
中國機械工程學刊第四十三卷第六期第 509~520 頁(民國一百一十一年) 
Journal of the Chinese Society of Mechanical Engineers, Vol.43, No.5, pp.509~520 (2022) 

-509- 
 

Prediction of Transonic and Subsonic Wind 
Tunnel Aerodynamic Data by Neural Networks 

 
 
 

Jun-Kai Ouyang*, **, Yi-Ting Liao*, Ying Li*** and Wei-Hsiang 
Wang**** 

 
 
 
Keywords: neural networks, wind tunnel, cavity flow, 

delta wing. 
 

ABSTRACT 
 
This study aims to build the backpropagation 

neural network model to predict wind tunnel aerody-
namic data. The experiments were performed to obtain 
the pressure fluctuation on compressible cavity flows 
in transonic wind tunnel and used different sweep 
angle delta wing model to obtain the aerodynamic data 
in subsonic wind tunnel, respectively. The experiments 
data is used as the training parameter for neural 
network to decide the neural network structure, tuning 
the adjustable hidden layers and neuron number 
parameters of the neural network. The Levenberg–
Marquardt (LM) technique is adopted as the weighting 
training algorithm to minimum the cost function. This 
article have established the neural network model to 
provide good agreement with experiments result. By 
using neural network technique, the wind tunnel test 
efficiency and aerodynamic data analysis can be 
significantly improved. 

 
INTRODUCTION 

 
Wind tunnel test has been a very important tools 

for the design of aircrafts, road vehicles and buildings. 
Depends on the velocity of flow fields and characteris-
tics of aerodynamic forces, the subsonic, transonic and 
hypersonic wind tunnel facilities are adopted for 
different purpose to analyze the phenomena of the flow 
fields. 

Regarding the transonic flow, Krishnamuty 
(1955) studied the acoustic radiation emitted from two-
dimensional rectangular cavity and observed strong 
acoustic energy is generated by the shear flow of the 
cavity. Rossiter (1964) used the shadowgraph tech-
nique to study the vortices over the cavity in the tran-
sonic wind tunnel, and developed a semi-empirical 
formula to predict the fluctuation frequency, then 
Heller et al. (1971) proposed a modified formula to 
extend the range of the free stream Mach number. 
Tracy and Plentovich (1993) measured the static and 
fluctuating pressure data of cavity flows. For super-
sonic and transonic cavity flow, they summarized four 
types of flow characteristics based on the ratio of 
cavity length and depth. In the case of L/D < 10, which 
is open type cavity flow, the air flow pass through the 
cavity and generate separation flow and free shear layer. 
This disturbance shear flow may propagate to 
downstream and form strong vortices and impinge the 
rear wall of the cavity, make the fluctuating pressure 
and acoustic waves move to upstream. Finally, this 
phenomenon becomes a feedback loop in the cavity 
and generates severe oscillating that makes the 
structure damage easily. 

In general, aircraft designers use aerodynamic 
devices, such as strake, delta wing, canard and leading-
edge extension, to generate strong vortices near the 
aircraft. These vortices not only produce extra life 
forces, but also make the aircraft more maneuverable 
due to the interaction of it. For example, the delta wing 
of Mirage-2000 may generate leading edge separation 
at high angle of attack with symmetrical pair of vorti-
ces (Gudmundsson, 2013). As a result, these vortices 
induce extra lift force to prevent the aircraft from stall 
condition at high angle of attack, and make it more 
flexible compared with conventional aircrafts. 

Although the wind tunnel test can provide 
important information of aircraft design, the cost is 
usually very expensive and increased with the number 
of tests and execution time. In order to minimize the 
cost of experimental work, some numerical approaches 
and optimization of the measurement data are needed. 
In this study, we used neural network as a postpro-
cessing tool to extend the usage of existing data by 
wind tunnel tests and predicted useful results of 
aerodynamic forces. 
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In recent years, neural networks have been 
widely used in various fields by simulating simplified 
biological neural network. In this study, the neural 
networks method is used to train and verify wind tun-
nel aerodynamic data. Generally, engineering prob-
lems are often difficult to describe and solve using a 
simple mathematical model due to the high-order 
nonlinearity terms in the governing equations. 
However, by using the learning and recall process of 
neural networks, the complex mathematical problems 
can be simplified through a series of learning, weight 
adjustment and training samples to obtain accurate 
solutions. 

In this study, the wind tunnel test data is used as 
the training parameter in order to establish a suitable 
neural network model for aerodynamic analysis of 
cavity and delta wing models. 

The concept of the neural networks is to imitate 
human or creature brain that all the artificial neurons 
are connected with each other to calculate and transmit 
signals. The earliest artificial neuron concept is 
proposed by McCullogh and Pitts (1943) which is just 
a simplistic mathematical model. Rosenblatt (1958) 
began to develop the original perceptron algorithm, 
and then Rumelhart (1986) proposed a multi-layer 
perceptron structure, this is the first neural network 
model which minimize the actual measure data and the 
desired output data by repeatedly adjusting weights. 

Base on the connection method of neurons, there 
are varied neural network structures, which can be 
generally divided into feedforward neural networks 
and feedback neural networks. For feedforward neural 
networks, the neurons of the hidden layer are 
independent of each other, and the signal transmission 
is in one direction from input to the hidden layer. For 
the input layer, all parameters should be normalized or 
standardized first, and the excitation function, such as 
step function, unipolar S function or bipolar S function, 
is adopted for the hidden layer, which can be used as 
the same manner for output layer.  

In contrast, the feedback connection is used 
between the hidden layer of the feedback type neural 
network, which means the output layer is connected 
back to the input layer, and the structure is more 
complicated than feedforward neural networks. 

In practice, Neural network is widely used in 
many applications. Faller et al. (1994) developed a 
neural network model as a controller for prediction and 
controlled three-dimensional unsteady separated flow 
fields. Khan et al. (2021) adopted the feedforward 
neural network for predicting the efficiency of heat 
exchanger with different wing-width ratios. Efe et al. 
(2008) used the feedforward neural networks for 
subsonic shallow cavity flow control. Tabaza et al. 
(2021) used Levenberg–Marquardt algorithm to update 
the weighting and bias in the network. The results show 
that the prediction of the impact hysteresis problem 
between the ANN and experimental data is in good 
agreement. 

The algorithm used in Neural network could be 
a key point that affects the accuracy and efficiency. 
Hagan and Menhaj (1994) used the LM method to 
integrate into the backpropagation algorithm, and used 
the neural network method to test the convergence of 
different waveforms. It was found that the MBP 
(Marquardt backpropagation) method had better con-
vergence than the VLBP (Backpropagation with varia-
ble learning rate) and CGBP (Conjugate gradient back-
propagation) methods. Cigizoglu et al. (2005) 
employed three different backpropagation algorithms, 
Levenberg–Marquardt, conjugate gradient and gradi-
ent descent for predicting performance and conver-
gence velocity. It was shown that the feedforward 
backpropagation method with Levenberg–Marquardt 
technique provided shorter training duration and more 
acceptable performance criteria advantages compared 
with feedforward backpropagation with gradient 
descent technique and conjugate gradient.  

Yanis et al. (2021) used the artificial neural 
networks method to predict the surface roughness of 
the AISI 1045 material by side milling process. The 
results of the analysis show that the best BP algorithm 
in predicting experimental data is LM method. 

Hoyos et al. (2022) combined the Levenberg-
Marquardt algorithm and particle swarm algorithm to 
construct a feed-forward neural network as a fast tool 
to predict the small size propellers, and the neural 
network model is trained with a large set of experi-
mental data to predict the propeller performance 
coefficients. 

In this paper, we discussed the aerodynamic 
characteristic of the cavity and delta wing model in the 
wind tunnel test and used measure data as the training 
parameter for neural network. The trained neural 
network model can be used to predict the pressure of 
the cavity at specific position and obtain the delta wing 
lift/drag coefficient. 

 
 EXPERIMENTAL SETUP 

 
The transonic test is conducted at NCSIST/ 

ASRD by a blow down and open circuit type wind 
tunnel. The test section is 120 × 120 cm2 and 150 cm 
in length, and the operation Mach number is from 
Mach number 0.4 to 4.5 which cover supersonic, 
transonic and subsonic region. The compressed air 
used in the wind tunnel is stored in the four storage 
tanks. The capacity of four storage tanks is 1415.8 m3. 
The compressed air flows out of the storage tanks 
through the ball valve and sleeve valve to obtain the 
stagnation pressure, and then through the stilling 
chamber where honeycomb and screen are installed to 
improve the uniformity of the flow. 

After that, air flows through the convergent-
divergent nozzle section to accelerate and flow into the 
test section. The transonic test section is used when the 
operation condition is from Mach number 0.4 to 1.4. 
The transonic test section is assembled with perforated 
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walls, and at the end of the test section, the Mach flap 
and choke flap devices are used to control the flow 
speed under transonic range. 

The test model is a flat plate with an acute angle 
of 6° leading edge , and the outer dimensions are 645 
mm × 147 mm × 25 mm (length × width × thickness) 
in the transonic wind tunnel test, and the cavity size is 
in rectangular shape with 90 mm × 42.9 mm × 15 mm 
(length × width × depth). The length-to-depth ratio 
(L/D) is 6 and can be treated as an open type cavity as 
shown in Figure 1. The supported base of the model is 
installed on the side wall of the wind tunnel. When the 
air flows through the flat plate. A turbulent boundary 
layer is then developed naturally on the plate.   

Position of pressure sensors in the rectangular 
cavity model are shown in Figure 2. The pressure data 
of K3/K5/K7/K9 are as input parameters and K8 as 
output parameters for training neural network model. 

The flow condition in transonic wind tunnel 
defined by Mach number are 0.6, 0.7, 0.8, 0.85, 0.9, 
0.95, 1.05 and 1.2±0.01 with the Reynolds number of 
1.92×106 and the stagnation pressure P0 is varied from 
23 to 30 psi (137 to 206 kpa), the stagnation 
temperature T0 is varied from 25 to 35°C. The 
boundary layer thickness (δ) measured in front of the 
cavity model at X= -46mm is approximately 7.6mm.  

In contrast, the delta wing model is conducted by 
the subsonic wind tunnel at NCSIST/ASRD, which is 
a horizontal, close-circuit type tunnel. The wind tunnel 
test section size is 3230 mm in width and 2280 mm in 
height. The power system of the subsonic wind tunnel 
is a 1500 horse power motor with 7-blade, pitch-fixed 
propeller. The maximum Mach number is 0.25, 
corresponding to 320 km/h. The angle of attack of the 
model support system is from -90° to 90° and the 
sideslip angle is from -22.5° to 22.5°. 

  
Fig. 1. Cavity model installed in transonic wind tunnel 
 

 
Fig. 2. Position of pressure sensors in the rectangular 

cavity model 

The delta wing model is configured with three 
different sweep angles in the subsonic wind tunnel to 

obtain the characteristics of aerodynamic forces and to 
verify with the neural network results. The total length 
of the model is 847.75 mm with a fuselage diameter of 
77.47 mm, and wing sweep angles are 45°, 57° and 63
° , repectively. The model is made by 7075-T651 
aluminum alloy and the internal balance bushing of the 
model is made of 17-4 stainless steel, and a six-
component balance is installed in it. The delta wing test 
model is shown in Figure 3, a straight support from the 
end of the model is used to connect the wind tunnel 
support system which can provide -5°~30° angle of 
attack. The Mach number is set to 0.2, and the 
Reynolds number is 0.488×106. The sweep angles and 
angle of attack are chosen as input parameters and 
measure dlift/drag coefficients as output parameters.  

 
Fig 3. Different sweep angle delta wing models 

 
The control and data acquisition system of the 

transonic wind tunnel produced by National 
Instruments (NI) was used during the test. The system 
is equipped with PXI acquisition cards, FPGA cards, 
digital output/input interface cards, etc. To control the 
wind tunnel system and capture system status such as 
temperature, stagnation pressure, potentiometer 
position and distance, etc. The dynamic pressure signal 
acquisition for the cavity model is by the DEWETRON 
dynamic data acquisition instrument (model: DEWE2-
A13) and the data sampling rate is set to 5μs, and the 
60 kHz low-pass filter is adopted for data filtering. 

The dynamic pressure sensor used in the test is 
Kulite XCS-190-25A and powered by DEWETRON 
dynamic data acquisition instrument of DC 12V, the 
Kulite diameter of the pressure sensing part is 3.8mm, 
and the natural frequency is 200 kHz. The signal is sent 
to the dynamic data acquisition device to convert the 
voltage into pressure data by calibration slope, and the 
maximum error is 0.5% of the full scale operation 
range. 

Besides, the subsonic wind tunnel control and 
data acquisition system are produced by HP VXI 
Instruments. The six-component internal balance is 
used to measure the static force and moment in the 
subsonic wind tunnel of the delta wing model. Based 
on the calibration results, the maximum error of each 
component is less than 0.5% maximum force load. 
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NEURAL NETWORK 
METHODOLOGY 

 
The structure of back propagation neural 

network used in this study is a kind of multi-layer 
perceptron network. The training data is feed forward 
while the error propagates backward. Since the 
supervised learning model is adopted, each set of 
training data for input comes with a corresponding 
output data for comparison.  

For transonic cavity case, the training data used 
is the pressure data measured at positions K3, K5, K7 
and K9, and the Mach number is considered as well. 
Therefore, a total number of five training data set is 
used. The measured results of position K8 are 
compared with the output layer of neural network for 
parameter tuning process. 

On the other hand for the subsonic delta wing test, 
the sweep angle of delta wing and the angle of attack 
are selected as input training data where the lift and 
drag coefficients are the output data. 

During the training process, the weighting 
factors in the scheme are adjusted to minimize the 
difference between the target values and the training 
results, and the target function E is calculated by, 

𝐸ሺ𝜔ሻ ൌ
ଵ

ଶ
∑ሺ𝑇 െ 𝑦ሻଶ (1) 

where T is the ith target value, y is the ith training output.  
Conventionally, the determine of weighting 

factor of the backpropagation neural network is by the 
gradient descent method. In order to minimize the 
target function, the weight ω is updated as follows: 

𝛻𝐸ሺ𝜔ሻ ൌ െ𝜂
డா

డఠ
ൌ Jሺ𝜔ሻ்𝐸ሺ𝜔ሻ (2) 

where 𝜂 is the learning rate, 𝛻𝐸ሺ𝜔ሻ is the gradient 
of target function, Jሺ𝜔ሻ is the Jacobian matrix.When 
using the gradient descent method for training, the 
converged speed is good at beginning but worth near 
the convergence point since the gradient become 
smaller while the characteristic of Newton's method is 
opposite. In order to solve this issue, the Levenberg-
Marquardt algorithm is adopted in this study to update 
the weighting value and ω can be updated by the 
following relation: 

𝜔ାଵ ൌ 𝜔 െ ሺJሺ𝜔ሻ்Jሺ𝜔ሻ  𝜇𝐼ேൈேሻିଵJሺ𝜔ሻ்𝐸ሺ𝜔ሻ (3) 

where k=1...N, I is the identity matrix. For small μ, the 
characteristic of Newton’s method dominates the 
algorithm while for large μ, it is similar to the gradient 
descent method of the backpropagation. Therefore, the 
Levenberg-Marquardt algorithm has the advantages of 
these two methods by changing the convergence 
method in the area where it is difficult to converge, and 
enhance the applicability of the neural network.  

 
RESULTS AND DISCUSSIONS 
 

The structure of the neural network in this study 
consists of three layers, the input layer, the hidden layer, 
and the output layer. Since the number of hidden layers 
and the arrangement of neurons will affect the learning 
rate and accuracy of the neural network, they are 
determined mostly by trail and tuning process. In this 
study, the structure of neural network is adopted by one 
input layer, one hidden layer with four neurons, and 
one output layer as shown in Figure 4. For the transonic 
test, the output value is the pressure value measured by 
the dynamic pressure sensor at K8 position on the 
cavity bottom plate, while for the delta wing case, the 
output value are lift and drag coefficient. 

 
Fig. 4. The diagram of the neural network model 

 
All the data are represented by 70 % for training, 

15% for validation, and 15% for testing. The batch size 
is five for cavity training and two for delta wing 
training. 

The sigmoid transfer function is used in the 
hidden layer, and the linear transfer function is for the 
output layer. The mean square error is 0.00181 for 
cavity model case after 96 epoch training and 0.000118 
for delta wing model case after 25 epoch training to 
converge, as shown in Figure 5. 
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(a)Training result for cavity case 

 
(b)Training result for delta wing case 

Fig. 5. Training result of neural network model 
 

The Cavity Pressure Measurement and Neural 
Network Training Result Comparison 

 In the cavity model case, four different Mach 
number (0.6, 0.8, 0.9 and 1.2) are trained, and each 
measurement location for each Mach number provides 
65536 pressure data, and the total number are 262144 
data per location. The pressure measurement data error 
calculation is as follows: 

𝑅𝑀𝑆𝐸 𝐸𝑟𝑟𝑜𝑟 ൌ ඥ∑ሺ𝑇 െ 𝑦ሻଶ/nሻ (4) 

where n is the number of data, the difference between 
the training results and the experiment results of the 
pressure measurement data at the cavity position K8 is 
shown in Figure 6. 

 

 
(a)Mach 0.6 (MSE=1.589kpa) 

 

(b)Mach 0.8 (MSE=2.049kpa) 

 
(c)Mach 0.9 (MSE=2.516kpa) 

 
(d)Mach 1.2 (MSE=2.498kpa) 

Fig. 6. Comparison of experiment and neural network 
result in time history at different Mach number. 

 
According to the neural network training results, 

untrained pressure data of K3, K5, K7, K9 of Mach 
number 1.05, 0.95, 0.85, 0.7 are used as input 
parameters to predict the pressure data of the cavity K8 
position, as shown in Figure 7.  

 

 
(a)Mach 0.7 (MSE=1.948kpa) 
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(b)Mach 0.85 (MSE=2.190kpa) 

 
(c)Mach 0.95 (MSE=4.823kpa) 

 
(d)Mach 1.05 (MSE=3.440kpa) 

Fig. 7. New input parameter for comparison of 
experiment and neural network result in time history 

at different Mach number 
 

The comparison of MSE error between 
experiments and neural network results of each Mach 
number are shown in Table 1. It is suggested that by 
using the training neural network model, the pressure 
results can be reasonably predicted. 

 
Table 1. Pressure comparison between measurement 

and neural network at different Mach number 

 

 
In addition to the pressure data in time domain, 

the results in frequency domain is considered as well 
in this study. Because of the airflow that passing 
through the cavity and generating periodic vortices in 
it, strong oscillations inside the cavity are induced with 
broadband frequencies. Through the Fast Fourier 
transform (FFT), the oscillation frequency can be 
understood quantitatively. Therefore, the pressure data 
at K8 is than converted into the frequency domain by 
FFT and be expressed as sound pressure level (SPL) 
which is calculated as follows:  

𝑆𝑃𝐿ሺ𝑑𝐵ሻ ൌ 20log10
ೝೞ

ೝ
 (5) 

where P௦ is the root mean square of pressure, and 
P  is the reference sound pressure ( 𝑃 ൌ 2 ൈ
10ିହ 𝑝𝑎ሻ . The relationship between frequency and 
SPL is shown in Figure 8. It is shown that the training 
and verification results of the neural network model by 
FFT are consistent with the experimental spectrum 
results. It can be observed that for the cavity used in 
this study, which is L/D=6, the SPL of peak frequencies 
are over 150dB. This is due to the strong oscillations 
caused by the interaction of compressible flow and the 
cavity geometry. 

 

 
(a)SPL spectrum at Mach 0.6 

 
(b)SPL spectrum at Mach 0.8 

Training Mach number MSE (kpa) Untrained Mach number MSE (kpa)
1.2 2.498 1.05 3.440
0.9 2.516 0.95 4.823
0.8 2.049 0.85 2.190
0.6 1.589 0.7 1.948
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(c)SPL spectrum at Mach 0.9 

 
(d)SPL spectrum at Mach 1.2 

Fig. 8. Position K8 SPL spectrum comparison of 
experiment and neural network result at different 

Mach number. 
 
In order to analyze the relation between the neural 
network training results, experimental data and theory 
results, the semi-empirical formula for cavity modal 
prediction developed by Rossiter is used: 

𝑆𝑡 ൌ



ൌ

ିఈ

ெା
భ
ೖ

 (6) 

𝑓 ൌ




ሺିఈሻ

ሺெା
భ
ೖ

ሻ
 (7) 

And corrected by Heller for the semi-empirical 
formula: 

𝑓 ൌ
ሺିఈሻ

൦
భ
ೖ

ା
ಾ

ටభశబ.ఱሺംషభሻಾమ
൪

 (8) 

where U is the free flow velocity, m represents the 
mode number, γ is the specific heat, k and α are semi-
empirical formula constants (k=0.57, α=0.25, and the 
available Mach number range is Mach number 
0.4~1.12), L is cavity length (L=0.09m).  

By comparing the results of the neural network 
with the experimental data and semi-empirical formula 
results, as shown in Table 2 and Figure 9. It is shown 
that the neural network training results or the 
experimental results are well consistent with the semi-

empirical formula prediction results, which suggests 
that the neural network can provide reasonable 
prediction for the local transient pressure data and 
spectrum of the cavity flow. 

 
Table 2. Modal frequency results of the cavity 

between the neural network result, the experimental 
results and the semi-empirical formula result 

 

 
 

 
Fig. 9. Comparison of the neural network with the 
experimental results and semi-empirical formula 

result 

 
Comparison results of lift-drag coefficients of delta 
wing in low-speed wind tunnel 

In this study, based on the aerodynamic data 
obtained from the wind tunnel test, a backpropagation 
neural network model was established. The delta wing 
sweep angle and attack angle are used as training 
parameters for input layer where the output layer are 

Mach number Mode NN result(Hz) exp result(Hz) semi-empirical formula(Hz)

0.6 Mode 1 830 720 728

0.6 Mode 2 1660 1672 1700

0.6 Mode 3 2686 2698 2671

0.6 Mode 4 3711 3674 3642

0.7 Mode 1 732 744 819

0.7 Mode 2 1868 1868 1910

0.7 Mode 3 2991 2991 3002

0.7 Mode 4 3979 3979 4094

0.8 Mode 1 842 842 904

0.8 Mode 2 1990 1990 2109

0.8 Mode 3 3162 3210 3314

0.8 Mode 4 4382 4382 4520

0.85 Mode 1 793 805 945

0.85 Mode 2 2100 2075 2205

0.85 Mode 3 3369 3369 3464

0.85 Mode 4 4602 4688 4724

Mach number Mode NN result(Hz) exp result(Hz) semi-empirical formula(Hz)

0.9 Mode 1 915 915 985

0.9 Mode 2 2197 2197 2298

0.9 Mode 3 3491 3491 3611

0.9 Mode 4 4834 4834 4924

0.95 Mode 1 939 939 1024

0.95 Mode 2 2307 2246 2389

0.95 Mode 3 3699 3699 3754

0.95 Mode 4 5066 5066 5120

1.05 Mode 1 964 964 1100

1.05 Mode 2 2429 2429 2566

1.05 Mode 3 3857 3857 4033

1.05 Mode 4 5359 5359 5499

1.2 Mode 1 1050 1038 1209

1.2 Mode 2 2478 2478 2821

1.2 Mode 3 4041 4041 4434

1.2 Mode 4 5542 5542 6046
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lift coefficient and drag coefficient of the delta wing. 
Figure 10 shows the comparison of lift/drag coefficient 
with different angle of attack between the experimental 
results of three different sweep angle delta wings and 
the training results of the neural network, and the 
comparison are shown in Table 3. It is found that the 
training results of the neural network in this study are 
well consistent with the experimental results. 

 

 
(a)Lift coefficient of different sweep delta wing 

 
(b)Drag coefficient of different sweep delta wing 

Fig. 10. Comparison of the neural network and the 
experimental results 

 
Table 3. Lift and drag coefficient of the neural 

network and the experimental results 

 

 
 
From the results of the lift coefficient, it is found 

that the lift coefficients of the sweep angles 57° and 
63° are significantly higher than the sweep angle 45° 
when angle of attack is higher than 20°. Figure 11 
reveals the visualization of flow fields corresponding 
to the aerodynamic characteristic mentioned above. 
Apparently, the vortex breakdown occurs on the 
surface of the leading edge of the delta wing at sweep 
angle 45° when the angle of attack reached 22°, which 
causes the wing stall. However, it is not occurred in 
sweep angles 57° and 63° delta wing even the angle 
of attack reached 24° . The larger sweep angle can 
produce more lift to postpone the stall angle. 

 

 
(a)sweep angle 45° delta wing (angle of attack=22°) 

 
(b)sweep angle 57° delta wing (angle of attack=24°) 

sweep 45˚

angle of attack(˚) experimental CL experimental CD neural network CL neural network CD

-5.04 -0.2929 0.023 -0.2653 0.0176

-0.02 0.0094 0.0018 -0.0161 0.0043

4.98 0.3102 0.0227 0.2746 0.0229

9.99 0.5853 0.0917 0.5746 0.0898

11.97 0.6823 0.1315 0.6788 0.1294

13.99 0.7715 0.1776 0.7688 0.1764

16.01 0.843 0.228 0.8402 0.2281

17.98 0.9006 0.2837 0.8907 0.2796

19.99 0.9374 0.3383 0.922 0.3288

22.03 0.9509 0.3834 0.936 0.3733

23.96 0.9297 0.4129 0.9424 0.4143

26 0.9566 0.4648 0.9523 0.461

27.98 0.944 0.5006 0.9668 0.5088

29.99 0.9663 0.5558 0.9836 0.5553

sweep 57˚

angle of attack(˚) experimental CL experimental CD neural network CL neural network CD

-5.07 -0.2345 0.0192 -0.2417 0.0212

-0.04 0.0096 0.0017 0.0012 -0.0004

4.98 0.2516 0.019 0.2467 0.0122

9.97 0.5132 0.0793 0.5077 0.0827

11.99 0.6131 0.1166 0.6262 0.1273

13.99 0.7111 0.1599 0.7429 0.1763

16.03 0.8046 0.2107 0.8489 0.2265

18.04 0.8972 0.2684 0.9341 0.2762

20.07 0.9944 0.3366 1.006 0.3337

22.01 1.0687 0.4023 1.0686 0.4001

24.03 1.1266 0.4722 1.1285 0.4777

25.99 1.1945 0.5504 1.1794 0.554

28.04 1.2471 0.6327 1.2239 0.6288

30.05 1.259 0.6987 1.259 0.6934

sweep 63˚

angle of attack(˚) experimental CL experimental CD neural network CL neural network CD

-5.01 -0.1992 0.0167 -0.2177 0.0226

-0.04 0.0075 0.0016 0.0194 -0.0008

5.05 0.2225 0.0171 0.2477 0.0082

10.02 0.4639 0.0724 0.4531 0.0688

11.99 0.5545 0.1045 0.54 0.1036

14.01 0.6443 0.1442 0.6322 0.1414

16.08 0.7441 0.1938 0.7304 0.1848

17.97 0.8411 0.2482 0.8269 0.2363

20 0.948 0.3163 0.9369 0.3092

22.03 1.0423 0.3886 1.0442 0.3955

24.04 1.1131 0.461 1.1383 0.4854

25.99 1.2192 0.553 1.2141 0.5699

28.03 1.3014 0.6454 1.277 0.6506

30.05 1.3448 0.7271 1.3247 0.72
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(c)sweep angle 63° delta wing (angle of attack=24°) 

Fig. 11. Flow visualization of delta wing 
 

Since the training of neural network is finished, 
we changed the sweep angles (50°, 60°, and 65°) as 
new input parameters, and obtained the prediction lift 
coefficient and drag coefficient by the model. The 
results are shown in Figure 12, and it is observed that 
the aerodynamic characteristic of the sweep angle 50° 
is similar to sweep angle 45°,that the stall angle of 
attack is about 20°. Besides, the sweep angles of 60° 
and 65° have the characteristics that keeping the high 
lift force under higher angles of attack, which is similar 
to the experimental results of 63 °  sweep angle. 
Furthermore, by comparing the sweep angle of 50°, 60
° , 65 ° lift/drag coefficient with Verhaagen (2012), 
Rinoie (2000), Al-Garni (2008) which are shown in 
Figure 13 to Figure 17, mostly the results of neural 
network prediction are well consistent with the 
experimental results. The only difference in Figure 13 
is that when the angle of attack is larger than 20°, the 
stall is observed in the experimental data which is not 
shown in the present study. However, it is due to the 
different configurations of the delta wing between 
these two cases. For present study, the delta wing is 
connected to the aircraft body, but for Verhaagen 
(2012), it is performed by wing itself, which makes the 
difference.  

To summarize, from the results mentioned above, 
it is clear that the application of neural network method 
to the aerodynamic prediction with different sweep 
angle of delta wing can provide reasonable and 
accurate information. 

 

 

(a)Lift coefficient prediction for 50°, 60° and 65° 
sweep delta wing 

 
(b)Drag coefficient prediction for 50°, 60° and 65° 

Fig. 12. Comparison of different sweep delta wing lift 
and drag coefficient result 

 

 
Fig. 13. The Comparison of 50° sweep angle delta 

wing lift coefficient prediction result with the 
reference literature 

 

 
Fig. 14. The Comparison of 50° sweep angle delta 

wing drag coefficient prediction result with the 
reference literature 
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Fig. 15. The Comparison of 60° sweep angle delta 

wing lift coefficient prediction result with the 
reference literature 

 

 
Fig. 16. The Comparison of 60° sweep angle delta 

wing drag coefficient prediction result with the 
reference literature 

 

 
Fig. 17. The Comparsion of 65° sweep angle delta 

wing lift coefficient prediction result with the 
reference literature 

CONCLUSIONS  
 
In this study, we conducted the transient pressure 

measurement for cavity flow in transonic wind tunnel 
and lift and drag coefficient measurement for different 
sweep angle of delta wing in subsonic wind tunnel. The 
backpropagation neural network is used to train and 
verify the experiment result, where the Levenberg-
Marquardt algorithm is adopted as the weight update 
method and the training results are well consistent with 
the experiment result. 

For cavity flow case, the dynamic pressure data 
obtained in this study is then converted into spectral 
results for modal analyze. It is shown that the SPL of 
peak frequencies in the cavity of L/D=6 are larger than 
150dB, which is caused by the strong oscillations of 
the compressible flow in the cavity. Qualitatively, both 
the training results and the experimental results are 
consistent with the existing semi-empirical formula. 

From the subsonic delta wing test, it is found that 
the sweep angles of 57° and 63° have higher stall 
angle than sweep angle 45°, and the vortex breakdown 
phenomena is also observed from the flow field 
visualization results. By using neural network method, 
the prediction data of different sweep angle of delta 
wing can provide reasonable and useful results for 
application. 

This study has completed the establishment of 
the neural network model for aerodynamics prediction. 
By the procedure of training and verification, neural 
network model can successfully predict the local 
transient pressure changes of the cavity flow case 
under different Mach numbers in transonic region and 
the lift/drag coefficient prediction in delta wing case in 
subsonic region. The result can reduce the pre-work 
time for wind tunnel testing and the prediction results 
can provide a reasonable aerodynamic information. 
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應用倒傳遞類神經網路預測

氣動力試驗數據研究 
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國家中山科學研究院航空研究所 
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摘 要 

本研究目的在建立倒傳遞類神經網路模型來

分別預測穿音速風洞與次音速風洞試驗的氣動力

數據，穿音速風洞以戰機內置彈艙外型簡化為簡單

凹槽幾何之概念進行可壓縮流凹槽壓力量測試驗，
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並獲得動態壓力變化試驗數據，次音速風洞以不同

後掠角角度的三角翼進行試驗，利用內置式力平衡

儀量測模型的升力係數與阻力係數。分別將穿音速

風洞與次音速風洞試驗結果作為類神經網路模型

的訓練參數，因類神經網路訓練結果會因為不同的

隱藏層/神經元數量而影響學習速率與正確率，本研

究利用試誤法進行參數調整並決定所需神經網路

架構，並以 Levenberg-Marquardt 演算法作為權重更

新的方法以最小化誤差函數，本研究已完成倒傳遞

類神經網路模型建立，經驗證後可應用於預測穿音

速風洞凹槽模型特定位置於不同馬赫數條件之壓

力變化，及藉由改變三角翼外型幾何參數預測次音

速風洞不同後掠角角度的三角翼升力係數與阻力

係數，所獲得結果比較試驗結果均具有一致性，利

用類神經網路方法可減少風洞試驗前準備的前置

作業時間，預測結果可作為氣動力數據分析的參考

資訊。 


