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ABSTRACT 

 
Metal industries have long used the benefits of 

computer vision to automate various applications in 
product development, testing, and mistake repair. 
Most computer vision models for defect prediction use 
neural networks for accurate and exact defect 
classification. Reloading weights, saving, and 
retrieving activations are all impacted by high data 
processing layers, which results in restricted network 
bandwidth and latency. To solve this issue, a novel 
Processing-in-Memory (PIM) based defect prediction 
using Spiking Neural Network (SNN) has been 
proposed, in which the weight values in metal surface 
image processing are given to SNN that carries data 
only when a specific threshold is reached by LIF 
neurons, thereby decreasing the processing latency. 
The emerging non-volatile memory technologies like 
memristors have been shown to follow biological 
neurons and synapses which is irreplaceable to the 
processing of memory concepts in neuromorphic 
computing. To eliminate the sneak path problem, a 
novel approach has been implemented which utilizes 
two memristors and one transistor and reduces the on-
chip memory overhead by changing the modes of 
transistors. Experimental results show an accuracy of 
98% and an F-score of 96.5 which outperforms most 
of the computer vision methods taken for comparison. 
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 INTRODUCTION 
 

In traditional Von-Neumann architecture-based 
general-purpose computing systems, the memory 
system is detached from the processing unit. Hence a 
large quantity of data needs to be transferred to and fro 
through the low bandwidth media between the 
processor and storage or communication units, 
especially in today’s data-centric applications. This 
“Von-Neumann bottleneck” causes high energy 
consumption and performance degradation. 
Processing-in-memory (PIM) architecture, which 
takes a step away from Von-Neumann systems, is 
identified as a promising solution to the “memory wall” 
problem by scaling down the data transfer to a 
minimum. The idea behind this is that keeping 
processing elements closer to or within memory 
architecture minimizes the data travel among them and 
thus the memory access penalties. 

Artificial neural networks (ANNs) are a popular 
machine learning tool with a wide range of 
applications in both academia and industries 
Eurolab4HPC (2020). The increasing size of chip 
technology and power consumption have limited the 
growth of large-scale computations, such as real-time 
image processing, due to the constraints of the 
traditional Von-Neumann architecture Li, S., et al. 
(2020). To solve this problem and enable in-memory 
computing, various technologies have been proposed, 
and the use of memristors as a fourth fundamental 
circuit element Chua, L., September (1971) has been 
established for several processing-in-memory (PIM) 
solutions, particularly programmable digital PIM 
systems. Memristors have the potential to address the 
memory wall problem by minimising the quantity of 
data transfered between the processor and memory. 
They can operate as a binary memory element by 
switching between high (ROFF) and low (RON) 
resistance values when a voltage is applied to the 
device. Furthermore, they can produce intermediate 
resistance values between ROFF and RON, enabling 
the storage of data in multi-level cells (MLCs) Eliahu, 
A., et al. (2020). 

“Spiking Neural Network” (SNN) is a third-
generation artificial neural network that is designed to 
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imitate the behavior of the human brain. The increased 
demand for SNN is due to its efficiency in addressing 
the issues of power consumption and hardware space 
in neuromorphic computing. SNN utilizes biologically 
inspired learning mechanisms like Spike Time-
Dependent Plasticity (STDP) that provide more 
hardware support and improve the efficiency of 
neuromorphic algorithms. Unlike conventional neural 
networks, SNN only transmits information when the 
membrane potential of a neuron exceeds a fixed 
threshold value. When this happens, spikes are 
generated and sent to neighboring neurons, altering 
their action potentials. When the action potential 
exceeds the threshold value, the neuron sends an 
impulse and enters a “refractory period” before 
gradually returning to its original stage. 

 
SNN simulations demand enormous endeavors 

in handling and processing the spatial and temporal 
information encoded in spike trains. These compute-
intensive operations cause performance and efficiency 
bottlenecks in conventional Von-Neuman architecture.  
Recent studies have shown the capability of emerging 
non-volatile memory technologies like memristors to 
emulate biological neurons and synapses which is 
irreplaceable to the processing in memory (PIM) 
concept in neuromorphic computing. Because of its 
simple structure, compact device footprint, multilayer 
memristive states, high integration of computing and 
storage, low transcribe energy and standby power, and 
other advantages, the memristor is one of the most 
promising substitutes among in-memory computing 
ETP4HPC's SRA 4, (2020). Memristors have been 
studied and are actually real, which has prompted the 
creation of practical ways to build neuromorphic 
computing systems that can mimic neuro-biological 
structures and enable powerful deep neural networks 
and optimization algorithms Mutlu, O., et al. (2020).  

Detecting and measuring faults in metal and 
metal-coated surfaces is a challenging task in 
“computer vision-based semantic segmentation” 
UJITSU LIMITED, (2020). Surface flaw detection is 
essential in quality control, especially when dealing 
with precise parts required to build complex 
machinery. Surface flaws can result from accidental 
scratches, manufacturing design errors, poor metal 
coating, surface cracks, and other reasons. Prompt 
identification and addressing of these flaws are crucial 
to maintaining a high level of quality in the entire 
system or machine in which the metal item is used 
FUJITSU LIMITED, (2020), Kwon, Y., et al., (2021). 
Surface flaws provide important information about the 
effectiveness of the metal coating process and the 
quality of materials used, and prompt detection is 
necessary to select appropriate solutions and provide 
feedback on the production process. Many efforts are 
being made in the industry to detect flaws and preserve 
product quality Noel, J.-P., et al. (2020), Khaddam-

Aljameh, R., et al. (2021), Khaddam-Aljameh, R., et 
al., (2021). 

 
In contrast to typical CMOS technology, 

memristors may create brain-equivalent learning 
machines using memristive synapses as non-volatile 
memory Sebastian, A., et al. (2020). They make it 
possible to create a cross-point array architecture that 
is dense, constantly programmable, and somewhat 
accurate for applications that require large amounts of 
data Giordano, M., et al. (2021). The non-volatility, 
low power consumption, low parasitic capacitance, 
and changeable resistance states of the memristor, as 
well as its fast speed and versatility, make it ideal for 
ANN applications UPMEM, (2020). In addition to 
ANN, memristor-based computing systems have been 
suggested for a wide range of applications, including 
dictionary learning, compressive sensing, and sparse 
coding. 

 
Additionally, it meets the requirement of the 

community for effective application performance by 
reducing the amount of pricey data transfers and 
delivering orders of magnitude productivity and 
energy savings Radojković, P., et al., (2020). Finally, 
several industrial prototypes and products demonstrate 
that the memristor has attained a high technological 
readiness level Abdelmagid, et al. (2020). Hence, a 
PIM concept must be incorporated with artificial 
intelligence techniques. The following are the primary 
contributions of this paper: 

 
● The SNN-based Memristor cross array 

reduces the neural network reload weight error by 
imposing a rigorous latency threshold. 

● To prevent sneak path error and bandwidth 
problems in the neural network, the MTM synapse 
technique is implemented by utilizing one transistor 
and two memristors which accurately anticipate metal 
flaws. 

●  
The remaining sections are arranged as follows: 

Survey of the literature is presented in Section 2. The 
novel solutions and architecture of the proposed model 
are described in section 3. Section 4 presents the 
implementation results and their comparison with the 
contemporary models. The work's concluding 
observations are included in Section 5. 
 

LITERATURE SURVEY 
 

As of now, surface defect detection by machine 
vision is one of the growing applications of neural 
networks in the industry. Surface defect identification 
is critical in quality control, especially when dealing 
with precision parts used to construct complicated 
machinery. We go over a few recent examples of these 
kind of research projects in this section. 
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Wang et al Wang, Z., et al. (2020) have proposed 
“Resistive Switching Materials” (RSMs) for 
information processing, which are based on various 
physical principles evolved for memories. These 
RSMs can enable in-memory computing with low 
power consumption and occupy minimal space. The 
four physical processes that cause resistive switching 
are redox reactions, phase transitions, spin-polarized 
tunneling, and ferroelectric polarization, which offer 
RSMs with representation capacity, switching speed, 
energy efficiency, dependability, and device density. 
While RSMs have shown greater benefits in metal 
detection compared to competing technologies, their 
effectiveness in computing applications should be 
improved in the future. 

 
A set of tools termed NEUTRAMS has been 

suggested by Ji et al Ji, Y., et al. (2016, October) for 
accommodating several neural network (NN) types, 
such as SNNs and traditional ANNs. The toolset's 
objective is to decouple NN applications from the 
execution substrates that are used underneath them. 
NEUTRAMS has been tested on neuromorphic 
hardware as well as processor-in-memory architecture 
for ANNs. The toolset uses NN pruning approaches to 
improve performance, an improved representation 
layer, and NN examples to evaluate limitations and 
sensitivity to various inputs. The computing speed 
needs to be increased in the future. 

 
Xian Tao et al Tao Xian, et al. (2018) proposed 

an architecture based on CNN for localizing and 
classifying defects appearing in metallic surface 
images. The “cascaded autoencoder” (CASAE) 
architecture proposes a two-level autoencoder (AE) 
network which transforms the input defect image into 
a pixel-wise prediction mask with only damaged pixels 
and background pixels through semantic segmentation. 
The defect portions are labeled into corresponding 
classes via a compact CNN. The major limitation of 
this method is the need for time- and money-
consuming, manually labelled training data for deep 
networks. 

 
Ling Chen et al Ling Chen, et al. (August 2014) 

proposed an unsupervised image-learning model that 
uses a two-layer memristor crossbar arrays combined 
with CMOS units. The MCA layer stores images while 
the ICA layer identifies major features, and the 
similarity factor is used for image recognition. They 
used controlled pulse and image overlay techniques for 
noise reduction and a time-slot approach to enhance 
image processing speed. A two-transistor structure 
was introduced to reduce the sneak-path error. 
However, implementing a CMOS unit for industrial 
use would be a challenge for time efficiency and 
device performance, and there may be more noise in 
industrial applications. Therefore, a more precise and 
estimable memristor model would be advantageous. 

Abd et al Abd, et al. (2021) designed an 
“adaptive spike-to-rank coding” (ASRC), on CMOS 
memristors that simulate biological synapses with 
short and long-term plasticities (STP and LTP). The 
proposed ASRC adjusts synapses' weights to correct 
discrepancies. Additionally, Cadence design tools and 
XFAB 0.35 mm CMOS technology are used in the 
creation of ASRC. However, closed synaptic 
adaptation circuits without massive predominant 
digital components is required for better results in 
future work. 

 
Liao et al Liao, et al. (2021) investigated 

methods for increasing the energy efficiency and 
reducing latency time of ANNs in edge computing 
systems. They have introduced a method of reducing 
the number of pulses in each stage of the weight update 
process and tested on a hardware simulator using 
memristors under various conditions and algorithms. 
However, memristor-based ANN paves the way for 
further developing edge computing in IoT systems. 

 
A low-power IoT security module was 

developed by Rady et al Rady, et al. (2018). 
Memristors are used in the proposed module to 
generate AES keys, which mostly depends on the 
uniqueness of these devices as a result of modifications 
to the manufacturing process. The outstanding 
capabilities of the time-based cryptographic 
algorithms could be used by the proposed hardware 
security module to meet current technological 
requirements, such as secure device connection. For 
more solid security in future research, AES-192 or 
AES-256 can be employed. 

 
Uddin et al Uddin, et al. (2019) provided a 

straightforward PUF-based security technique for tiny 
IoT devices. The goal is to protect the backup data 
while an embedded processor is in sleep mode or when 
a battery-less device lacks power. Memristors are 
being extensively investigated with the development 
of nanotechnology because of their non-volatility and 
small environmental impact, among other benefits. 
Memristors are used as non-volatile backup storage in 
the proposed security system. As required by this 
domain, the proposed system is relatively lightweight 
and offers enough security. More efficient and cutting-
edge techniques are to be developed in this domain to 
reduce costs and boost efficiency. 

 
U. Galan et al Galan, et al. (2018), created a 

metallic surface flaw detection technique implemented 
on the NVDIA Jetson board to achieve the quickest 
computation time and energy efficiency through the 
concurrent operation of GPU cores. The connected 
components of the binary images of the intense and 
dim portions are processed in the algorithm to find the 
shadows that originated from the defects.  
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Weidong Zhao et al Zhao, et al. (2021) propose 
a reconfigurable network coupled with a multiscale 
feature fusion approach to address the trouble of 
microscopic and complicated steel flaws. A 
deformable convolution which reconstructs the feature 
extraction network is utilized to enhance the feature 
extraction capabilities. The multiscale feature graph 
output is fused to determine the deep semantic aspects 
of defect features using a feature pyramid network. 
However, future efforts must focus on improving 
image quality, detection time, and accuracy. 

 
To sum up, the memristor technology, with its 

orders of magnitude performance and energy 
efficiency, can reshape computing, optimization, and 
AI research. Memristor crossbar applications need to 
be expanded in order to guarantee more accuracy, cost-
effectiveness, security, performance, and power 
efficiency from the end-user perspective. 

 
DEFECT PREDICTION OF METAL 
SURFACE WITH PROCESSING IN 

MEMORY (PIM) IN SPIKE NEURAL 
NETWORK 

 
Defect detection throughout the production 

process is essential for assuring the quality of the 
product. To reduce operational costs and quality-
related expenditures, it is critical to detect flaws or 
defects promptly and take appropriate action. Data 
processing in neural network layers increases the 
latency because of the limited bandwidth which 
weighed down the process with the additional task of 
continually reloading weights and saving and 
retrieving activations. To overcome this issue, an 
SNN-based Memristor cross-array classifier is 
proposed which utilizes a spiking neural network that 
generates neurons only at a specific threshold value 
and thus reduces the bandwidth limitation and latency. 
Moreover, to minimize the reload weight error, the 
memristor crossbar array is utilized which eliminates 
the off-chip link thereby increasing the speed of the 
training process also. The sneak path problem Fatih 
Gul, (2019) is another crucial challenge in a memristor 
crossbar array which may cause or prevent the 
activation or inhibition of a function at an unexpected 
time. Hence, a novel MTM synapse approach uses two 
memristors and one transistor in the form of 1M-1T-
1M, which eliminates the sneak path and lowers on-
chip memory overhead. Figure 1 depicts the proposed 
model's architecture. 

 
Initially, the metal image is converted as spikes 

using delta modulation and then given to SNN, which 
converts real values from image spikes into 
Spatiotemporal values and forms a weight bias matrix. 
The vector matrix is multiplied through a linear matrix 
multiplication by using a memristor crossbar array 

synapse. To avoid sneak path issues during the 
multiplication process in the memristor crossbar array, 
the proposed crossbar array uses a memristor synapse 
of 1M-1T-1M and ensures accuracy improvement in 
defect prediction. 

 
 

Fig. 1: Architecture of the proposed metal surface 
defect prediction model 

 
SNN-based Memristor Cross Array classifier 

 The input image is changed into a spike train 
with a sequence length via delta modulation, where 
each pixel or feature is given a discrete value 
(𝑋𝑋{𝑖𝑖, 𝑗𝑗}𝑖𝑖𝑖𝑖 {0, 1}) instead of a continuous value. The 
difference between each succeeding characteristic is 
calculated over all time steps and when the difference 
exceeds the threshold and is positive, a spike is created 
Jason K. Eshraghian et al., (September, 2021). Then, 
generated spikes are sent to a spiking neural network 
based on the “Leaky-Integrate-and-Fire” (LIF) model. 
The weighted total of inputs is taken into account by 
the LIF neuron model. The weighted sum of LIF is 
calculated by the following equation (1) Liu, et al. 
(2022).  

𝑦𝑦𝑗𝑗=𝑓𝑓�∑ 𝑊𝑊𝑗𝑗𝑗𝑗𝑥𝑥𝑗𝑗𝑀𝑀
𝑗𝑗=1 �                     (1)  

In equation (1), 
𝑥𝑥𝑗𝑗 is  𝑖𝑖𝑡𝑡ℎ  input 
𝑦𝑦𝑗𝑗 is  𝑗𝑗𝑡𝑡ℎ output 
𝑊𝑊𝑗𝑗𝑗𝑗  represents the weight between the 𝑖𝑖𝑡𝑡ℎ input 

unit and 𝑗𝑗𝑡𝑡ℎ  output unit 
M is several input units 
 f (·) is the activation function.  Here LIF neuron 

is an activation function 
A LIF-based 3-layer fully connected neural 

network is proposed in which each neuron integrates 
over many more incoming input spikes. It will emit a 
voltage spike if the integrated value is sufficient to 
excite the neuron and the membrane potential of the 
neuron becomes a threshold value when there is a 
defect present in the image. An RC circuit is formed as 
in figure 2 by the capacitive membrane and resistive 
ion channels. The output spike's size and shape are 
diminished by the LIF neuron. The output spike's 
profile details (size, shape, etc.) are processed as a 
separate event and not stored within it rather the timing 

https://arxiv.org/abs/2109.12894
https://arxiv.org/abs/2109.12894
https://arxiv.org/abs/2109.12894
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or frequency of the spike thereby, it reduces the on-
chip memory overhead. The LIF neuron behavior can 
be derived as follows:  

 

 
Fig. 2: RC Circuit equivalent of LIF neuron. 

 
From figure 2, the input current 𝐼𝐼𝑗𝑗𝑖𝑖(𝑡𝑡) = 𝐼𝐼𝑅𝑅 + 𝐼𝐼𝑐𝑐  

=>    𝐼𝐼𝑗𝑗𝑖𝑖(𝑡𝑡) =  𝑉𝑉𝑚𝑚(𝑡𝑡)
𝑅𝑅

+ 𝐶𝐶 𝑑𝑑𝑉𝑉𝑚𝑚(𝑡𝑡)
𝑑𝑑𝑡𝑡

          (2) 
 
=>      𝑅𝑅 𝐼𝐼𝑗𝑗𝑖𝑖(𝑡𝑡) = 𝑉𝑉𝑚𝑚(𝑡𝑡) + 𝑅𝑅𝐶𝐶 𝑑𝑑𝑉𝑉𝑚𝑚(𝑡𝑡)

𝑑𝑑𝑡𝑡
  (3) 

 
where 𝑉𝑉𝑚𝑚(𝑡𝑡)  is the potential across the 

membrane, R is the resistance of the memristor and C 
is the capacitance. 

 
Kirchhoff's law is employed to multiply the 

memristor crossbar array by the output weight bias 
matrix. The establishment of the memristor model 
enables the proposed defect prediction model to be 
developed more quickly and to reflect realistic 
behavior. The architecture of the proposed memristor 
cross array for the fully connected layer is shown in 
figure 3. 

 
 

Fig. 3: Architecture of proposed memristor cross 
array 

 
The computational complexity of the weighted 

summing operation is also reduced to 𝑂𝑂(1) by using 
Kirchhoff's law Liu, et al. (2022). 

 
At the classification layer of the spiking neural 

network, the proposed model utilized LIF neurons as 
the activation function. Figure 4 depicts the activation 
function in the crossbar configuration. 
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Fig. 4: Activation function in the crossbar 

 
The proposed crossbar array Sigmoid function 

with LIF neuron is used as an activation function. The 
sigmoid function is mathematically expressed as in 
equation (4) Wei, et al. (2020), 

                      𝑓𝑓(𝑥𝑥) =  1
1+𝑒𝑒−𝑥𝑥

                   (4) 
Each input 𝑥𝑥 has a corresponding weight, which 

is changed to model the plasticity of synapses. The LIF 
neuron unit transforms the integrated signal into the 
weighted sum of all the inputs in order to produce its 
output using an activation function f(x). The activation 
function determines, following integration, how the 
input and output are related.  The function takes neuron 
values and produces an output value range of 0 to 1. 
LIF neuron is activated for positive input and produces 
1 as output; negative input produces 0 as output. 
Further, to predict defects in the metal surface, SNN is 
trained with a surrogate gradient descent algorithm. 
Training SNNs is difficult because of the discrete 
character of the number of spikes in a given interval. 
The derivatives of these discrete values are nearly 0 
everywhere, hence the surrogate gradient (SG) 
approaches are necessary. The continuous-time 
structure of SNNs leads to incredibly sparse network 
activity because even a single spike's emission 
duration includes information. These spike timings are 
smooth, steady values that change in response to 
neuronal input. As a result, the continuous derivatives 
between the network's inputs and outputs were made 
possible by using spike timings along with SG. The 
following equation (5) describes non-leaky neurons in 
the network post-training Neftci, et al. (2019). 
𝑑𝑑𝑈𝑈𝑖𝑖
𝑑𝑑𝑡𝑡

= 𝐼𝐼𝑗𝑗 = ∑ 𝑊𝑊𝑗𝑗𝑗𝑗 ∑ Θ(t − 𝑡𝑡𝑗𝑗𝑟𝑟)exp (−(t − 𝑡𝑡𝑗𝑗𝑟𝑟))𝑟𝑟𝑗𝑗      (5) 
In equation (5), 
𝛩𝛩(. ) is the Heaviside step function 
𝑡𝑡𝑗𝑗𝑟𝑟 is a time of the 𝑟𝑟𝑡𝑡ℎ spike from neuron 
SG descent training algorithm increased the 

neural network training process speed with the 
memristor crossbar array. However, the memristor's 
presence in the crossbars reduces the accuracy of 
prediction because of the sneak path. Hence, to avoid 
sneak paths, the cross MTM synapse approach is 
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utilized in the crossbar, which is explained in the 
upcoming section.   
 
MTM synapse approach 

One of the major challenges of the crossbar array 
structure other than the memristor-intrinsic problems 
like asymmetry and nonlinearity of conductance 
modulation is the sneak path problem. “Sneak paths” 
are unwanted paths alongside the selected path since 
the memristors in the crossbar are bidirectional [32]. 
The sneak path error in the crossbar array and 
corresponding circuit is shown in figure 5. 

 
Fig. 5: Sneak path error in conventional crossbar 

array circuit 
 

The desired flow of the current is through path 
A1-B3-B1, shown in blue color in figure 5. But the 
current flow through an undesired path A1-B2-B1 
which is a sneak path, colored red in figure 5. To solve 
these, a two-memristor one-transistor (1M-1T-1M) 
synaptic device is proposed, where the series transistor 
plays the role of a switch. The two memristors and one 
transistor is connected in a crossbar array in which the 
transistor restricts the sneak path access by 
intentionally manipulating the switching ON-OFF 
states. When the series transistor in the particular row 
changed to the ON state, the memristor switches the 
state due to the voltage drop across it. In the OFF state 
of the transistor, zero current flows through the cell, 
and no voltage drop across the memristor. The 
switching ON-OFF process of the transistor enables 
accurate resistance programming and reading in the 
crossbar array which leads to the precise classification 
of images.  

In the proposed model, two memristors (𝑀𝑀1,𝑀𝑀2) 
are identical in every way and are connected to the 
emitter and collector terminal of the transistor which 
acts as a switch to control a weight modification and a 
synapse output. Conduction of the n and p channels of 
the transistor is controlled by a positive or negative 
value greater than the transistor's threshold which has 
a positive value or takes a negative value and is in a 
high-impedance state (no signal). According to the 
transistor properties, when receiving a signal either 
positive or negative, the n or p channel will shut down 
(allow no more current to pass) and the control 
threshold will be sent to input to change the weight of 
the synapse. In contrast, the channels of the transistor 
are conductive when there is no input signal (high 
impedance), and the synapse output is based on a 
synapse weight and input. Because its value is much 
lower than the transistor threshold, the input signal has 

no impact on the transistor's n and p channels. The 
architecture of the proposed one memristor-one 
transistor-one memristor (1M-1T-1M) synapse in the 
crossbar array has been shown in figure 6. 

 

 
Fig. 6: Proposed one memristor one transistor one 

memristor (1M-1T-1M) Architecture 
 

The total memristance of the 1M-1T-1M 
synapse at the initial state is given by equation (6) 

𝑀𝑀𝑗𝑗𝑖𝑖𝑗𝑗𝑡𝑡𝑗𝑗𝑖𝑖𝑖𝑖 = 𝑀𝑀1,𝑗𝑗𝑖𝑖𝑗𝑗𝑡𝑡𝑗𝑗𝑖𝑖𝑖𝑖 + 𝑀𝑀2,𝑗𝑗𝑖𝑖𝑗𝑗𝑡𝑡𝑗𝑗𝑖𝑖𝑖𝑖  (6)               
where 

𝑀𝑀1,𝑗𝑗𝑖𝑖𝑗𝑗𝑡𝑡𝑗𝑗𝑖𝑖𝑖𝑖 = 𝑟𝑟𝑜𝑜𝑖𝑖𝑖𝑖10 + 𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜(1 − 𝑖𝑖10) (7) 
𝑀𝑀2,𝑗𝑗𝑖𝑖𝑗𝑗𝑡𝑡𝑗𝑗𝑖𝑖𝑖𝑖 = 𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖20 + 𝑟𝑟𝑜𝑜𝑖𝑖(1 − 𝑖𝑖20) (8) 

In equations (7) and (8), 𝑀𝑀1,𝑗𝑗𝑖𝑖𝑗𝑗𝑡𝑡𝑗𝑗𝑖𝑖𝑖𝑖  and 𝑀𝑀2,𝑗𝑗𝑖𝑖𝑗𝑗𝑡𝑡𝑗𝑗𝑖𝑖𝑖𝑖  
are the memristance values at the initial state, 𝑟𝑟𝑜𝑜𝑖𝑖 is the 
maximum resistance, roff  is the minimum resistance, 
and 𝑖𝑖10, 𝑖𝑖20 are the state variables at the initial state. 
The memristors at any state have been given in 
equations (9) and (10) as follows: 

𝑀𝑀1(∆𝑇𝑇) = (𝑟𝑟𝑜𝑜𝑖𝑖−𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜)(𝑖𝑖10 + ∆𝑖𝑖)  + 𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜 (9) 
Similarly, the memristor 𝑀𝑀2  is connected in 

parallel hence it performs the reverse operation of the 
memristor 𝑀𝑀1  

𝑀𝑀2(∆𝑇𝑇) = �𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜−𝑟𝑟𝑜𝑜𝑖𝑖�(𝑖𝑖20 − ∆𝑖𝑖) + 𝑟𝑟𝑜𝑜𝑖𝑖(10) 
Equation (11) provides the total memristance, 

𝑀𝑀(∆𝑇𝑇), of the two memristors. 
𝑀𝑀(∆𝑇𝑇) = 𝑀𝑀1,𝑗𝑗𝑖𝑖𝑗𝑗𝑡𝑡𝑗𝑗𝑖𝑖𝑖𝑖 + 𝑀𝑀2,𝑗𝑗𝑖𝑖𝑗𝑗𝑡𝑡𝑗𝑗𝑖𝑖𝑖𝑖 + 𝑘𝑘(𝑟𝑟𝑜𝑜𝑖𝑖−𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜) ×
∫∆𝑇𝑇�𝑓𝑓(+𝑥𝑥)(𝑖𝑖10 + ∆𝑖𝑖) − 𝑓𝑓(−𝑥𝑥)(𝑖𝑖20 − ∆𝑖𝑖)� ×

𝑥𝑥(∆𝑇𝑇)𝑑𝑑𝑇𝑇                       (11) 
where 𝑓𝑓(+𝑥𝑥), 𝑓𝑓(−𝑥𝑥) denote the activation 

function's value when the memristor is conducting 
forwardly or backward, respectively. When the term 
�𝑓𝑓(+𝑥𝑥)(𝑖𝑖10 + ∆𝑖𝑖) − 𝑓𝑓(−𝑥𝑥)(𝑖𝑖20 − ∆𝑖𝑖)� is 0, it can be 
seen that the total memristance of the synapse will 
equal the sum of the two initial memristances and this 
term lies between 0 to 1. As a result, when a constant-
voltage source is applied to the synapse, both the total 
resistance of the synapse and its current remain 
constant. Hence it is noted that when the input voltage 
is positive, the output voltages of the synapses, which 
represent the weight values, will rise linearly. The 
weights of the synapses in a circuit of synapses won't 
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change in the absence of input voltage. In contrast, the 
synaptic weights will linearly drop when a negative 
input voltage is provided to the synaptic circuit. 

Furthermore, this crossbar array circuit utilizes 
memristors monolithically integrated into three 
dimensions on the transistor to obtain unit cells with 
the same size as 1T1M devices. Additionally, there is 
no longer a requirement for extra read-before-write 
operations because linear conductance modulation has 
been accomplished utilising the same programming 
pulse scheme as incremental amplitude or width 
modulation. Based on these computations, defects in 
the metal surface are predicted with the SNN-based 
Memristor cross-array classifier model and MTM 
synapse approach. There the classification of defects is 
done precisely without any errors. The following 
section covered the findings.                    
 

RESULTS AND DISCUSSION 
 

This section provides a thorough explanation of 
the implementation outcomes and a performance 
assessment of the proposed model.  
 
Experimental Setup 

This proposed model has been implemented in 
the working platform of MATLAB. Initially, dataset 
RGB 3D images are converted to a grayscale image. 
From the converted grayscale image neural network is 
trained with the proposed model where neurons are 
generated for the trained model. Then the input metal 
image is given to the trained model to predict the 
defect. Initially, the network assigns neurons for the 
input image based on the dimensions of the image. 
Then each neuron of the network predicts the defect 
and forms a confusion matrix. Initially, the values of 
TP, TN, FP, and FN are zero, if the actual value and 
the predicted values are 1 then it increases the TP value 
by one. If the predicted value is 1 and the actual value 
is 0 then it increases the FP value by one. If the actual 
value and predicted value are 0 then the FN value rises. 
It raises the TN value by one if the predicted value is 
0 and the actual value is 1. From the final values in the 
confusion matrix the proposed model's accuracy, recall, 
f1-score, and precision are calculated. 
 
Dataset Description 

In this work, the detection technique can 
efficiently identify minor target defects on the metal 
surfaces, which may be a reference for automatic metal 
defect identification. For this prediction, we used 
insulator Dataset- “Chinese power line insulator 
dataset” (CPLID) António Raimundo, (February 11, 
2020) which contains UAV-captured normal insulator 
images and synthetic flawed insulator images. A 
training set and a test set were created from the CPLID 
dataset for the proposed model, with 80% of the 
dataset going to the training set and 20% to the test set. 

 
Fig. 7: (a) Input images (b) Output images with noise 

(c) Output images without noise 
 

The above figure 7a & 7b shows some sample 
input images and the corresponding output images. 
The noise-canceled output images are shown in figure 
7c. 

 
Fig. 8: Proposed method of defect prediction 

 
 Figure 8 shows the prediction of defects for a 

particular simulation time by setting a constant 
threshold value of -50 and a resting potential value of 
-60. When simulation time increases from 0 ms, the 
model prediction has risen above the threshold value. 
The simulation time from 100ms to 1000ms 40 image 
prediction has been done. The proposed method 
achieved this high prediction value by setting a 
constant threshold value.  

 
Performance Analysis of the proposed model 

  The performance of the proposed model is 
analyzed by calculating the following measures. 

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝐴𝐴𝐴𝐴𝑦𝑦 = � 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝐹𝐹𝑇𝑇

�      (12) 
where, TP, TN, FP and FN respectively stands 
for “True Positive”, “True Negative”, “False 
Positive”, and “False Negative” Values. 

Recall = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

                              (13) 

            F-score=2*𝑇𝑇𝑟𝑟𝑒𝑒𝑐𝑐𝑗𝑗𝑃𝑃𝑗𝑗𝑜𝑜𝑖𝑖∗𝑅𝑅𝑒𝑒𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖
𝑇𝑇𝑟𝑟𝑒𝑒𝑐𝑐𝑗𝑗𝑃𝑃𝑗𝑗𝑜𝑜𝑖𝑖+𝑅𝑅𝑒𝑒𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖

                       (14) 

            where Precision = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

  

 
(a)  Accuracy                           (b) Recall 
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(c) F-score                    (d) Execution time 

                    
Fig. 9: Performance measures of the proposed Model 

 
Figures 9a–d show how the suggested model 

performs in terms of accuracy, recall, f-score, and 
execution time across various epochs. An epoch refers 
to the number of times the learning algorithm 
processes the full training dataset, and it demonstrates 
how the model parameters are adjusted for each 
sample in the training dataset. In the proposed method, 
the recall value is improved by transmitting data with 
a threshold value to avoid the propagation cycle in 
each iteration. The proposed method also uses a more 
flexible weight range and has an increased f-score by 
avoiding the use of one transistor with two memristors. 
The MTM synapse approach is utilized to reduce sneak 
path error, resulting in faster execution. The following 
table 1 displays the overall performance metrics across 
600 epochs. 

 
Table 1: Overall performance measures of the 

proposed model 
Epoch

s 
Accuracy

(%) 
Recall

(%) 
F-

score(%) 
Execution 
Time(sec) 

100 97.5 98.13 96.25 8 
200 97.7 98.22 96.36 8.83 
300 98.48 98.42 97.32 8.42 
400 98.6 98.52 96.7 8.66 
500 98.8 98.61 96.84 8.67 
600 98.82 98.82 97.21 8.98 

 4.4 Comparative analysis of the proposed model 
The efficiency of the proposed model in 

identifying diverse metal surface flaws was  
demonstrated by comparing its performance to widely 
used defect classification and detection models. The 
comparison with the contrastive models is listed in 
tables 2 and 3. 
 

Table 2: Accuracy and Time comparison 
Model Accuracy(

%) 
Execution 
Time(sec) 

Improved ResNet50 97.6 7 
Generative Adversarial 

Networks 
97.5 210 

Faster R-CNN 97.2 220 
Classification and object 

detection 
98.3 60 

Proposed 98.82 6 
Table 3: Recall and Precision comparison 

                                        
 

 
(a)Accuracy Comparison        (b)  Recall Comparison 
 

Fig. 10: Comparison of Accuracy and Recall 
 

The accuracy comparison of the proposed model 
with existing models is presented in Figure 10(a). The 
proposed model outperforms all other models in terms 
of accuracy, with a maximum accuracy of 98.82%, 
while the highest accuracy achieved by improved 
ResNet50, Generative Adversarial Networks, faster R-
CNN, and classification and object detection is 97.6%, 
97.5%, 97.2%, and 98.3% respectively. Figure 10(b) 
compares the proposed model's recall to those of 
existing models, and the model demonstrates its 
superior recall ability, with a recall percentage of 95%, 
compared to popular models listed in table 3. 

 

 
 

Fig. 11: Comparison of Precision 
 

In Figure 11, a comparison of the precision of 
the proposed model is presented. The model's 
precision is 85% when compared with popular models 
given in table 3. This high precision value highlights 
the proposed model's potential in accurately 
identifying defects. 

 
Fig.12: Comparison of the Running Time 

Model Recall(%) Precision (%) 
SSD  Lv,et al. 

(2020) 
57 72 

Faster-RCNN 
Wang, et al. (2021) 

40 71 

YOLO-V2  Lv,et 
al. (2020) 

43 50 

YOLO-V3  Lv,et 
al. (2020) 

43 45 

EDNN  Lv,et al. 
(2020) 

85 72 

Proposed 95 85 
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In Figure 12, the running time comparison 

between the proposed model and other existing 
methods listed in table 2 is displayed. The proposed 
model has the shortest running time among all 
techniques as demonstrated in the figure. This makes 
the proposed model more effective and efficient in 
detecting defects on metal surfaces. 

Overall, the proposed SNN-based memristor 
crossbar array uses an activation function to process 
metal images and identify defects. The neural network 
is trained with features extracted from the metal image. 
When the network encounters a defective area, the LIF 
activation function triggers a spiking neuron in the 
spiking neural network, allowing it to accurately 
classify the defective area of the input metal image. 

 
CONCLUSION 

 
In summary, we have demonstrated an efficient 

metal surface defect recognition model using SNN via 
a memristive crossbar array aimimng to reduce latency, 
resolve bandwidth concerns, and get rid of sneak path 
issues. The SNN-based memristor cross-array 
classifier utilizes a spiking neural network that 
generates neurons only at a specific threshold value 
and thus overcomes the bandwidth limitation and 
latency. Emerging non-volatile memristors, which are 
considered invaluable to the processing in memory 
(PIM) technology in neuromorphic computing, are 
used to emulate biological neurons and synapses. 

To eliminate the “sneak path” problem in 
memristor crossbar arrays, a novel MTM synapse 
approach has been introduced that uses two 
memristors and one transistor in the form of 1M-1T-
1M and thereby promising accuracy. The results of 
experiments prove that the SNN-based model 
proposed performs significantly better than the state-
of-the-art models currently available. The success of 
the proposed model highlights the practicality and 
usefulness of the memristor-based PIM concept in 
real-world scenarios. Moreover, the advantages 
provided by the neuromorphic chips make SNNs a 
reasonable choice for different viable applications. 
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