER
DESCRIPTORS

Approximation for a Closed Curve

In conventional Fourier analysis, a closed curve
is typically represented using a parametric function,
and the function is then expanded into a Fourier series
for further analysis. The EFA performs the analysis in
a comparable manner with the key difference being
that it deals with the components of a closed curve
individually. Each of these components, comprising of
the sine and cosine functions, depicts an ellipse within
the domain where the curve exists. As EFA treats the
individual components of a curve rather than the entire
function, it can be readily extended to the three-
dimensional scenario. Consider a point P on a given
three-dimensional curve, and denote its coordinates as
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Fig. 1. (a) Coupler curve generated by a spherical
four-bar linkage. pi1, p2, p3 and p4 are the positions of
revolute joints while ps is the coupler point that traces
a coupler curve drawn by red line. (b) Curve
projected onto y-x plane (c) Curve projected onto z-x
plane (d) Curve projected onto y-z plane

[x(%), ¥(?), z(f)] where t is the parameter defining the
curve over a 2x period. Taking the Fourier expansion
of each component and writing it in matrix form, one
can obtain:

x(©) A @ Dn cosnt
0l =[] eztafe I o
0 n n

where n is the harmonic number, N is the maximum
harmonic number, (a,, b,, ¢, d,, €., fn) are the
coefficients of the n™ harmonic, and (4,, C,, E,) are
the term that defines the shape centroid. The
coefficients of the n'" harmonic can be calculated from
integrals of the product of the component and
cosine/sine over the time period as in the continuous
Fourier series. Nonetheless, Kuhl and Giardina (1982)
took an algebraic approach to these coefficients by
discretizing the curve into small segments, resulting in
an efficient computation of the coefficients. A detailed
derivation for planar case can be found in Kuhl and
Giardina (1982). The coefficients of the »" harmonic
for three-dimensional case can be derived in a manner
similar to that of the 2D case as:

= —Zp 1 v Ze (cosnty,, —cosnt,) (2.a)

b, = nTZ":lAﬂ (sinnt,,, —sinnt,)  (2.b)

1

e S Ay” (cosntyy, —cosnt,)  (2.c)

d, = Zp 1 AL” (sinntyy, —sinnt,)  (2.d)
e, = Ezpzl ﬁ (cosnty,, —cosnt,) (2.
fn = #Zggf% (sinntyyq, — sinnt,) 2.9
where p is the point number; K is the total number
of points on the curve; Ax, =Xpi1 —Xp, AY,(=

Yp+1 — Yp)» and Az, (= z,,.1 — zp,) are the distance
between two consecutive points along the x, y, and z-

axes, respectively; AL,= J (Axp)? + (Ayy)? + (Az,)? is

the Euclidean distance between two points. In addition,
the time elapsed is calculated as the current cumulative
length divided by the total length:

1
R ey ®
p=1°+p
Furthermore, the constant terms (4,, Cy, Ey)
are actually equivalent to the zero harmonic
coefficients (ay, co, €9), while (By, Dy, Fy) are equal
to zero. The constant terms are calculated as:

Ax —

Ay =YK, ZALP (2 —t2_)+ (Zf:f Ax; —
= X LAt ) () — tp-1) (4.2)
Zp 154 J’p (tz tzzz—l) + (Zf:f AYi -

2o Ly : At; ) (t,—t,.1)  (4b)
Az —
Ey =3k lm” (t2—t2,)+ (Zf:f Az; —

AZ” Zp LAt ) (t, —ty1) (4.c)

Fig. 2(a) illustrates the geometric meaning of the
spatial EFDs. A curve in 3D is approximated by a
series of spatial ellipses that superimpose upon one
another, ranging from large to small. Each ellipse is
constructed by the corresponding harmonic. Fig. 2(b)
depicts the first ellipse in which #; and v; are the semi-
major and semi-minor axes, respectively. Angle 6, is
the phase angle between the starting point (+=0) and
the semi-major axis. This phase angle concerns about
the phase shift if one wishes to shift the starting point
from one point to another new point. On the other hand,
the orientation of the first ellipse is now presented in
three dimension with respect to the fixed frame.
Therefore, a relationship between the Fourier
coefficients and the orientation of the first ellipse must
be established. The relations among the Fourier
coefficients, phase shift, and orientations of the
ellipses are essential to the normalization process and
will be discussed in Section 2.3.
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(a) (b)
Fig. 2. Geometric meaning of the spatial EFDs (a)
contour described by a series of ellipses (b) the first
ellipse and phase shift 6;.

Approximation for an Open Curve

The traditional FD and EFD can only be applied
to closed curves, that is, periodic functions. Wu et al.
(2011) used the trigonometric polynomial curve fitting
(TPCF) technique to approximate open curves, where
the x and y components of a point are represented by a
finite series of sine and cosine functions. The TPCF
for acquiring coefficients has been demonstrated to be
less efficient compared to the original EFD by Chang
et al. (2024), as it requires least-square curve fitting
computation and involves two-step optimization
searching. Moreover, the TPCF is applicable to the
planar case. In this study, we introduce a novel method
to establish a shape signature wherein Fourier
coefficients can then be utilized to represent an open
curve. As shown in Fig. 3, an open curve with K points
is converted to a closed curve by first tracing it from
one end to the other end and then retracing the same
path back to the starting point. The point P on the
forward path is made coincident with the point (2K-P)
on the backward path and the forward path has the
same period with the backward path. The generated
closed curve is approximated by EFDs. Although the
Fourier coefficients obtained is not essentially the
Fourier coefficients for the open curve of interest, they
can be used to reconstruct the open curve by using half
period. As a result, the Fourier coefficients obtained
for the converted curve can be written as

_aTl bn
Cn dn =
-en fn cvt
r 4 Ax. nt Nty—
— YK  —F (cos —2 _ cos Ll) 0
n2m “P=L ALy, 2 2
4 k Dyp ( nty ntp_l)
—y _—(cos— —cos——) 0
nzn Lp=1 ALy 2 2 ®)
4 Az t nty—q
—ZK_l—p(cos—p— cos —2 ) 0
| n27 “P=1 AL 2

where the subscript “cvt” denotes the open curves of
interest re-described by the converted model. The
constant terms do not change since the shape center is
the same. For detail derivations, the reader can refer to
Chang (2024). It can be seen that each a, has identical
values for both forward and backward paths, as do
coefficients ¢, and e,. Meanwhile, (b,, dy, f,) remain
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consistently zero. It also implies that the ellipse drawn
by the corresponding harmonic now degenerates into
a line, as shown in Fig. 3(b).

(b)
Fig. 3. Convert an open curve to (a) a closed curve
model, and (b) a contour described by a series of
degenerated ellipses (lines).

Normalization Process
To compare the dissimilarity among various

curves, it is necessary to convert the curves into a
normalized form so that variances in the shape
topology can be removed. These variances include
position, orientation, scale, and starting point of each
curve. The normalization process can be performed as
follows.

1. Position. The centroid of the curve is moved to the
origin of the coordinate system. This corresponds
to eliminating the constant term [4, Cy Ey]" from
Eq. (1).

2. Starting point. The starting point on the first ellipse
is standardized by shifting it from its original place
to the end of the semi-major axis u;. Such phase
shift from =0 to (++ 6, ) will require a
postmultiplication of the Fourier coefficients in
Eq. (1) by a transformation matrix containing the
phase shift angle 8, as

@ ba)’ A bn cosno
¢ dn| =[Cn dn [sinnBl1
en fn en fn

—sinn6,
cosnb,

(6)

where the matrix with superscript “*” denotes the
updated state. The phase shift 8; can be obtained
from the trigonometry of the first ellipse as

—1 2(agby+cidi+eqfr)
a?+c?+e?-b?-a?-f2

(7

1
0, = 5 tan

It can be noted that the starting point on the first
ellipse can be classified into two types: one at the end
of the semi-major axis and the other at a rotation of 8,
radians from the previous end, (6; + m). Choosing the
latter classification may represent the same curve but
yield a sign change in the coefficients for the even
harmonics. In this study, we choose the former
expression and thus modify the coefficients as

F" 2"] _¢ F" Z"l [cosn@1 —sinnel]

moom Ton e " sinnd cosné

en le en le ! !
(8.2)
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where
(=1)™if (N > 1) and (Juj — uj| +
G =1 vz =il > uz +uj| + vz +vi]) (8.b)
1, otherwise
and where uj, = [a}, ¢, en]T and v, =
[br, di, en]™.

3. Orientation. The orientation of the curve can be
standardized by aligning the semi-major and semi-
minor axes with the x- and y- axes of the fixed
coordinate system, respectively. We define a local
coordinate system on the first ellipse whose x-axis
is the semi-major axis and y-axis is the semi-minor
axis. A rotation matrix Ry that transforms the
local coordinate to the fixed coordinate can be then
established as

* * ok
uy 121 uy Xvy

Rl/)_

LA

(€))

|ugxvi |

As a result, the orientation normalization can be
attained by pre-multiplying the transpose of the
rotation matrix to the coefficient matrix as

an bn - an bn
¢ dn| =Ry'|Cn dn (10)

where the superscript “**” denotes the
normalized coefficients. This also means to
represent the coordinate of the fixed frame in
terms of the coordinate system of the first ellipse.
On the other hand, for the case of the open curves,
as the semi-minor axis vanishes, we choose the
semi-major axis of the second harmonic to replace
the semi-minor axis in Eq. (9). Therefore, the
rotation matrix for an open curve can be written

as
uj (upxuz)xuy  ujxujp
Ryopen = [ et L] (1
woven = (] Japauaa] fipaz) (D
Thus, one can obtain normalized Fourier

coefficients in orientation for open curves by
substituting Eq. (11) into Eq. (10).

4. Scale. Finally, the scale invariance can be achieved
by dividing the coefficients with the semi-major
axis length of the first ellipse s = |uj|=

a;? +c;?, where a; and cf are the Fourier

coefficient obtained in Eq. (8.a).
From the above discussion, the normalized
coefficients can be summarized as

an bn
Cn dn =
n fn Norm

a, by, .

1, T cosnf; —sinnb,

SRy (Gn [C” d”] [sin nf, cosnb, ) (12)
en fn

Minimum Harmonic Detection

The accuracy of the contour’s description is
typically determined by the number of harmonics
used. Usually, only a few initial harmonics are
necessary to precisely describe the contour.
Nonetheless, in specific cases such as portions with
high curvature, more harmonics might be needed to
ensure an accurate result. In this work, we employ
Fourier Power Analysis (FPA) to find the minimum
harmonic required to achieve a certain error threshold.
The FPA process is defined as follows:

S,=a%+b2+c2+d%:+e2+f?

i Zn=15n
argmin 57— = Threshold
NezZt Zn:1 Sn

(13.a)
(13.b)

where S, is the Fourier power spectrum of the n™
harmonic, and a “Threshold” 99.99% is used in this
study. The initial harmonic number M follows the
Nyquist frequency rule, which is the half of the point
number K if the curve is sampled from a known
function. Otherwise, M is set to the point number K.
The final harmonic number N is determined by the
first accumulated spectrum that satisfies the specified
threshold. This can be achieved through the
implementation of a binary search algorithm in the
spectrum lookup table.

SPHERICAL FOUR-BAR LINKAGE

Linkage Parameters

Figure 4 shows a general spherical four-bar
linkage located on a sphere with a sphere center at
Oy(0sx, 05y, 05:) and sphere radius 7. Points Py, P, P3,
and P, are the pivots locations while Ps is the coupler
point on link P3;P4. Moreover, position of P; is defined
by the spherical coordinate parameters (7, ¢) where 7
is the polar angle, and ¢ is the azimuthal angle. /;
(i=1~5) represents the length of link 7 and is in radian
unit. [, serves as the input link and /4 as the output link.
vy is an angle parameter for the coupler point on the
coupler. a is the angle between the reference link
(frame) P, P, and z-x plane. Thus, there are a total of 13
parameters to describe the spherical four-bar linkage
as (0sx, Osy, Osz, 1, 11, b, I3, Ia, Is, M, @, ¥, a). Nonetheless,
Oy(0sy, 0y, 0s2), Pi(n, @), and a are related to the
position and orientation of the coupler curve. They can
be made invariant to the shape of the curve by
normalization. Radius r can also be normalized by
scaling. Therefore, the design parameters can be
reduced to links lengths and angle parameter for the
coupler point on the coupler as (/1, b, s, I, Is, ).
Relations between the pivot positions on the sphere
and the design parameters are given in Appendix.

As our focus lies in creating spherical linkages
capable of producing both closed and open curves, it
becomes essential to determine the motion range of
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p1(m: )

Fig. 4. Linkage parameters of a spherical four-bar
linkage. The link between Py and P, is the reference
link and considered the ground link in the original
design, though its orientation may change after
normalization.

the input link. Chiang (1984) proposed a technique to
enable the classification of the driver link's range of
motion for the spherical four-bar linkage, which is
similar to the approach used in planar four-bar
linkages. It is worth noting that placing the joint pivot
on the opposite side of the sphere's surface can result
in another configuration with the same range of crank
motion. To prevent this, the link lengths must be
adjusted so that, at most, one link length falls within
the range of [n/2, ], while the lengths of the other
links are less than m/2. Finally, the link lengths in
radians can be treated as the planar four-bar linkage,
which can be further classified by the Grashof
condition and obtain the range of motion for the input
link. Table 1 shows the relations between the links
lengths (in radians) and types of the spherical four-bar
linkages.

Table 1. Range of motion and corresponding
conditions of input link.

Type Condition | Range of | Remark
Motion
Double- Eq. (14.2) | [0, 27] Grashof, 2
crank, circuits
Crank
Rocker
Double Eq. (14.b) | Eq.(15.a) | Non-
Rocker 1 Grashof, 1
circuit
Double Eq. (14.c) | Eq.(15.b) | Non-
Rocker 2 Grashof, 1
circuit
Double Eq. (14.d) | Eq. (15.c) | Grashof, 1
Rocker 3, or Eq. or2
Rocker- (15.d) circuits
crank

L+ <L+ )and (L — LI > |l = LD (4.8)
L+ >L+)and (| — L] > |l3—1,]) (14b)
L+ <bz+l)and (| — LI <|lz=L]) (140
L+ >L+)and (| — LI <|lz=1]) (14.4d)
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1 BH13-(13+1,)?

_q BH12-(13+1,)?
[— cos ,cos~1 = (atla)” 4)] (15.a)
2141, 2L,
_q1 B+13-(13-1,)? _1 B+12-(13-1,)?
[cos 11— Usmla)® 5 — cos~1 it —(amle)” 4)] (15.b)
2141, 2,1,
_q B+12-(15-1,)? _1 BH1Z-(l5+1,)?
[C 1472 (I3=14) , 1417l (3 4)] (IS.C)
2141, 2141,
_q1 B+12-(13-1,)? _1 B+12—(l3+1,)?
[2m — cos™1 12— Uamla)” o — cos—1 Htle—latla)” 1(15.d)
2141, 2,1,
Optimization Method

To find the curve closest to the target curve, an
optimization program in this work is developed as

Min E = YN_ (|Aa,| + |Ab,| + |Ac,| + |Ad,,| +
|Ae,| +1AfD), (16)
Subject to
lmin < li (IZINS) < lmax
Ymin < Y < Ymax
where the prefix “A” represents the difference between
the normalized coefficient of target curve and that of
synthesized one. /min and /max are the lower and upper
limits of link lengths, respectively. Further, we employ
the Differential Evolution (DE) algorithm (Storn and
Price, 1997) to optimize the linkage parameters
according to the EFD error. DE is a population-based
evolutionary algorithm that is suitable for non-
continuous optimization problems. The DE algorithm
has three leading operators: mutation, crossover, and
selection. The mutation operator introduces diversity
into the population, ensuring exploration of the design
space. It is defined as:

(xtrial)s = (xcurrent best)s + F[(xrl)s - (xrz)s] (17)

where x,1,X,, are the variables of two randomly
selected individuals without repetition, s is the
variable index determined by the crossover operator,
and F is the mutation factor between 0 and 1,
controlling the magnitude of variation. This operation
directs the trial solution toward the best-performing
individual while preserving population diversity. The
trial offspring is closer to the current best with some
random variation. The crossover operator uses a
continuous selection method, where a randomly
chosen index and segment length determine the
variables to be replaced in the current individual,
forming the trial offspring. The selection step
evaluates the trial offspring using the objective
function Eq. (16). If the trial offspring has a lower
error than the current individual, it replaces the latter;
otherwise, the original individual is retained. This
process continues until either the error reaches a
predefined threshold or the maximum number of
iterations is met. At the start, initial individuals may
have high error values, meaning poor linkage
configurations. As iterations progress, mutation and
crossover refine the solutions, reducing the error and
guiding the population toward convergence. The final
optimized linkage minimizes shape discrepancy,
ensuring that the synthesized coupler curve closely
follows the target path. Unless specified otherwise, our
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parameters include 50 iterations, a population size of
200, a mutation factor (F) of 0.6, a cross probability of
90%, and a fixed random seed set of 0 for
reproducibility.

The objective function receives the linkage
parameters (1,15, 13,1y, ls,v) as input and first filters
out infeasible solutions for the cases that violate
assembly constraints or the required range of motion.
For feasible solutions, it generates the coupler curves
for each circuit and approximate them using
normalized EFDs. The error between the target and the
approximated EFDs is then calculated using the L1
norm as shown in Eq. (16). Figure 5 illustrates the
workflow of the objective function within the DE
algorithm.

Randomly generate
population
1
Variable input 1 Invoke objective function
{l, b2y s, 1ay 06,7} |7 for all individuals | *

Is the
range of motion as
xpected?.

Objective Function

______________

Mutation
Generate trial offsprings ||
and the new variables

i

Crossover
Select mutable variables

for trial offsprings

No
Yes
Obtained the best
variables

Fig. 5. Workflow of DE algorithm and the objective
function.

Find the lowest EFD error
of the circuits

Replacement
Replace with trial offspring
and find the best variables

Denormalization

Once the optimal linkage is found, the
denormalization process is required to convert the
normalized data back to the data in target space,
including the location of the sphere center O,
orientation, and the radius r of the sphere. This can be
formulated as

Ay Ay
Os denorm = Co —1GCo (18.a)
Eq tar Eq syn
Rsphere,denorm = (Rlp)syn(RT/))tar (18.b)
Tdenorm = ;St:; (18.c)

where the subscript “tar” denotes values in the target
space and “syn” denotes values obtained in the
normalization process. Next, the position of Pi(pix, p1y,
piz) can be calculated from

OsPI = Rsphere,denormrdenormka (19)

Once the position of P; is known, the rest positions of
the pivots of the spherical four-bar linkage can be
calculated through the equations (A.1) to (A.13) in
Appendix where Rgppere, and 1 are replaced by

Rsphere,denorm and Tgenorm, respectively.
EXAMPLES

Example Cases and Implementations

In this section, we present five examples to show
the effectiveness of the synthesis method. Throughout
this study, the link lengths /; (i=1~5) are confined
within the range [0.0001, z] while y is defined within
the interval [0, z]. The calculations are implemented
on a PC with Intel 15-9400F CPU, and the software is
developed using the Rust programming language. The
examples have three case types: closed curve matching
and open curve matching, both employing a full range
of motion to traverse the target curve; and the third
type, which mimics a flapping-wing curve. In the
linkage plot, the sphere is rendered in gray, the links
in front of the sphere are rendered in black, and the
links behind the sphere (hidden from the viewer) are
rendered as dashed lines of darker gray.

Example 1 This example considers the coupler curve
spanning more than a hemisphere as shown in Fig. 1(a)
as a target. The synthesized result successfully
generates the desired coupler path as shown in Fig. 6.
The design parameters for the target and the optimized
linkages are listed in Table 2. The optimized linkage
exhibits a crank-rock behavior. Additionally, due to the
path extending beyond a hemisphere, this case
demonstrates the advantage of the spatial EFD
approach over projection-based methods, which
would introduce distortions in Fourier coefficient
computation.

o Target

‘ — Optimized

0 o5 0.5

Fig. 6. Example 1 coupler curve spanning over a
hemisphere

-625-



Table 2 Linkage parameters of Example 1

J. CSME Vol.46, No.6 (2025)

Optimized |0.43 1T 0.0522 5 292.45

O‘SX O‘S)’ OS.’ r ’7 gﬂ
Target 0 0 0 1 3.1191 |0.8965
Opti- | -0.00 0.00 -0.00 |0.999 | 2.783 1.024
mized

o ll lz 13 14 15
Target 0 0.488 2.353 1.083 | 2.053 2.462
Opti- 0.62 0.300 1.408 | 1.618 0.52 0.394
mized

y Circui | Error [Harm | Time

t E onic

Target | 2.885 1I N/A N/A N/A
Opti- | 1.946 I 0.0073 3 519 ms
mized

Example 2 This example consider a closed curve
defined by 64 points adopted from Chu and Sun (2010).
The reference study utilized an atlas-based search
approach without an optimization process. In our work,
a dataset of 102,400 samples was established as an
atlas with uniform probability distribution, occupying
a storage size of 96.8 MB. The DE algorithm, as
outlined in Section 3.2, was then applied for an
optimal linkage. Fig. 7 compares the results obtained
from the atlas and the optimization, while Table 3 lists
the linkage parameters. Additionally, Table 4 shows
the normalized coefficients for the target curve,
consisting of five harmonics and a total of 30
coefficients. The comparison highlights the
advantages of combining atlas-based methods with
evolutionary optimization. While the atlas method
provides an initial approximation, DE fine-tunes the
linkage configuration, reducing synthesis error and
improving the fidelity of the generated curve.

© Target
— Optimized

© Target
— Optimized|
a Atlas

05 0.
x0 05 05 0,

Fig. 7. Example 2 (a) Curve comparison (b)
Schematic of synthesized linkage.

Table 3. Linkage parameters of Example 2.

Osx Osy Osz r n [
EFD Atlas | 0.01 0.00 0.00 0.98 0.93 -0.99
Optimized |0.06 -0.02 0.01 0.93 1.65 -0.16
a I h 3 Iy Is
EFD Atlas |-1.94 1.17 2.69 2.02 1.23 1.97
Optimized |-1.72 1.62 0.49 0.96 1.30 1.46
y Circuit | Error E Harmonic | Time
EFD Atlas |2.61 i| 0.0647 5 N/A

Table 4. Normalized EFD coefficients of the target
curve of Example 2.

Harmonic

No. a b c d e f
1 1 0 0 0.6439 0 0
2 0.0001 -0.0007 -0.0020 -0.0001 -0.0901 0.0003
3 0.0558 0.0022 0.0062 0.0519 -0.0001 0.0006
4 -0.0002 -0.0004 0.0008 0.0008 -0.0099 -0.0022
5 0.0092 0.0023 -0.0010 0.0092 0.0002 0

Example 3 This example considers the analemma, the
apparent path of the sun in the sky relative to an Earth
observer, forming an asymmetrical figure-eight on a
unit spherical surface. This trajectory, relevant to solar
tracking mechanisms, is computed using equations
(6)—(8) from Zhang et al. (2021) and the sunpos
subroutine:

P = sunpos(TgmT, longitude, latitude)

where Tyt represents the date and time in GMT
form and expressed as a float number. In this analysis,
100 points were extracted from December 4, 2023 at
8:00 am to December 4, 2024 at 8:00 am., with
(longitude, latitude) specified by (60.960515°,
23.69781°). All other constants in the subroutine
remain consistent. The resulting curve is illustrated in
Fig. 8, and the corresponding synthesized linkage
parameters are presented in Table 5. The optimized
spherical four-bar linkage successfully generates the
figure-eight trajectory, demonstrating the applicability
of the proposed method to celestial tracking problems.
The synthesized path closely follows the target curve,
with minimal deviation. This example further
underscores the capability of the spatial EFD approach
in accurately modeling real-world, non-uniform
spherical trajectories.

O Target

— Optimized

-0.6 Ps
0.8 &

0.5 0.5
x0 03

05 0, °

Fig. 8. Linkage synthesis of Example 3.

Table 5. Linkage parameters of Example 3.

OSX 05}’ OSZ r ’7 gﬂ
Optimized |0.00 0.00 0.01 0.98 1.02 1.41
o l 1 l 2 l 3 14 l 5
Optimized |-2.21 1.53 0.41 1.48 0.62 1.06
y Circuit |Error £ | Harmonic | Time
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|0ptimized ‘1.36 ‘1 ‘0.0563 |10

362.81
ms

Example 4 This example considers an open curve
similar to Example 2 in Sun et al. (2018) but with a
different parametric formulation. Unlike Sun et al.
(2018), which employed a Wavelet Transform (WT)
approach, our method utilizes spatial EFDs to
synthesize the mechanism. The curve is defined by the
parametric formula:

x(6) = sin 65°sin(—0.4685°0 + 173.1994°)

y(8) = — cos 6 cos(—0.4685°0 + 173.1994°)
+ cos 65° sin 0 sin(—0.4685°0 + 173.1994°)

z(0) = —sin 6 cos(—0.4685°0 + 173.1994°)
— c0s 65° cos 6 sin(—0.4685°0 + 173.1994°)

where the angle argument 6 ranges from 40° to 320°,
and 40 points are collected as input. The synthesized
result successfully reconstructs the target trajectory, as
shown in Fig. 9, with the optimized linkage parameters
presented in Table 6. The mechanism operates as a
double-rock, ensuring smooth movement within the
specified input range. The optimization results
indicate that increasing the number of harmonics and
iterations enhances accuracy, with only a limited
increase in computation time (up to 1.22 seconds).

© Target
— Optimized

- 05 -1
0 0,

X 1 05

Fig. 9. Synthesized linkage of Example 4

Table 6. Linkage parameters of Example 4.

Osx Osy Osz r n @
Optim- |0.00 |0.00 -0.06 |1.03 2.13 |-3.13
ized

a I L 3 ls Is
Optim- |- 0.68 1.00 0.99 0.65 |2.55
ized 0.44

y Circuit- |Error |Harmonic |Time

Branch |F
Optim- |3.14 |II-I 0.0633 |19 1.458
ized s

Example 5 This example is inspired by McDonald and
Agrawal (2010) where a spherical four-bar linkage
was explored for flapping-wing motion. The reference
initially used a 3-DOF serial chain with angle
parameters ¢, 1, and 6, defined through a Denavit-
Hartenberg transformation matrix. In our work, we use
the following parametric equations to generate our

target motion:

¢ = 0.6 sin(wt) + 0.5

Y = 0.8 cos(wt) — 0.3

0 = 0.25 cos(wt) + 0.25
where the input angle wt varies within [0, 2z]. The
target curve is generated by a point on the end effector
as [-0.06, 0.01, 0, 1]7, and its position in the reference
frame is given by:

—0.06
P =Ty 001

where the D-H transformation matrix is

TsDi}r{I ;sin 6 +cosocospcosf sinocosdp cosocosgpsing —cosfsing  0.015sin¢p
cosocosfsing —cos¢psin® sinosing cos¢pcosf +cosasingsind —0.015 cos @
sina cos 6 —cosa sinosin @ 0
0 0 0 1
and o = (yp —w/2). Since the target shape is not a
spherical curve, the optimized curve serves as an
approximate curve that closely mimics the intended
shape. Figure 11 illustrates the comparison between
the target and synthesized curves, while Fig. 12 depicts
the synthesized spherical four-bar linkage. The final
linkage parameters are listed in Table 9. The optimized
linkage effectively replicates the flapping trajectory,
ensuring smooth continuous motion across the defined
input range. The synthesis demonstrates the capability
of spatial EFDs in approximating non-spherical
trajectories, providing an efficient alternative to serial-
chain mechanisms for flapping-wing applications.

o Target
0.02} |[—Optimized
y oo
0.02 Il Il Il Il I}
-0.04 -0.02 0 0.02 0.04 0.06

oos 002 0 002 004 006
()
Fig. 10. Curve comparison of Example 6 in (a) x-y
plane, (b) x-z plane, and (c¢) perspective view.
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o Target
— Optimized

Fig. 11. Schematic of synthesized linkage of

Example 5.
Table 7. Linkage parameters of Example 6.

Osx Osy Osz r 7 [
Optimized | 0.00 | 0.00 0.00 0.05 1.64 -2.14

a I b & ls Is
Optimized | -2.02 | 1.49 0.59 0.86 1.48 0.16

y Circuit Error E | Harmonic | Time
Optimized | 2.68 | I 0.0877 6 421.49 ms

Discussions
1. Handling of Curves Spanning More than a
Hemisphere

Figure 1 illustrates a case where the curve extends
beyond a hemisphere, posing challenges for traditional
Fourier Descriptors (FDs), which often
rely on projection-based methods that introduce
distortions. In contrast, Elliptical Fourier Descriptors
(EFDs) independently analyze each component in 3D
space, preserving geometric integrity and achieving
superior approximation accuracy.
2. Choice of EFDs over Other Shape Representation
Methods

EFDs offer a practical and efficient alternative to
complex shape representation techniques like wavelet
transforms (WT) (Sun et al., 2015, 2018). While WT
handles both closed and open curves well, it requires
careful  function selection and  multi-level
decomposition, increasing computational cost. EFDs,
in contrast, efficiently decompose curves into
harmonic components, making them easier to apply in
spherical mechanism design.
3. Open Curve Approximation:
Computation

Example 4 highlights the trade-off between
accuracy and computational cost. Slight mismatches
occur at the open curve’s lower end, with higher
harmonics increasing search time. Fourier Power
analysis helps balance this by selecting the minimum
necessary harmonics to maintain accuracy while
keeping computation time low.

Accuracy vs.

J. CSME Vol.46, No.6 (2025)

Table 8 Comparison of the Proposed Method with
Existing Approaches

Aspect Previous Work Current Contribution
Work
(Spatial
EFD + DE)
Path Planar FDs for |Spatial Systematic
Representati | 2D(McGarva, EFDs extension  of
on 1994) linkages or EFDs to
projection-based spherical four-
FDs, WT (Sun, bar linkage
2018) for synthesis
spherical linkages
Optimization | Atlas-based Differential |-
Method search(Chu& Evolution
Sun, 2010), (DE)
Simulated
annealing for 2D
Handling of |Requires ad hoc |Direct shape |New  unified
Open Curves | modifications signature approach  for
approach both open and
using EFDs | closed curves
Computation | Not available Less than |-
Efficiency 1.22 sec. in
open path
example

4. Effectiveness and Limitations of DE Optimization
DE is highly effective for optimizing spherical
linkage design with 6 to 8 parameters, offering a robust
search strategy for multimodal solution spaces. While
it does not guarantee a global optimum, mutation,
crossover, and selection help prevent local minima.
For higher precision, future work could explore
multiple DE runs with varying initial populations or
hybridizing with other optimization techniques.
5. Table 8 highlights the key differences between
previous approaches and the current study.

CONCLUSIONS

In this study, we developed a unified methodology

for the path synthesis of spherical four-bar linkages,
enabling the synthesis of both closed and open curves
using a single framework. Unlike previous approaches
that required separate treatments or modifications for
different curve types, our method systematically
extends Elliptical Fourier Descriptors (EFDs) to 3D
space, eliminating the need for planar projections and
preserving geometric integrity.
We demonstrated the effectiveness of the proposed
method through a range of examples, including an
ordinary closed curve, a figure-8 shape curve, an open
curve, and real-world applications as solar tracking
(analemma) and flapping-wing motion. The unified
algorithm also exhibits computationally efficient,
solving most examples in less than 500 ms, and
handling complex scenarios as Example 4 in just 1.22
seconds. We anticipate its broader applicability in
advanced spatial mechanism design.

NOMENCLATURE

Ay, Cy, Ey  EFD constant terms
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an, bn' Cns dn' €n, fn
EFD coefficients of the nth harmonic
E EFD error

F Mutation factor in differential evolution
algorithm
K Total number of given points on a curve

I, 0, 15,1, s
Link length variables in radians

lmin' lmax-
Lower and upper limits of links in the

optimization
M Initial harmonic number in FPA
n Harmonic number
N Total harmonic number

Py, P,,P3, P, P
Points on the spherical linkage

r Radius of sphere

s Scale factor

Sn The n™ Fourier power spectrum

t Time parameter

u,, v, First semi-major and semi-minor axes

X Design variable vector in the optimization

x(t),y(t),z(t) Curve components with
time parameter ¢
a Rotation angle of the ground link
y Angle of coupler point Ps on the coupler link
Axp,Ayp,Azp,ALp
Distance between P and P + 1 point along
each component x, y, z, and the magnitude

n Correction factor of the n harmonic in the
normalization

n,¢  Polar and azimuthal angles of point P; to the
sphere

0,,0,, Phase angle of the first and the n™ harmonic in
the normalization

Y, Ry Rotation angle of the shape and its rotation
matrix in the normalization
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Appendix Coupler Point Calculation of
Spherical Four-bar Linkages

Shown in Fig. Al is the spherical four-bar
linkage whose sphere center is now located in the
origin of the reference frame. The relationship
between the input angle S and the output angle § of
the follower link is (Chiang, 1986)

Fig. Al. Linkage parameters of a spherical four-bar
linkage. Link PP is the reference link (frame).

| “hat h3—h%+h3

6 = 2tan” (A.1)
hi=h;
where
hy = cosl, cosl,cosl; —cosl; +
zsinl, cosl, sinl; cos B (A.2)
h, = —cosl, sinl, sinl;
+sinl, sinl, cosl; cos 3 (A.3)
h; =sinl, sinl, sin (A4)

1

1 ot
(a) (b)
Fig. A2. Two configurations, (a) circuit I and (b)
circuit II, of a spherical four-bar linkage.

-630-



Y. Chang et al.: Path Synthesis of Spherical Four-Bar Linkages Using Spatial Elliptical Fourier Descriptors.

There are two solutions for Eq. (A.1), each
equivalent to one circuit of the spherical linkages as
shown in Fig. A2. We employ the screw-axis
representation (Tsai, 1999) to compute the vector
rotation in the spherical coordinate. Given a unit screw
axis, e=[ex, e, e:]7, and angle of rotation ¢, a rotation
matrix R4, that rotates a vector about the screw
axis in space can be written as

Rieg) =
eZuy + cos ¢ e.e iy —e,sing e.e,u,+e,sing
e.eyfiy +e,sing eluy +cosd eye iy — e, sing
e.elly —e,sing e,e,u,+e,sing eZug + cos ¢
(A.5)
where pgy = (1 — cos ¢). Therefore, when rotating a
vector a to another vector b about the axis (axb),
the rotation matrix, abbreviated as bRa , can be
written as

b
Ra = R( axb cos—1 a-b )
laxb|’ laxb|

(A.6)

Pivot point P;, defined by the spherical coordinates
(n, @) with sphere radius r, is transformed to the
Cartesian coordinate as

T sin7 cos @
OP, = |rsinnsing (A7)
T Ccosn
Positions of pivot points are computed as:

OP; = RyphereRyjiy) - rk (A.8)

0P3 = RsphereR(lAc,B)R(i,lﬂ . rk (A9)

OP, =R or, R, 0P , (A.10)

<W' )
0P5 = RcouplerR(E_y)RG,IS) -rk (Al 1)

where j and k are respectively the unit vectors of y
and z axes of the coordinate, and

Rcoupler
_ [0P3 (OP3X0P4)X0P3 OP3x0P4 A12
“ LloP3|  |(OP3x0P4)x0P3| |0P3x0P4| (A.12)
— 0Py
Rsphere = R opy Rz (A.13)
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