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ABSTRACT 
 

Besides stress, the fatigue failure of part is also 
affected by the fatigue strength of materials. 
Therefore, it is necessary to predict the fatigue 
strength of materials before analyzing fatigue life. 
Considering the factors with uncertainty that affect 
the fatigue strength, the modified factors of fatigue 
are determined, and the stochastic fatigue strength is 
predicted. Among them, the distribution type and 
parameters of roughness factor are analyzed by 
improving Bootstrap method, which provides a 
method to analyze small samples. Moreover, the S-N 
curve cluster that characterizes the fatigue property is 
obtained, which provides a basis for fatigue life 
prediction. 
 

INTRODUCTION 
 

Recently the fatigue failure of mechanical 
components has been gradually analyzed (Li, et al., 
2019; Zhu, et al., 2019, Wang, et al., 2017 and Liu et 
al., 2020). Based on life distribution of multifailure 
modes was described by Bayes clustering, the 
relationship between distribution parameters and 
stress was established, and the ultimately unified 
probabilistic S-N curve was modeled (Wang, et al., 
2018). The fatigue failure is not only related to the 
stress, but also depends on the fatigue strength of 
material (Tasi, et al., 2015, Wang et al., 2021 and Liu, 
et al., 2022). Therefore, only by predicting the fatigue  
 
 
 
 
 
 
 
 
 
 
 

strength of parts be better predicted (Zeng, et al., 
2015). Leuders et al. (2015) predicted the fatigue 
strength for Titanium alloy and optimized the 
prediction accuracy. Instead of the common fatigue 
test, Wu et al. (2013) performed the HV test to 
predict the fatigue strength of FCC metal. 
Considering the effect of residual stress (Park, et al., 
2014), surface treatment (Guagliano, et al., 2004; 
Sakamoto, et al., 2015 and Luo, et al., 2018) and 
harness on fatigue performance, Yuan and Li (2017) 
proposed a new model for fatigue strength prediction. 
In addition, Wu et al. (2016) proposed an indirect 
probability model to evaluate reliability of 
multi-body mechanisms. And Liu et al. (2021) 
proposed a dynamic reliability model with mixed 
uncertain parameters based on the uncertainty of 
parameters in structural dynamic reliability analysis. 
Other researches of fatigue can be studied by Wang 
et al. (2019) and Mossaab et al. (2019). 

Though the goodness-of-fit Chi-square test 
(Temme, et al., 2015), moment estimation (Zhao, et 
al., 2016) and maximize likelihood estimation 
(Coretto, et al., 2011) have been widely used in 
statistical inference, they are not applicable for that of 
small sample data. Due to the limitation of data 
observation, parameter estimation of small sample 
has been increasingly studied in many fields, such as 
national defense, environment and healthy (Hansen, 
et al., 2007) by methods of Bayes (Cumming, et al., 
2009), Bootstrap (Dwivedi, et al., 2017) and Monte 
Carlo (Vořechovský, et al., 2009 and Vořechovský, et 
al., 2012). For Bootstrap proposed by Efron (1979), 
repeated sampling is continuously operated to convert 
small sample into large sample. Bootstrap is 
relatively efficient for parameter estimation of small 
sample, but inevitably there exists an error because 
the sample parameter is used to replace the original 
parameter for each sampling (Fu, et al., 2005 and 
Dwivedi, et al., 2017). To reduce the error, the 
original sample size needs to be expanded (Wang, et 
al., 2019 and Zhang, et al., 2018). Ge et al. (2021) 
introduced the error circle to evaluate fisheye size, 
and discussed the influencing factors of fatigue 
strength. Therefore, this paper proposes that the 
original sample is expanded using normal distribution 
before the estimation by Bootstrap. 
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This paper mainly discusses the prediction of 
stochastic fatigue strength for low alloy steel AISI 
8630M, and that is organized as follows. In section 2, 
quantitative model of fatigue strength affected by 
mechanical behavior of materials is established. In 
section 3, various fatigue modified factors that affect 
the fatigue strength are determined considering the 
different working conditions for wheel hub. In section 
4, the distribution characteristic of fatigue strength is 
analyzed, and then the S-N curve cluster that describe 
the fatigue properties are obtained. Finally, in section 
5, the conclusions are summarized. 
 

THE QUANTITATIVE MODEL OF 
FATIGUE STRENGTH 

 
In practical engineering, the fatigue strength of 

structures is affected by many uncertain factors, such 
as geometric size, material properties, load and 
temperature. So the fatigue strength is also an 
uncertain variable. Currently, fatigue test is used to 
study the fatigue characteristics of low alloy steel, 
and fatigue test data of AISI 8630M low alloy steel 
are selected to predict fatigue strength of wheel hub 
(Wormsen, et al., 2015). 

Mischke (1987) and Nisbett-Budynas (2006) 
proposed a method for the prediction of stochastic 
fatigue strength. Then the relationships between the 
fatigue limits of sample, actual part and the tensile 
strength are shown as:  

utde SφS
0

=′               (1) 

ute SφS =                (2) 

)146.0,1(440.0 1133.0
00
−= dφd         (3) 

where eS ′  is the fatigue limit of sample, eS  is the 
actual part, utS  is the tensile strength and 

0dφ is the 
proportional coefficient for the sample diameter of 

0d . 
In this paper, the sample diameter is taken as 

0d =8mm=0.315in and utS =771MPa=110.143kpsi. 
According to Eq. (3) and (1), 

0dφ and eS ′  can be 
obtained as 

0dφ =0.502(1, 0.146)=(0.502, 0.073), 

eS ′ =55.292(1, 0.146) = (55.292, 8.073)kpsi. Then the 
mean and standard deviation of 

0dφ  and eS ′  are 
expanded to the intervals under the interval level of 

1γ =5% and 2γ =0.5%, respectively. Therefore, 

0dφμ =[0.477, 0.527], 
0dφσ =[0.069, 0.077], 

eSμ ′ =[55.016, 55.568], 
eSσ ′ =[8.033, 8.113].  

The factors of affecting fatigue strength was 
introduced by Marin (1962), that mainly includes the 
chemical composition, dimension, heat treatment, 
stress concentration, machined surface, temperature 
and loading. Shigley et al. (1983) put forward a 
method to quantify the factors that affect the fatigue 
strength, and formulated the relationship between the 

fatigue limit of sample and actual part as follows: 
eredcbae SkkkkkkS ′=            (4) 

where rk , ak , bk , ck , dk  and ek  are modified 
factors that characterize the effect of roughness, 
surface, dimension, loading, temperature and 
miscellaneous effect roughness on the fatigue 
strength. 
 

DETERMINATION OF FATIGUE 
MODIFIED FACTORS  

 
Roughness Factor 

In mathematical statistics and engineering 
research, the type and parameter of the overall 
distribution can be deduced by statistics inference, 
and includes hypothesis testing and parameter 
estimation. Then small sample fatigue test data of 
AISI 8630M is analyzed to obtain the distribution 
type and parameters. 
Non-parametrical Hypothesis Testing of Small 
Sample Data 

At present, the fatigue properties of different 
materials were studied by many researchers via 
fatigue test (Chen, et al., 2018 and Liu, et al., 2010). 
And the fatigue test of low alloy steel was introduced 
by Wormsen et al. (2015), which included the 
operation process, sample selection and loading stress, 
as well as obtained the test data of different low alloy 
steel. In this paper, the fatigue test data of AISI 
8630M under pulsating cyclic load shown in Table 1 
is selected to predict the fatigue strength of wheel 
hub. 
 

Table 1. The fatigue test data of AISI 8630M 
(Wormsen, et al., 2015) 

Sample 
No. 

Roughness 
Ra    

Max. 
Stress Smax 

(MPa) 

Min. 
Stress Smax 

(MPa) 
Sycles 

U1 3.4 400 -400 17763 
U2 3.3 375 -375 472044 
U3 3.2 375 -375 282400 

U39 3.1 375 -375 253600 
U40 3.1 400 -400 55958 
U41 3.2 375 -375 223224 
U42 3.2 375 -375 199337 
U43 3.3 363 -363 151781 
U44 3.3 363 -363 232133 
U45 3.4 363 -363 166092 
U46 3.4 350 -350 187233 
U47 3.5 350 -350 200719 
U48 3.5 350 -350 281634 

 
The Goodness-of-fit Chi-square test is widely 

used in the non-parametrical hypothesis testing. And 
due to the deviation level between the actual and 
theoretical distribution is increased, it cannot be well 
applied to small sample data. Fisher (1922) proposed 
the exact probability method to well solve the 
hypothesis testing of small sample data. The test can 
be mainly carried out as: (1) The test statistic 2χ  is 
firstly calculated by the Goodness-of-fit Chi-square 
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test. (2) The all combinations that satisfy 
nAAA m =+++ ...21  are listed by exhaustive method 

and then the chi-square 2
iχ  of each combination is 

calculated, where the combination number is 
K=(n+m+1)!/n!/(m-1)! and m is the divided interval 
number. (3) The probability of each combination iP  

is also calculated as ∏∏
==

=
m

j
j

m

j

A
ji AπnP j

11

!/!  , and 

1
1

=∑
=

K

i
iP . (4) Finally, the exact probability eP  can 

be obtained by summing up the probability iP  that 
satisfies 22 χχi ≥ . If eP >0.05, there is no significant 
difference and the original hypothesis 0H is 
acceptable. That is, the variable X follows a certain 
hypothetical distribution. 

The exact probability method can be used to 
test whether the sample roughness aR  follows the 
normal distribution. And the original hypothesis can 
be shown as follows: 

)()(:0 σ
μRφRFH a

a
−

= ; )()(:1 σ
μRφRFH a

a
−

≠  

The calculation results of 2χ sample value are 
shown in Table 2. 
 
Table 2. The calculation results of 2χ sample value 

i Interval 
Actual 

frequency 
vi 

Probability 
estimation 

ip̂  

Excepted 
frequency ipnˆ  

1 (-∞, 3.3) 5 0.5 6.5 
2 [3.3, 3.4] 3 0.2794 3.6322 
3 (3.4, +∞) 5 0.2206 2.8678 

 

And the test statistic 4015.2
ˆ

)ˆ(
3

1

2
2 =

−
=∑

=i i

ii
pn

pnνχ . 

The sample number n=13 and the number of 
divided interval m=3, so the combination number that 

satisfies 13
3

1

=∑
=i

iν  is K=(n+m-1)!/n!/(m-1)!=105. 

Then the chi-square 2
iχ  and probability iP  of each 

combination can be calculated as follows: 

8678.2
)8678.2(

6322.3
)6322.3(
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ννν

i νννnP iii=        (6) 
After the chi-square 2

iχ  and probability iP  
of 105 combinations are calculated, the probability 

iP  that satisfies 22 χχi ≥  are summed up and then 
the exact probability eP =0.36238>0.05. Therefore, 

0H  is acceptable. And the roughness aR  follows 
the normal distribution.  
Parameter Estimation of Small Sample Data 

To analyze the distribution characteristic of 

aR , the distribution type and the parameters need to 
be determined. For the large and small sample data, 
there are corresponding method to estimate the 
parameter. In this paper, the point estimation and 
interval estimation of 

aRμ are carried out and 
compared by maximum likelihood estimation (MLE) 
method and modified Bootstrap method, respectively. 

For the variable aR  that follows the normal 
distribution, the point estimation of mean 

aRμ  by 
MLE can be given as Eq. (7). If the standard 
deviation 

aRσ  is unknown, the confidence interval 
of 

aRμ  under the confidence level of β−1  can be 
obtained as Eq. (8) and (9). The estimation results are 
shown in Table 3. 

aR Rμ
a
=ˆ                   (7) 

))1(),1(( 2/12/1 −+−− −− nt
n

SRnt
n

SR βaβa      (8) 

)(
1
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1

2
a

n

i
ai RnR

n
S −

−
= ∑

=

            (9) 

where aiR  (i=1, 2,…, 13) is the sample data, aR  is 
the mean of sample data and S is the sample standard 
deviation. 

Different with the MLE method, the Bootstrap 
method is more suitable for parameter estimation of 
small sample data, which was proposed by Efron 
(1979). Essentially the Bootstrap is to convert the 
small sample into large sample by continuously 
sampling from the sample data, and the size of small 
sample data is 30≤n ( Sheng, et al., 2008). After 
each sampling, the parameter of sample data can be 
replaced by the parameter estimation of sub sample 
data. In this paper, the sampling number N is selected 
as 10000. The point estimation and confidence 
interval of aRμ  are shown in Table 3. 

Unfortunately, the parameter replacing with 
repeated sampling could inevitably lead to errors by 
Bootstrap. To reduce the errors, the original sample 
data is expanded using normal distribution before the 
parameter estimation by Bootstrap. 

The each sample data aiR  (i=1, 2,…, 13) is 
firstly expanded to the interval )]1(),1([ αRαR aiai +−  
under different significance level of α =0.1%, 0.2%, 
0.5%, 1%, 2%, 5%, and then aiR  is taken as the 
center to generate some data according to normal 
distribution ),( 2

ii σμN  in this interval. Assuming 
that the each sample data aiR  is expanded in the 
confidence interval under the confidence level of 
1- β =95%, the Eq. (10) is established as follows: 

],[)]1(),1([ 2/12/1 iβiiβiaiai σuμσuμαRαR −− +−=+−  (10) 

And if aii Rμ = , then there exists that 
iβai σuαR 2/1−= , so 96.0// 2/1 αRuαRσ aiβaii == − . 

After expanding the each sample data, the 
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Bootstrap method is adopted to determine the point 
estimation and confidence interval of μRa. The 
parameter distribution diagrams of μRa at significance 
level α=0.1% is shown in Fig.1. And the parameter 
distribution diagrams of μRa at other significance 
level are similar to Fig. 1. Then the point estimation 
and confidence interval are shown in Table 3. 
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Fig. 1. Parameter distribution diagrams of μRa at 

α=0.1% 
 
Table 3. Point estimation and confidence interval of 

μRa at significance level α 

α 
Point Estimation Confidence 

Interval 
Interval 
Length Estimati-

on 
Expec
-tation Error 

MLE 
Method 3.3 3.3 0 (3.218200, 

3.381800) 0.163600 

Bootstrap 
Method 3.3007 3.3 0.0007 (3.230800, 

3.369200) 0.138400 

α=0.1% 3.299939 3.3 0.000061 (3.293157, 
3.306800) 0.013643 

α=0.2% 3.300378 3.3 0.000378 (3.293406, 
3.307305) 0.013899 

α=0.5% 3.299273 3.3 0.000727 (3.292274, 
3.306394) 0.014120 

α=1.0% 3.301152 3.3 0.001152 (3.293976, 
3.308172) 0.014196 

α=2.0% 3.298713 3.3 0.001287 (3.291517, 
3.305812) 0.014295 

α=5.0% 3.297075 3.3 0.002925 (3.289025, 
3.305197) 0.016172 

 
According to Ref. (Wormsen, et al., 2015), the 

roughness factor kr can be used to characterize the 
surface roughness of material (Liu et al., 2021), and it 
can be calculated as follows:  

)
200

lg()4lg(22.01 ut
ar

SRk −=         (11) 

where aR  is the roughness, utS  is the tensile 
strength. In this paper, utS  is taken as 771MPa for 
the low alloy steel AISI 8630M (Wormsen, et al., 
2015). 

According to the sample data of roughness aR  
in Table 1 and Eq. (11), the sample data of roughness 
factor rk  can be obtained. Similar to the research 
method for aR  in above, rk  also follows the 
normal distribution, and the point estimation and 
confidence interval of rkμ  by different methods are 
shown in Table 4.  

As shown in Table 3 and 4, with the increase of 
significance level α, the errors between estimation 

and expectation gradually increase. Moreover, the 
confidence interval lengths of aRμ and rkμ  increase 
under the same confidence level, that is, the interval 
estimation accuracy of aRμ and rkμ decreases. 
 

Table 4 Point estimation and confidence interval of 
rkμ at different significance level α 

α 
Point Estimation 

Confidence 
Interval 

Interval 
Length Estimati-

on 
Expectati

-on Error 

MLE 
Method 0.8556 0.8556 0 (0.854200, 

0.856900) 0.002700 

Bootstrap 
Method 0.8556 0.8556 0 (0.854500, 

0.856800) 0.002300 

α=0.1% 0.855569 0.8556 0.000031 (0.855448, 
0.855689) 0.000241 

α=0.2% 0.855561 0.8556 0.000039 (0.855437, 
0.855682) 0.000245 

α=0.5% 0.855489 0.8556 0.000111 (0.855337, 
0.855647) 0.000310 

α=1.0% 0.855788 0.8556 0.000188 (0.855545, 
0.856030) 0.000485 

α=2.0% 0.855774 0.8556 0.000174 (0.855359, 
0.856200) 0.000841 

α=5.0% 0.856247 0.8556 0.000647 (0.855235, 
0.857271) 0.002036 

 
Comprehensively considering the interval 

estimation results of aR  and rk , the significance 
level can be taken as α=0.1%. Therefore, the 
confidence intervals of aR  and rk  under the 
confidence level of 0.95 are (3.293157, 3.306800) 
and (0.855448, 0.855689), respectively. Comparing 
the confidence interval lengths by MLE method, 
Bootstrap method and the method of expanding 
sample data using the normal distribution, the interval 
estimation accuracy is effectively improved by 
91.07% and 89.52%, respectively. 

The point estimation of roughness coefficient 
rk  is 0.855569, and the confidence interval under the 

confidence level of 0.95 is (0.855448, 0.855689). 
Similar to the research method in above, 0.855569 is 
taken as the center to generate some data in the 
interval (0.855448, 0.855689) according to the 
normal distribution, and then the mean and standard 
deviation are estimated as 0.85557 and 0.000050 by 
MLE. That is, rk =(0.85557, 0.000050)=0.85557(1, 
0.000058). Similarly, the mean and standard 
deviation are expanded to the intervals under the 
interval level of %5.02 =γ , so rkμ =[0.85129, 
0.85985], rkσ =[0.000049, 0.000051]. 
Surface Modified Factor 

The determination of surface modified factor 
ak  depends on the processing method of sample 

surface and the tensile strength of material. For the 
deterministic variable, the relationship between ak  
and utS  can be shown as follows: 

b
uta aSk =                 (12) 

where a and b are constants, the determination 
method of which is shown in Table 5 
(Budynas-Nisbett, 2006). In this paper, the sample 
surface is processed by machined, so a=2.70，
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b=-0.265. 
For the uncertain variable, ak  can be 

calculated as 265.0)060.0,1(70.2 −= uta Sk =0.776(1, 
0.060)=(0.776, 0.047) (Budynas-Nisbett, 2006). 
Similarly, the mean and standard deviation are 
expanded to the intervals under the interval level of 

%51 =γ , so 
akμ =[0.737, 0.815], 

akσ =[0.045, 0.049]. 
 

Table 5. The method of determining a and b 
(Budynas-Nisbett, 2006) 

Surface Processing 
Method 

a b Sut (kpsi) Sut (MPa) 
Ground 1.34 1.58 -0.085 

Machined/Cold-Drawn 2.70 4.51 -0.265 
Hot-Rolled 14.4 57.7 -0.718 
As-Forged 39.9 372 -0.995 

 
Dimension Modified Factor 

The determination of dimension modified 
factor bk  mainly depends on the type of loading that 
the part bears (Mischke, 1987), and which is shown 
as Eq. (13). 







=
−

1
)3.0/( 1133.0

0dkb          (13) 

where 0d  is the sample diameter. 
The wheel hub is mainly subjected to bending 

and torsion loading, so kb=(0.315/0.3)-0.1133=0.994. 
Then kb is expanded to the interval under the interval 
level of 2γ =0.5%, that is bk =[0.989, 0.999]. 
Loading Modified Factor 

The determination of loading modified factor 
ck  also mainly depends on the type of loading that 

the part bears (Mischke, 1987). For the deterministic 
variable, ck  can be determined as follows: 










=

0

0

/

/
)0,1(

dt

daxc

φφ

φφk                (14) 

where axφ  and tφ  are the proper factors in 
equation ute SφS =′  for axial and torsion loading, 
respectively, and axφ =0.390(1, 0.310), tφ =0.295(1, 
0.269) (Mischke, 1987), 0dφ =0.502(1, 0.146). 

And the wheel hub is mainly subjected to 
bending and torsion loading, so 0

/ dtc φφk = =0.587(1, 
0.123)=(0.587, 0.072). Similarly, the mean and 
standard deviation are expanded to the intervals 
under the interval level of 1γ =5%, so ckμ =[0.558, 
0.616], ckσ =[0.068, 0.076]. 
Temperature Modified Factor 

The effect of temperature on fatigue strength is 
shown that the fatigue strength decreases with the 
increase of temperature and increases with the 
decrease of temperature. When the service 
temperature FTF F

 100070 ≤≤ , the temperature 
modified factor dk  can be determined as follows: 

41238

253

)10(595.0)10(104.0

)10(115.0)10(432.0975.0

FF

FFd

TT

TTk
−−

−−

−

+−+=    (15) 

Generally the temperature of wheel hub is 
C65 , that is, FTF

149= . According to Eq. (15), the 
temperature modified factor is obtained as dk =1.017. 

dk  is expanded to the interval under the interval 
level of 2γ =0.5%, so dk =[1.012, 1.022]. 
Miscellaneous Effect Modified Factor 

The miscellaneous effect on fatigue strength 
mainly including the residual stress, corrosion, 
electroplating, shot peening, case hardening and cold 
rolling. The fatigue strength is increased by the 
residual compressive stress and reduced by the 
residual tensile stress. Moreover, the fatigue strength 
can be improved by shot peening. In this paper, the 
effect of miscellaneous effect on fatigue strength is 
not considered. Therefore, the miscellaneous effect 
modified factor ek =1. 

In summary, the each modified factors that 
affect the fatigue strength are determined in Table 6. 
 

Table 6. Each modified factors that affect the 
fatigue strength 

ka kb kc kd ke kr 
0.776(1, 
0.060) 0.994 0.587(1, 

0.123) 1.017 1 0.85557(1, 
0.000058) 

 
According to Eq. (1), (4) and (14), the fatigue 

limit of actual part eS  can be converted as follows: 
uttrdbae SφkkkkS =           (16) 

According to the modified factors in Table 6, 
the coefficient of variation eSC  can be obtained as 
Eq. (17), and then the mean eSμ  and standard 
deviation eSσ  can be obtained as Eq. (18) and (19). 

276.0222 =++=
tcae φkkS CCCC        (17) 

25.489kpsi=utφkkkkS Sμμμμμμ
trdbae

=     (18) 
7.035kpsi=

eee SSS Cμσ =         (19) 

Therefore, eS =(25.489, 7.035)=25.489(1, 
0.276)kpsi. The mean and standard deviation are 
expanded to the intervals under the interval level 
of 2γ =0.5%, so eSμ =[25.362, 25.616], eSσ =[6.990, 
7.060]. 
 
FATIGUE STRENGTH PREDICTION 

OF WHEEL-HUB 
 

The fatigue modified factors are determined, 
then the fatigue limit of wheel hub has been analyzed. 
For an actual part, the fatigue strength can be written 
as follows (Budynas-Nisbett, 2006): 

d
f cNS =              (20) 
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where c and d are constants, fS  is the fatigue 
strength of wheel hub, utS  is the tensile strength, 

eS  is the fatigue limit of wheel hub, f is the ratio of 
the sample fatigue strength 310)( fS ′  and tensile 
strength utS  under the cycle number N=103. 

The determination of f can be carried out by 
two methods, which are shown as follows: 
(1) For the tensile strength utS <490MPa (70kpsi), 
f=0.9; For 490MPa (70kpsi) ≤≤ utS 1400MPa 
(200kpsi), f can be obtained according to Fig.2 
(Budynas-Nisbett, 2006). In this paper, 

utS =771MPa=110.143kpsi, so f=0.829. 
(2)  When utS =771MPa=110.143kpsi, the plastic 
stress 50+=′ utF Sσ =160.143kpsi (Budynas-Nisbett, 
2006). For the deterministic variable, the fatigue limit 
of sample ute SS 5.0=′ =385.5MPa=55.072kpsi, so 

)2lg(
)/lg(

e
eF

N
Sσd
′′

−= =-0.074 and 610=eN . Therefore, 

d

ut
F

S
σf )102( 3⋅
′

= =0.828. 

 

 
Fig. 2. The change curve of f 

 
According to Eq. (21), the mean and standard 

deviation of c can be obtained as follows: 
kpsi092.327/)( 2 ==

eSutc μfSμ        (22) 

kpsi278.90)(
2

2 =⋅=

e

e

S

S
utc

μ

σ
fSσ        (23) 

So c=(327.092, 90.278)=327.092(1, 0.276)kpsi. 
The mean and standard deviation are expanded to the 
intervals under the interval level of 2γ =0.5%, so 

cμ =[325.457, 328.727], cσ =[89.699, 90.601]. 
To obtain the mean and standard deviation of d, 

let 
e
ut

S
fSe = ， ed lg

3
1

−= , the mean and standard 

deviation of e are obtained as follows: 
582.3/ ==

eSute μfSμ          (24) 

989.02 =⋅=

e

e

S

S
ute

μ

σ
fSσ          (25) 

According to the definition of expectation and 
variance, the mean and standard deviation of d can be 
calculated as follows: 

181.0
2989.0
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1()( 2

2
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∞−∫ dxe
π

xdE
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(27) 

002.0)]([)()( 22 =−= dEdEdD         (28) 
045.0)( == dDσd           (29) 

So d=(-0.181, 0.045)=0.181(-1, 0.249). The 
mean and standard deviation are expanded to the 
intervals under the interval level of 1γ =5%, so 

dμ =[-0.190, -0.172], dσ =[0.043, 0.047]. 
After determining the mean and standard 

deviation, it is also necessary to analyze the 
distribution type of c and d. As shown previously, 

eS ~N (25.489, 7.0352), the interval for probability of 
0.95 can be obtained as 

],[ 975.0975.0 eeee SSSS σuμσuμ +− =[11.700, 39.278], and 
then 1000 sample data are generated randomly in this 
interval. According to Eq. (21), 1000 sample data of c 
are also obtained and the histogram is shown in Fig.3. 

As shown in Fig.3, the sample data of c shows 
the unimodality, which can be described by the 
normal, skewed, student and hyperbolic secant 
distributions, respectively, and then the Cramer-Von 
Mises statistic is adopted to test the fitting effect of 
each distribution. The distribution parameter 
estimations and probability density functions of 
sample data of c under different distribution models 
are shown in Table 7 and Fig. 3. 
 
Table 7．Distribution parameter estimations of sample 

data of c 
Distribution 

Model θ1 θ2 θ3 Wn
2 p 

Normal 360.098 100.652 - 3.511 5.637×10-9 
Skewed 231.529 163.282 12.232 0.247 0.192 
Student t 345.919 81.260 5.318 1.314 0.0005 

Hyperbolic 
secant 343.342 102.513 - 1.288 0.0005 

 

 
Fig. 3 Probability density functions of sample data of 

c under different distribution models 
 

As shown in Table 7, the statistic 2
nW  for 

skewed distribution is minimum and p=0.192>0.05, 
so the fitting effect of skewed distribution is better. 
Besides, the fitting effect of different distribution 
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model can be tested by p-p diagrams in Fig. 4-Fig. 7. 
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Fig. 4. p-p diagrams of sample data of c under normal 

distribution 
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Fig. 5. p-p diagrams of sample data of c under 

skewed distribution 
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Fig. 6. p-p diagrams of sample data of c under student 

t distribution 
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Fig. 6. p-p diagrams of sample data of c under 

hyperbolic secant distribution 
 

It can be seen from Fig. 5 that the fitting effect 
of skewed distribution is better. Therefore, the 
constant c approximately follows the skewed 
distribution (231.529, 163.282, 12.232). 

According to Eq. (21), 1000 sample data of d 
can also be obtained. Similar to the above research 
method, it can be known that the constant d 
approximately follows the skewed distribution 
(-0.147, 0.060, -3.756). 

In practical engineering, the S-N curve can be 
described the cycle number of loading when fatigue 
failure happens, which provides a basis for the 
fatigue life prediction of part. To analyze the fatigue 
curve more conveniently, the x-coordinate and 
y-coordinate are processed with logarithm as Eq. (30), 
and then the S-N curve is approximated as a straight 
line in the double logarithmic coordinate. 

NdcS f lglglg +=            (30) 
As shown previously, the fatigue limit of wheel 

hub eS ~N (25.489, 7.0352) and 
eSμ =[25.362, 

25.616], 
eSσ =[6.990, 7.060]. Then 25.362, 25.489 

and 25.616 are selected from the mean interval, and 
6.990, 7.025 and 7.060 are selected from the standard 
deviation interval, so three normal distributions N 
(25.362, 6.9902), N (25.489, 7.0252) and N (25.616, 
7.0602) are selected from a group of normal 
distributions, and that is following of eS . And five 
data are selected as 23.362, 24.362, 25.362, 26.362, 
27.362; 23.489, 24.489, 25.489, 26.489, 27.489; 
23.616, 24.616, 25.616, 26.616, 27.616 from three 
normal distributions, respectively. According to Eq. 
(21), three sets of data of c and d can also be obtained, 
and then the S-N curve cluster can be obtained in the 
rectangular coordinate and double logarithmic 
coordinate, respectively. That can be shown in Fig. 8 
and Fig. 9. 
 

 
Fig. 8. S-N curve cluster in rectangular coordinate 

 

 
Fig. 9. S-N curve cluster in double logarithmic 

coordinate 
 

CONCLUSIONS 
 

In this paper, the low alloy steel AISI 8630M is 
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taken as the research object, and the influencing 
factors of stochastic fatigue strength are analyzed, 
then fatigue strength is predicted. The main 
conclusions are summarized as follows: 

(1) A method of expanding sample data using 
the normal distribution is introduced to analyze the 
parameter estimation of small sample data. Compared 
with the traditional and Bootstrap methods, the 
interval estimation accuracy are improved by 91.07% 
and 89.52%, respectively. 

(2) The fatigue modified factors with 
uncertainty are determined from six aspects: surface, 
dimension, loading, temperature, miscellaneous 
effect and roughness, and then the stochastic fatigue 
strength is obtained as d

f cNS = , where c and d 
approximately follows the skewed normal 
distribution (231.529, 163.282, 12.232) and (-0.147, 
0.060, -3.756), respectively. 

(3) This data analysis method proposed in this 
paper can also be applied to the statistics inference of 
small sample data in other engineering fields. 
Moreover, the distribution characteristic of fatigue 
strength and S-N curve cluster obtained in this paper 
can provide a basis for the fatigue life prediction of 
wheel hub.  
 

CONFICTS OF INTEREST 
 

The authors declare no conflicts of interest.  
 

REFERENCES 
 
Budynas-Nisbett, “Shigley's mechanical engineering 

design”, 8th edition. McGraw-Hill Primis (2006). 
Chen W, Kitamura T, Feng M, “Creep and fatigue 

behavior of 316L stainless steel at room 
temperature: experiments and a revisit of a 
unified viscoplasticity model,” International 
Journal of Fatigue, Vol. 112 pp. 70-77 (2018). 

Coretto P, Hennig C, “Maximum likelihood 
estimation of heterogeneous mixtures of Gaussian 
and uniform distributions,” Journal of Statistical 
Planning & Inference, Vol. 141 No. 1 pp. 
462-473 (2011). 

Cumming JA, Goldstein M, “Small sample Bayesian 
designs for complex high-dimensional models 
based on information gained using fast 
approximations,” Technometrics, Vol. 51, No. 4, 
pp. 377-388 (2009). 

Dwivedi AK, Mallawaarachchi I and Alvarado LA, 
“Analysis of small sample size studies using 
nonparametric bootstrap test with pooled 
resampling method,” Statistics in Medicine, Vol. 
36, No. 14, pp. 2187-2205 (2017). 

Efron B, “Bootstrap methods: another look at the 
Jackknife,” The Annals of Statistics, Vol. 7, No. 1, 
pp. 1-26 (1979). 

Fisher RA, “On the mathematical foundations of 
theoretical statistics,” Philosophical Transactions 
of the Royal Society, Vol. 222, pp. 309-368 
(1922). 

Fu WJ, Carroll RJ and Wang S, “Estimating 
misclassification error with small samples via 
bootstrap cross-validation,” Bioinformatics, Vol. 
21, No. 9, pp. 1979-1986 (2005). 

Ge HY, Liu XT, Wang X, Wang XL, Wang HJ, 
“Effect of fisheye failure on material performance 
inducing error circle under high cycles,” 
International Journal of Damage Mechanics, doi: 
10.1177/10567895211020068 (2021).  

Guagliano M and Vergani L, “An approach for 
prediction of fatigue strength of shot peened 
components,” Engineering Fracture Mechanics, 
Vol. 71, No. 4, pp. 501-512 (2004). 

Hansen AM, Garde AH and Eller NH, “Estimation of 
individual reference intervals in small sample 
sizes,” International Journal of Hygiene & 
Environmental Health, Vol. 210, No. 3-4, pp. 
471-478 (2007). 

Leuders S, Vollmer M, Brenne F, et al., “Fatigue 
strength prediction for Titanium alloy TiAl6V4 
manufactured by selective laser melting,” 
Metallurgical & Materials Transactions A, Vol. 
46, No. 9, pp. 3816-3823 (2015).  

Li SS, Liu XT, Wang XL, Wang YS, “Fatigue life 
prediction for automobile stabilizer bar,” 
International Journal of Structural Integrity, Vol. 
11, No. 2, pp. 303-323 (2019).  

Liu XT, Kan FC, Wang HJ, Xin XF, Wang ZQ, 
Huang H, “Fatigue life prediction of clutch sleeve 
based on abrasion mathematical model in service 
period,” Fatigue & Fracture of Engineering 
Materials & Structures, Vol. 43, No. 3, pp. 
488-501 (2020).  

Liu XT, Wang HJ, Wu Q, Wang YS, 
“Uncertainty-based analysis of random load 
signal and fatigue life for mechanical structures,” 
Archives of Computational Methods in 
Engineering, doi: 10.1007/s11831-021-09579-6 
(2021).  

Liu XT, Wu Q, Su SC, Wang YS, “Evaluation and 
prediction of material fatigue characteristics 
under impact loads: review and prospects,” 
International Journal of Structural Integrity, doi: 
10.1108/IJSI-10-2021-0112 (2022). 

Liu XT, Yu XG, Tong JC, Wang X, Wang XL, 
“Mixed uncertainty analysis for dynamic 
reliability of mechanical structures considering 
residual strength,” Reliability Engineering & 
System Safety, Vol. 209, pp. 107472 (2021).  

Liu YJ, Kang GZ, Gao Q, “A multiaxial stress-based 
fatigue failure model considering 
ratcheting-fatigue interaction,” International 
Journal of Fatigue, Vol. 32, No. 4, pp. 678-684 
(2010). 



 
X.-T. Liu et al.: Prediction and Evaluation of Fatigue Strength via Mechanical Behavior of Materials. 
 

 -237- 

Luo SH, Nie XF, Zhou LC, et al., “High cycle fatigue 
performance in laser shock peened TC4 Titanium 
alloys subjected to foreign object damage,” 
Journal of Materials Engineering & Performance, 
Vol. 27, No. 3, pp. 1466-1474 (2018). 

Marin J, “Mechanical behavior of engineering 
materials,” Journal of the Franklin Institute 
(1962). 

Mossaab BM, Zemri M, Arab M, “Effect of medium 
carbon steel microstructure on tensile strength 
and fatigue crack growth,” International Journal 
of Structural Integrity, Vol. 10, No. 1, pp. 67-75 
(2019). 

Mischke CR, “Prediction of stochastic endurance 
strength,” Journal of Vibration Acoustics Stress 
& Reliability in Design, Vol. 109, No. 1, pp. 113 
(1987). 

Nykänen T, Björk T, Laitinen R, “Fatigue strength 
prediction of ultra high strength steel butt-welded 
joints,” Fatigue & Fracture of Engineering 
Materials & Structures, Vol. 36, No. 6, pp. 
469-482 (2013). 

Park YS, Sohn IS, Bae DH, “Fatigue strength 
assessment including welding residual stress of 
spot welded joints subjected to cross-tension 
loads,” International Journal of Automotive 
Technology, Vol. 15, No. 5, pp. 765-771 (2014). 

Sakamoto J, Lee YS, Cheong SK, “Effect of surface 
flaw on fatigue strength of shot-peened 
medium-carbon steel,” Engineering Fracture 
Mechanics, Vol. 133, pp. 99-111 (2015). 

Sheng Z, Xie QS, Xie CY, “Probability theory and 
mathematical statistics,” 4th ed. Biejing: High 
Education Press 149-171 (2008).  

Shigley JE, Mitchell LD, “Mechanical engineering 
design,” 4th edition. McGraw-Hill (1983). 

Tsai YT, Wang KS, “A study of reliability analysis of 
fatigue life for dental implants,” Journal of the 
Chinese Society of Mechanical Engineers 36(5): 
439-448 (2015). 

Temme K, Verstraete F, “Quantum chi-squared and 
goodness of fit testing,” Journal of Mathematical 
Physics, Vol. 56, No. 1, pp. 1804-4490 (2015). 

Vořechovský M, “Correlation control in small sample 
Monte Carlo type simulations II: Analysis of 
estimation formulas, random correlation and 
perfect uncorrelatedness,” Probabilistic 
Engineering Mechanics, Vol. 29, No. 7, pp. 
105-120 (2012). 

Vořechovský M, Novák D, “Correlation control in 
small-sample Monte Carlo type simulations I: A 
simulated annealing approach,” Probabilistic 
Engineering Mechanics, Vol. 24, No. 3, pp. 
452-462 (2009). 

Wang HJ, Liu XT, Wang XL, Wang YS, “Numerical 
method for estimating fatigue crack initiation size 
using elastic-plastic fracture mechanics method,” 
Applied Mathematical Modelling, Vol. 73, pp. 
365-377 (2019). 

Wang HJ, Liu XT, Zhang MH, Wang YS, Wang XL, 
“Prediction of material fatigue parameters for low 
alloy forged steels considering error circle,” 
International Journal of Fatigue, Vol. 121, pp. 
135-145 (2019). 

Wang HJ, Xuan FZ, Liu XT, “Prediction and 
evaluation of fatigue life under random load 
based on low load strengthening characteristic,” 
International Journal of Fatigue, Vol. 151, pp. 
106346 (2021).  

Wang ML, Liu XT, Wang XL, Wang YS, 
“Probabilistic modeling of unified S-N curves for 
mechanical parts,” International Journal of 
Damage Mechanics, Vol. 27, No. 7, pp. 979-999 
(2018). 

Wang ZQ, Chen W, “Confidence-based adaptive 
extreme response surface for time-variant 
reliability analysis under random excitation,” 
Structural Safety, Vol. 64, pp. 76-86 (2017). 

Wormsen A, Avice M, Fjeldstad A, et al., “Base 
material fatigue data for low alloy forged steels 
used in the subsea industry. Part 1: In air S–N 
data,” International Journal of Fatigue, Vol. 80, 
pp. 477-495 (2015). 

Wu H, Hamada S, Noguchi H, “Fatigue strength 
prediction for inhomogeneous face-centered cubic 
metal based on Vickers hardness,” International 
Journal of Fatigue, Vol. 48, No. 3, pp. 48-54 
(2013). 

Wu JN, Yan SZ, Zuo M, “Evaluating the reliability of 
multi-body mechanisms: A method considering 
the uncertainties of dynamic performance,” 
Reliability Engineering and System Safety, Vol. 
149, pp. 96-106 (2016). 

Yuan XL, Li CY, “An engineering high cycle fatigue 
strength prediction model for low plasticity 
burnished samples,” International Journal of 
Fatigue, Vol. 103, pp. 318-326 (2017). 

Zhang MH, Liu XT, Wang YS, Wang XL, 
“Parameters distribution characteristics of 
material fatigue life using improved bootstrap 
method,” International Journal of Damage 
Mechanics, Vol. 28, No. 5, pp. 772-793 (2019). 

Zhao S, Engelhardt BE, Mukherjee S, et al., “Fast 
moment estimation for generalized latent 
Dirichlet models,” Journal of the American 
Statistical Association, Vol. 113, No. 524, pp 
1528-1540 (2018).  

Zhu SP, Ding L, Liu Q, Correia JAFO, Jesus AMPDe, 
“Nonlinear fatigue damage accumulation: 
Isodamage curve-based model and life prediction 
aspects,” International Journal of Fatigue, Vol. 
128, pp. 105185 (2019). 

Zeng D, Tian G, Liu F, et al., “Fatigue strength 
prediction of drilling materials based on the 
maximum non-metallic inclusion size,” Journal of 
Materials Engineering & Performance, Vol. 24, 
No. 12, pp. 4664-4672 (2015). 

 



 
J. CSME Vol.43, No.3 (2022) 

 -238- 

NOMENCLATURE 
 

0d  sample diameter 
f  the ratio of sample fatigue strength and tensile 

strength 
ak  surface modified factor 

bk  dimension modified factor 

ck  loading modified factor 

dk  temperature modified factor 

ek  miscellaneous effect modified factor 

rk  roughness factor 
N  number of cycles 

eP  exact probability 
R  stress ratio 

aR  roughness 
'
eS  fatigue limit of sample 

eS  fatigue limit of actual part 

fS  fatigue strength 

maxS  maximum stress 

minS  minimum stress 
utS  tensile strength 

FT  service temperature 
2
nW  carmer-von mises statistic 
SΔ  stress range 

α  significance level 
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摘要 

零件的疲勞失效除受應力影響外，還受資料疲

勞強度的影響。囙此，在進行疲勞壽命分析之前，

有必要對資料的疲勞強度進行預測。考慮影響疲勞

強度的不確定性因素，確定了疲勞修正係數，並對

隨機疲勞強度進行了預測。其中，通過改進

Bootstrap方法分析了粗糙度因數的分佈類型和參

數，為小樣本分析提供了一種方法。得到了表徵疲

勞效能的S-N曲線簇，為疲勞壽命預測提供了依據。 


