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ABSTRACT 
 

Aiming at the problem that it is difficult to ac-
curately judge the working state parameters during the 
grinding process of the ball mill, a method for predict-
ing the working state parameters of the ball mill based 
on fireworks algorithm optimized LSSVM (Least 
Squares Support Vector Machine) is proposed. Firstly, 
the LSSVM algorithm is employed to establish the 
predictive model for the working state parameters of 
the ball mill. Then, the FWA (Firework Algorithm) al-
gorithm is used to optimize the radial basis kernel 
function parameters and penalty factors of the LSSVM 
model. Afterwards, time-domain features, frequency-
domain features, and entropy features are extracted 
from the vibration signals of the mill shell to generate 
a set of feature vectors; finally, feature vectors are used 
as the input of FWA-LSSVM, and the ratio of material 
to ball, rotation speed and filling rate are used as the 
output to establish a mill state parameter prediction 
model. The superiority of the method is proved by 
grinding experiments. The results showed that the 
LSSVM model optimized with the FWA algorithm had 
less error between the predicted and actual values of 
filling speed, Material-ball ratio and rotational speed 
than the GA (Genetic Algorithm) and PSO (Particle 
Swarm Optimization) optimization algorithms, indi-
cating that the mill state parameter prediction model 
has higher precision and stability. 
 
 
 
 
 
 
 
 
 
 
 
 

INTRODUCTION 
 

The reliable and steady operation of the ball mill 
is essential for the entire grinding system. In recent 
years, there has been an increasing focus on detecting 
the working state parameters of ball mills, especially 
given the challenging operating environment, which 
makes it difficult to identify these parameters accu-
rately (Cai et al., 2019; Du et al., 2018). During the 
grinding process of the ball mill, both the cylinder and 
the bearing will generate vibration signals, with the 
former containing more abundant status information. 
Therefore, analyzing the relationship between the 
cylinder vibration signals and the working state, and 
accurately identifying the state parameters of ball mill, 
can effectively reduce the energy consumption during 
the grinding process and has a good guiding signifi-
cance for optimizing the control of the mill (Bai and 
Chai, 2009; Hu et al., 2018; Yan et al., 2014). The 
essence of load detection in mechanical equipment is 
the pattern recognition problem regarding its load 
status. Starting from the basic idea, many pattern 
recognition methods have been proposed as the basis 
of recognition and classification, such as neural net-
works, support vector machines, and cluster analysis 
(Cai et al., 2019). Kuo et al. (2023) used neural 
network to build tool wear prediction model in turning 
process, and achieved good results (Wang et al., 2019; 
Zhang et al., 2019). Dai et al. (2022) used support 
vector machine to predict the power load of ships, and 
got high-precision prediction results. Lu et al. (2019)  
employed GMM clustering to recognize the thermal 
load status. Therefore, by leveraging the aforemen-
tioned methods, many researchers have successfully 
established prediction models for various working 
state parameters, and have obtained a large number of 
practical results. LSSVM is a very effective method 
for pattern recognition, which does not have complex 
network structures and local minimum problems. It 
can solve nonlinear classification problems and has 
greater advantages in small sample data recognition 
and prediction problems. Therefore, it has been widely 
used in engineering problems (Niu et al., 2019). 
However, the prediction effect of LSSVM is greatly 
affected by the radial basis kernel function parameter 
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𝛿𝛿2 and the penalty coefficient 𝛾𝛾. If 𝛿𝛿2 is incorrectly 
selected, it is prone to large errors. FWA can automat-
ically optimize the radial basis kernel function param-
eters in LSSVM, and overcome its shortcomings so 
that the optimized model has better ball mill load 
prediction ability (Chen et al., 2018). 

Therefore, this paper attempts to extract the time 
domain features, frequency spectrum features and 
entropy features of the mill vibration signal to form a 
feature set, and build an LSSVM prediction model op-
timized by the firework algorithm to achieve accurate 
prediction of the mill speed, filling rate and material-
ball ratio. 

 
INTRODUCTION TO BASIC THEORY 

 
Principle of Least Squares Support Vector 
Machine (LSSVM) 

SVM (Support Vector Machine) is a machine 
learning algorithm for supervised learning models that 
analyze data in classification and regression analysis 
(Liu, 2015). The basic idea is to project the existing 
low-dimensional space data vectors into high-
dimensional space data vectors, and then use the the-
ory of risk minimization to construct a decision func-
tion to solve nonlinear problems with a small number 
of samples and high dimensions. The LSSVM 
converts the inequality constraints of the original 
support vector into equality constraints, and replaces 
the decision function in the support vector machine, 
thereby reducing the computational cost in the original 
algorithm. LSSVM projects the nonlinear vector 

( )xΦ  in SVM to a high-dimensional space and 
converts it into a linear problem. The expression is: 

𝑦𝑦 = 𝜔𝜔𝑇𝑇𝛷𝛷(𝑥𝑥) + 𝑏𝑏                          (1) 

where 𝜔𝜔 is the weight vector; 𝑏𝑏is the deviation. 
By using the principle of structural risk 

minimization, the original linear regression problem in 
the algorithm can be transformed into an optimal 
solution problem, let the training set {(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)}, 𝑖𝑖 =
1,2, . . .𝑁𝑁, 𝑥𝑥𝑖𝑖 ∈ 𝑅𝑅𝑑𝑑, where 𝑥𝑥𝑖𝑖 is the i-th input variable, 
𝑦𝑦𝑖𝑖  is the category corresponding to 𝑥𝑥𝑖𝑖 , its value is 
generally +1 or -1, 𝑑𝑑 is the number of samples, the 
original function optimization problem is transformed 
into: 
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𝑦𝑦𝑖𝑖 = 𝜔𝜔𝑇𝑇𝛷𝛷(𝑥𝑥𝑖𝑖) + 𝑏𝑏 + 𝜉𝜉𝑖𝑖，𝑖𝑖 = 1,2, … , 𝑙𝑙
         (2) 

Where, 𝜉𝜉𝑖𝑖 is the error; 𝑖𝑖 is the i-th dimension in the 
space vector; 𝜔𝜔 is the weight vector; 𝛾𝛾 is the pen-
alty factor. Using the Lagrangian method to solve the 
optimization problem, the expression is transformed 
into: 

𝐿𝐿(𝜔𝜔, 𝑏𝑏, 𝜉𝜉,𝛼𝛼) = 𝐽𝐽(𝜔𝜔, 𝜉𝜉) − ∑ 𝛼𝛼𝑖𝑖𝑙𝑙
𝑖𝑖=1 (𝛷𝛷(𝑥𝑥𝑖𝑖) ⋅ 𝜔𝜔 + 𝑏𝑏 +

𝜉𝜉𝑖𝑖 − 𝑦𝑦𝑖𝑖)                                    (3) 

where, 𝛼𝛼𝑖𝑖  is the Lagrange multiplier. Since 𝜔𝜔 

belongs to a high-dimensional space and cannot be 
solved directly, the kernel function is introduced into 
the optimization problem. Defining kernel function 
𝐾𝐾(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗) = 𝜙𝜙(𝑥𝑥𝑖𝑖) ⋅ 𝜙𝜙(𝑥𝑥𝑗𝑗) , then the optimization 
problem turns into solving the following system of 
equations: 
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Using the least square method to find the regres-
sion coefficient 𝑎𝑎𝑖𝑖  and the deviation 𝑏𝑏  in the 
optimization problem, the nonlinear prediction model 
can be obtained: 

𝑦𝑦 = ∑ 𝑎𝑎𝑖𝑖𝐾𝐾(𝑥𝑥, 𝑥𝑥𝑖𝑖)𝑙𝑙
𝑖𝑖=1 + 𝑏𝑏                 (5) 

To ensure the operational efficiency of the 
LSSVM, RBF is used as the kernel function of the 
model, the parameters that can be set manually in this 
model are the parameter 𝛿𝛿2 and the penalty factor γ  
in the radial basis kernel function. 

 
Principle of Firework Algorithm (FWA) 

The firework algorithm is a swarm intelligence 
algorithm proposed by Tan (2015), its basic idea is to 
use the fireworks explosion process to simulate the 
process of finding the optimal solution in space. The 
search range for finding the optimal solution is consid-
ered as the space range where sparks of the fireworks 
explosion scatter, and the feasible solution in the opti-
mization problem is transformed into the explosion 
point and the position of the sparks generated during 
the explosion process. Then, the advantages and dis-
advantages of each explosion point and spark position 
are evaluated, and the optimal position is selected to 
continue to the next generation through iteration, 
repeatedly until the global optimal solution is obtained 
or the iteration termination condition is reached. The 
core components of the firework algorithm include 
explosion operators, mutation operators, mapping 
rules and selection strategies. 
(1). Explosion operator: The explosion operator is an 

algorithm multiplier introduced to make fireworks 
explode and produce sparks. Assuming that each 
individual firework is 𝑥𝑥𝑖𝑖 , the number of sparks 
and the explosion radius of the offspring of its ex-
plosion can be calculated according to the fitness 
function 𝑓𝑓(𝑥𝑥𝑖𝑖) . Under normal circumstances, a 
firework with a smaller fitness level will generate 
a smaller distribution radius and a larger number 
of offspring after exploding, so it is closer to the 
optimal solution and has stronger local search ca-
pabilities. 
To realize the firework explosion phenomenon, 
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suppose the total number of sparks generated after the 
explosion is 𝑠𝑠𝑖𝑖 and the explosion radius is 𝐴𝐴𝑖𝑖, then 
the expressions of 𝑠𝑠𝑖𝑖 and 𝐴𝐴𝑖𝑖 are: 

𝑠𝑠𝑖𝑖 = 𝑀𝑀 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 −𝑓𝑓(𝑥𝑥𝑖𝑖)+𝜃𝜃
∑ (𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 −𝑓𝑓(𝑥𝑥𝑖𝑖))+𝜃𝜃𝑁𝑁
𝑖𝑖=1

                (6) 

𝐴𝐴𝑖𝑖 = 𝐴𝐴 𝑓𝑓(𝑥𝑥𝑖𝑖)−𝑓𝑓𝑚𝑚𝑖𝑖𝑚𝑚 +𝜃𝜃
∑ (𝑓𝑓(𝑥𝑥𝑖𝑖)−𝑓𝑓𝑚𝑚𝑖𝑖𝑚𝑚 )+𝜃𝜃𝑁𝑁
𝑖𝑖=1

                 (7) 

where 𝑀𝑀 is the coefficient for adjusting the number 
of explosion sparks produced by the explosion; 𝐴𝐴 is 
the coefficient for adjusting the size of the blast radius; 
𝜃𝜃 is a constant value introduced to avoid division by 
zero; 𝑓𝑓𝑚𝑚𝑚𝑚𝑥𝑥 = 𝑚𝑚𝑎𝑎𝑥𝑥(𝑓𝑓(𝑥𝑥𝑖𝑖))(𝑖𝑖 = 1,2, . . . ,𝑁𝑁)  repre-
sents the best fitness value among N  fireworks, and 
𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛 = 𝑚𝑚𝑖𝑖𝑚𝑚(𝑓𝑓(𝑥𝑥𝑖𝑖))(𝑖𝑖 = 1,2, . . . ,𝑁𝑁)  represents the 
worst fitness value among N  fireworks. 
(2). Mutation operator: To make the search range of 

spark generated by explosion wider, the mutation 
operator is introduced into the algorithm, that is, 
the Gaussian mutation is employed to get m  
mutation sparks. The expression is as follows: 

 𝑥𝑥
∧
𝑑𝑑
𝑘𝑘 = 𝑥𝑥𝑑𝑑𝑘𝑘 × 𝑁𝑁(1,1)                      (8) 

Where 𝑥𝑥𝑑𝑑𝑘𝑘  represents the 𝑘𝑘(𝑘𝑘 = 1,2, . . . ,𝑚𝑚) 
dimensional coordinate of the 𝑑𝑑(𝑑𝑑 = 1,2, . . . ,𝑚𝑚) 
spark, 𝑁𝑁(1,1) represents Gaussian distribution with 
mean and variance of 1. 
(3). Mapping rules: When the explosion spark xi 

crosses the boundary in k dimension, it can be 
projected to a new position xi

k  through the 
mapping rule: 

 min max min%( )
k k k k k
i ix x x x x= + −  (9) 

where, 𝑥𝑥𝑚𝑚𝑖𝑖𝑛𝑛
𝑘𝑘  and 𝑥𝑥𝑚𝑚𝑚𝑚𝑥𝑥

𝑘𝑘  indicate that the spatial 
position of the fireworks is in the top and bottom 
bounds of the 𝑘𝑘  dimension, and % represents the 
modulo operation. 
(4). Selection strategy: The selection strategy is to 

choose 𝑁𝑁  better offspring from the set 𝐾𝐾  of 
feasible solutions as the new generation of 
fireworks. Among them, the individual with the 
lowest fitness value is regarded as a new 
generation of fireworks, and then the roulette 
method is used to screen the remaining 𝑁𝑁 − 1 
fireworks. The calculation formula is: 

𝑅𝑅(𝑥𝑥𝑖𝑖) = ∑ 𝑑𝑑(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗)𝐾𝐾
𝑗𝑗=1                 (10) 

 

𝑝𝑝(𝑥𝑥𝑖𝑖) = 𝑅𝑅(𝑥𝑥𝑖𝑖)
∑ 𝑑𝑑(𝑥𝑥𝑗𝑗)𝐾𝐾
𝑗𝑗=1

                      (11)
 

where, 𝑅𝑅(𝑥𝑥𝑖𝑖)  is the total of Euclidean distance 
between the 𝑖𝑖 offspring and other offspring in set 𝐾𝐾; 
𝑝𝑝(𝑥𝑥𝑖𝑖) is the probability of being selected. It can be 
seen from equation (11) that the smaller the distance 
of the firework, the lower the probability of being 
selected, which avoids the emergence of the global 
optimal problem prematurely. 

Based on the above steps, this paper proposes to 
use the Firework algorithm to optimize the Least 
Squares Support Vector Machine model, thereby 
establishing a FWA-LSSVM based ball mill working 
state parameter prediction model. In this method, 
FWA algorithm is used to optimize the parameters of 
LSSVM model, and the parameter combination that 
can achieve the optimal performance of LSSVM 
model is found in the range of [0,300]. Let each 
individual 𝑧𝑧 = (𝑧𝑧1, 𝑧𝑧2) in a firework explosion be a 
set of parameter combinations (𝛾𝛾, 𝛿𝛿2) of the LSSVM 
model, and use individual fitness to measure the 
algorithm performance of this set of parameters. 
 
FWA algorithm optimizes the establishment of 
LSSVM ball mill working state parameter 
prediction model 

Firework Algorithm considers every possible 
solution of each space as a firework, and obtains the 
optimal iteration times by designing explosion 
operators, mutation operators, mapping rules, and 
selection strategies. The steps for optimizing LSSVM 
through fireworks algorithm are as follows: 

Step 1: Randomly initialize the population. 
Randomly generate 𝑁𝑁 = 20 fireworks whose maxi-
mum number of sparks produced by the explosion is 

𝑚𝑚 = 50 , the explosion radius is 𝐴𝐴
∧

= 40 , and the 
Gaussian mutations number is 5. According to the 
sample data of the vibration signal of the mill barrel 
collected under different load conditions, 8 time-
domain characteristic parameters and 5 spectral char-
acteristic parameters were extracted respectively (Luo 
et al., 2020): mean value, variance, root square 
amplitude, effective value, peak value, Skewness 
index, kurtosis index, crest factor, mean frequency, 
standard deviation frequency, spectral skewness, 
spectral kurtosis, center of gravity frequency; two 
entropy feature parameters: sample entropy (Ma, 2015) 
and fuzzy entropy (Xiang and Ge, 2014) constitute 
feature vectors. Select 100 groups of vibration signal 
feature samples of the mill cylinder, use 50 sets of low-
dimensional feature sets for model training, and the 
remaining 50 groups of data low-dimensional feature 
sets are used as tests. 

Step 2: Calculate the individual fitness value. In 
order to improve the learning and generalization 
ability of the LSVVM model, the fitness function is 
constructed by introducing training sample data and 
test sample data. First, use the fireworks individual as 
the parameter of the LSSVM model, and use 50 sets of 
training samples to train the LSSVM model to obtain 
the LSSVM function estimation model, as shown in 
equation (12). Then, use 50 sets of test samples to test 
the LSSVM model, and combine the training samples 
and test samples to establish the fitness function based 
on the errors obtained. From equation (13), the fitness 
value of each individual firework can be solved. 
𝑦𝑦
∧

(𝑖𝑖,𝑋𝑋) = ∑ 𝑎𝑎𝑜𝑜𝐾𝐾(𝑋𝑋,𝑋𝑋𝑜𝑜) + 𝑏𝑏𝑙𝑙1
𝑜𝑜=1              (12) 
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𝑓𝑓(𝑖𝑖) = 𝑚𝑚𝑎𝑎𝑥𝑥(𝐸𝐸𝑡𝑡𝑡𝑡𝑚𝑚𝑖𝑖𝑛𝑛(𝑖𝑖)) + 𝑚𝑚𝑎𝑎𝑥𝑥(𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑖𝑖)) +
+|𝑚𝑚𝑎𝑎𝑥𝑥(𝐸𝐸𝑡𝑡𝑡𝑡𝑚𝑚𝑖𝑖𝑛𝑛(𝑖𝑖)) −𝑚𝑚𝑎𝑎𝑥𝑥(𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑖𝑖))|       (13) 

where, 𝑦𝑦
∧

 is the output of the model; a  and b  are 
the regression coefficients and deviations obtained 
after the training of the LSSVM model respectively; 

( )K ⋅  is the kernel function; f  is the fitness value; 

trainE  and testE  are the absolute value set of training 
error and the absolute value set of test error, 
respectively. 

Step 3: Use the explosion operator to generate 
sparks. The amplitude range and the number of sparks 
generated by explosion are solved by formulas (6) and 
(7), and the sparks are displaced according to formula 
(14). 

 □𝑧𝑧𝑖𝑖𝑘𝑘 = 𝑧𝑧𝑖𝑖𝑘𝑘 + 𝑟𝑟𝑎𝑎𝑚𝑚𝑑𝑑(𝐴𝐴𝑖𝑖) (14) 

Where, □𝑧𝑧𝑖𝑖
𝑘𝑘
 is the displacement of the i  individual 

on the 
𝑘𝑘

 dimension, and 
𝑟𝑟𝑎𝑎𝑚𝑚𝑑𝑑(𝐴𝐴𝑖𝑖)  is a random 

number automatically generated within the explosion 

amplitude 
𝐴𝐴𝑖𝑖. 

Step 4: Perform Gaussian mutation operation. 
The spark is subjected to Gaussian mutation according 
to formula (8), and the search range of the period is 
wider. 

Step 5: Processing of mapping rules. The sparks 
that have crossed the search space are processed 
according to equation (9) using modular arithmetic 
mapping rules to make them return to the search space. 

Step 6: Population selection. Choose the best one 
among the obtained populations, and then select the 
remaining populations by roulette method according 
to equations (10) and (11). 

Step 7: Judge whether the termination condition 
is met. If it is met, the optimization operation is ended, 
and the optimized LSSVM model parameter z∗   is 
obtained; otherwise, go to step 3. 

Step 8: Use the FWA algorithm to optimize the 
obtained parameter z∗  , and then use the training 
sample data to train the LSSVM model, thereby 
establishing a ball mill working state parameter 
prediction model based on FWA-LSSVM algorithm. 

In summary, the process of using the FWA-
LSSVM algorithm to establish the parameter 
prediction model of the ball mill working state is 

shown in Fig 1. 
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Fig. 1. Flow chart of the predictive model of ball mill 
working state parameters based on FWA-LSSVM 

algorithm 
 

Validity verification 
 
Simulation verification and analysis 

To verify the prediction effect of FWA-LSSVM 
algorithm, constructs LSSVM model optimized by 
particle swarm optimization (PSO) and genetic 
algorithm (GA), and they are compared with the 
LSSVM optimized based on the firework algorithm 
(FWA), Table 1 shows the initial parameters of the 
three optimization algorithms. The initial parameters 
of all three algorithms include the population number 
and the maximum number of iterations, which have 
little effect on the prediction results of the algorithms. 
To ensure the accuracy of the experimental results, the 
initial population and the maximum number of 
iterations of the three algorithms are set to 20 and 400, 
respectively. The other parameters are set according to 
the values commonly used by the algorithm. 

 
Table 1 Initial parameter settings of three optimization algorithms 

Algorithm Parameter Corresponding value or interval 

PSO 

Particle population size 20 
Maximum number of iterations 400 

Inertia weight [0.3,0.9] 
Learning factor 1, 2 1.2、1.5 

GA Population size 20 
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Maximum number of iterations 400 
Crossover probability 0.4 
Mutation probability 0.01 

FWA 

Fireworks population size 20 
Maximum number of iterations 400 

Explosion radius 40 
Explosion spark number range [1,50] 

Gaussian variation spark number 5 
 

To test the prediction performance of the 
LSSVM model after optimization of these three 
algorithms, four types of data in the UCI standard data 
set are used for simulation experiments, the UCI data 
set is a general data set, which often appears in most 

papers or studies to verify the performance of the 
algorithm model. The data set contains samples and 
labels. By comparing the training results with the 
labels, the effect of the prediction model can be known. 
The data set is shown in Table 2. 

 
Table 2. Four types of data in the UCI standard data set 

Data set Sample (training/testing) Number of input data Number of output data 

Machine_CPU 209(165/44) 8 1 
Servo_data 167(134/23) 15 1 

California_Housing 20640(10340/10320) 6 1 
Auto_price 159(116/33) 4 1 

 
The simulation test uses 10-fold cross-

validation method to determine the model prediction 
accuracy, that is, all sample data in the data set are 
divided into 10 parts, in which 9 pieces of data are used 
as training samples, and the remaining data are used as 
test samples. The program runs 10 times, each sample 
data is used as a test sample to verify the effect of the 
prediction model, finally, the mean values of the mean 
absolute error (MAE), mean absolute percentage error 
(MAPE) and mean square error (MSE) between the 
predicted data and the actual data after the program has 
been run for 10 times are calculated. 

Figure 2 shows the optimal fitness of the 
LSSVM prediction model optimized by the three algo-
rithms on the UCI data set. As can be seen from the 
figure, the LSSVM prediction model optimized by the 
FWA algorithm proposed in this paper has the highest 
fitness through iterative search, indicating that its fea-
ture selection and parameter optimization abilities are 
stronger compared to LSSVM prediction models opti-
mized by GA and PSO algorithms. In addition, the 

GA-LSSVM prediction model prematurely entered the 
premature state, resulting in being trapped in a local 
optimum. 

 
Fig. 2. The best fitness of the three optimization 

algorithms on the UCI dataset 
 

Table 3. Comparison of prediction accuracy results 

Algorithm Evaluation index Machine_CPU Servo_data California_Housing Auto_price 

LSSVM 
MAE 2.365 8.365 1.322 8.373 

MAPE（%） 12.36 6.325 8.332 6.325 
MSE 1.963×10-1 6.372×10-1 4.686×10-1 6.372×10-2 

GA-LSSVM 
MAE 1.673 6.325 0.843 5.385 

MAPE（%） 8.372 6.022 6.272 4.234 
MSE 1.523×10-1 4.383×10-1 1.575×10-1 5.690×10-2 

PSO-LSSVM 
MAE 1.236 4.226 0.432 3.258 

MAPE（%） 5.653 5.361 3.256 2.584 
MSE 9.852×10-2 2.617×10-1 8.454×10-2 3.262×10-2 

FWA-LSSVM MAE 0.832 1.332 0.158 1.562 
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MAPE（%） 2.381 2.866 1.324 1.256 
MSE 3.462×10-2 1.321×10-1 4.386×10-2 1.386×10-2 

 
Table 3 is a comparison table of prediction 

errors between the traditional LSSVM model and the 
three optimized LSSVM models. As is shown in the 
table, the LSSVM model optimized by the FWA algo-
rithm has more accurate data prediction on the UCI 
dataset than the traditional LSSVM model, GA-
LSSVM model, and PSO-LSSVM model. Its average 
absolute error (MAE), mean absolute percentage error 
(MAPE), and mean squared error (MSE) between the 
predicted value and actual value are smaller than the 
other three prediction models, which fully demon-
strates that the FWA-LSSVM model has smaller pre-
diction errors and higher accuracy compared to the 
other three models. Therefore, the FWA-LSSVM 
prediction model can effectively improve the accuracy 

of model prediction, verifying the effectiveness and 
superiority of the FWA-LSSVM prediction model. 
 
Experimental verification and analysis 

To verify the effectiveness of the method 
proposed in this paper in the prediction of the state 
parameters of the ball mill, a small experimental ball 
mill of model 𝜑𝜑330 𝑚𝑚𝑚𝑚 × 330 𝑚𝑚𝑚𝑚  was used for 
experiments, its motor power is 0.75kw. In the 
experiment, tungsten ore was used as the material, its 
density was 1800Kg/m3, and 𝜑𝜑50 𝑚𝑚𝑚𝑚 steel ball was 
used for the experiment, the experimental schematic 
diagram is shown in Figure 3. 

 

 
Fig. 3.  Schematic diagram of experimental device 

 
The DH131 acceleration sensor is selected to 

measure the vibration of the ball mill cylinder, and the 
DH5922N dynamic data acquisition instrument is used 
to collect the vibration signal. In this experiment, the 
sampling frequency of the data acquisition instrument 
is 20kHz, and the number of sampling points is 20000. 
Take the filling rate(the percentage of the material 
volume in the ball mill equipment in the effective 
volume of the mill) of 0.2, 0.3, 0.4, 0.5, the material-
to-ball ratio(the ratio of the material in the ball mill to 
the mass of the grinding steel ball) of 0.5, 0.6, 0.7, 0.8, 
0.9, 1.0, 1.1, 1.2 and the speed of 40r/min, 50r/min, 
60r/min as the state parameters to collect the vibration 
signal of the ball mill barrel area Of multiple samples. 
The experimental device is shown in Figure 4. Figure 
4(a) is the vibration signal collection experimental 
system of the mill barrel, and Figure 4(b) is the 
vibration signal collection location of the mill barrel. 
The vibration sensor is installed within the impact 
zone of the balls in the ball mill cylinder, and the signal 
collected at this location is the most reflective of the 
ball impact and load status information in the cylinder 
compared to other locations. Figure 4(c) is the data 
acquisition interface. In order to reduce the impact of 
noise on the signal as much as possible, set the 
sampling frequency to more than 5 times the 

maximum frequency of the mill cylinder vibration 
signal. 
 

 
(a) Signal acquisition experimental system 
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(b) Vibration signal collection location 

 

 
(c) Signal acquisition interface 

Fig. 4. Vibration signal acquisition platform of ball 
mill 

 
Simulation analysis and experimental comparison 
of the parameter prediction model of the mill 
working state 

The FWA-LSSVM model is used to establish a 
ball mill working state parameter prediction model. 
The working state parameters and actual values of the 
mill predicted by the training samples are shown in 
Figure 5. 

From Figure 5, it can be seen that the working 
state parameters predicted by the FWA-LSSVM 
model are basically consistent with the actual values. 
Although there is a slight difference between the 
predicted values and the actual values of some 
working state parameters, the overall prediction 
accuracy is high, which can accurately achieve the 
purpose of predicting the working state parameters of 
the grinder.  

It can be seen from Table 4 that the mill working 
state parameter prediction model based on the FWA-
LSSVM algorithm can more accurately predict the 
working state parameters of the ball mill. The 
prediction accuracy of filling rate, material-ball ratio 
and rotational speed of the mill has been greatly 
improved compared with the traditional prediction 
model of LSSVM algorithm. 

 

 
(a) Filling rate 

 
(b). Material to ball ratio 

 
(c). Rotating speed 

Fig. 5.  Comparison of predicted values and actual 
values of mill working state parameters based on 

FWA-LSSVM model 
 

Table 4. FWA-LSSVM mill working state parameter 
prediction error table 

State parameter MAE MAPE (%) MSE 
Filling rate 0.0058 2.14 1.5×10-4 

Material to ball ratio 0.0054 0.75 1.26×10-4 
Rotating speed 0.22 0.049 0.3 
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To further verify the prediction performance of 
the mill working state parameter prediction model 
based on the proposed algorithm, the prediction model 
based on the GA-LSSVM algorithm and the prediction 
model based on the PSO-LSSVM algorithm were used 
to predict the working state parameters of the mill. 
Figure 6 is a comparison diagram between the pre-
dicted results and the actual values of the mill operat-
ing parameters for the prediction models of the three 
different algorithms. 

As can be seen from Figure 6, compared with 
GA-LSSVM and PSO-LSSVM, the prediction model 
of mill working state parameters based on FWA-
LSSVM algorithm has higher accuracy of media fill-
ing rate, material-ball ratio and speed, especially in the 
prediction of mill speed. The prediction results of GA-
LSSVM algorithm prediction model and PSO-
LSSVM algorithm prediction model differ greatly 
from the actual value, while the difference between the 
prediction results of FWA-LSSVM prediction model 
and the actual value is small. 
 

 
(a). Filling rate 

 

 

 
(b). Material to ball ratio 

 

 
(c) Rotating speed 

Figure 6 Comparison of predicted values and actual 
values of mill working state parameters under three 

different prediction models 

Table 7 Comparison of prediction errors of three mill working state parameter prediction models 

algorithm State parameter MAE MAPE(%) MSE 

GA-LSSVM 
Filling rate 0.036 12.6 0.095 

Material to ball ratio 0.0298 4.1 0.0013 
Rotating speed 3.22 6.93 12.42 

PSO-LSSVM 
Filling rate 0.0136 4.75 3.52×10-4 

Material to ball ratio 0.0162 2.36 4.5×10-4 
Rotating speed 2.36 1.92 1.98 

FWA-LSSVM 

Filling rate 0.0058 2.14 1.5×10-4 
Material to ball ratio 0.0054 0.75 1.26×10-4 

Rotating speed 0.22 0.049 0.3 
 

According to the analysis in Table 7, the MAE 
and MSE between the predicted results and the actual 

values of the mill working state parameter prediction 
model of the algorithm proposed in this paper are the 
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smallest, which shows that compared to the GA-
LSSVM algorithm prediction model and PSO-
LSSVM algorithm prediction model, FWA-LSSVM 
algorithm prediction model has higher prediction 
accuracy; at the same time, its average absolute 
percentage error is smaller than the other two 
prediction models, which shows that the FWA-
LSSVM algorithm model has the most predictive 
stability. 

 
Conclusion 

 
This study carried out the prediction of the ball mill 
state parameters, built the prediction model of the ball 
mill state parameters using FWA-LSSVM algorithm, 
and verified the algorithm with the ball mill vibration 
signal, and the following conclusions were obtained. 
(1). Using LSSVM algorithm to establish a ball mill 

working state parameter prediction model, and 
using FWA algorithm to optimize the radial basis 
kernel function parameter 𝛿𝛿2 and penalty coeffi-
cient 𝛾𝛾 of the LSSVM model, then the effective-
ness of the algorithm is verified by predicting the 
standard UCI data set, and compared with the GA-
LSSVM algorithm and the PSO-LSSVM algo-
rithm, the results show that the FWA-LSSVM 
model has better prediction performance. 

(2). Through the experimental analysis of the predic-
tion model of the working state parameters of the 
ball mill, the FWA-LSSVM algorithm prediction 
model has the smallest MAE and the MSE 
between the predicted result and the actual result, 
and its prediction accuracy for the working state 
parameters of the mill is significantly higher than 
the GA-LSSVM algorithm and the PSO-LSSVM 
algorithm prediction model. 

(3). The MAPE of the FWA-LSSVM algorithm pre-
diction model is lower than that of the other two 
optimized LSSVM models, indicating that the 
mill working state parameter prediction model 
based on the FWA-LSSVM algorithm has the best 
prediction stability. The research results of this 
paper will lay a technical foundation for reducing 
the energy consumption in the grinding process 
and optimizing the ball mill control process, 
which has important theoretical significance and 
engineering application value. 
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基於FWA-LSSVM模型的

球磨機狀態參數預測方法 
 

羅小燕    徐華誌    湯文聰    盧文海 
江西理工大學機電工程學院 

 
 

摘 要 
 

針對球磨機磨礦過程中難以準確判斷球磨機

工作狀態參數的問題，提出了壹種基於煙花算法

(FWA)優化最小贰乘支持向量機(LSSVM)的球磨

機工作狀態參數預測方法。首先，利用LSSVM算法

建立球磨機運行狀態參數的預測模型，並利用

FWA算法優化LSSVM模型的徑向核函數參數和懲

罰因子；然後提取磨機筒體振動信號的時域特徵、

頻譜特徵和熵值特徵，構成壹組特徵向量；最後，

將特徵向量作為煙花算法優化最小贰乘支持向量

機（FWA-LSSVM）的輸入，以料球比、轉速和填

充率作為輸出，建立了磨機狀態參數預測模型。通

過磨礦實驗證明了該方法的優越性。結果表明，採

用FWA算法優化的LSSVM模型與遺傳算法(GA)和
粒子群(PSO)優化算法相比，填充率、料球比和轉

速的預測值與實際值之間的誤差較小，表明球磨機

狀態參數預測模型具有較高的精度和穩定性。 


