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ABSTRACT 

 
The cotton-picking robot, a vital tool in modern 

agriculture, requires meticulous planning of its 
manipulator's operational path to optimize harvesting 
costs, quality, and efficiency. Addressing the issues of 
operational efficiency, vibration, and impact generated 
during the movement of the mechanical arm for long-
staple cotton picking, this study introduces a time-
optimal trajectory planning strategy. Analyzing the 
picking path, this article employ an S-shaped curve for 
speed control, enabling flexible speed planning 
methods like four, five, and seven-segment planning. 
This ensures stable and efficient robot operation across 
diverse scenarios. Integrating a fifth-order non-
uniform B-spline curve with an improved particle 
swarm algorithm further enhances trajectory planning, 
significantly reducing interpolation time and 
improving accuracy. Experimental results show an 
average interpolation time of 0.24s, with a minimum 
of 0.232s, representing a nearly twofold reduction 
compared to traditional methods. This rapid and 
efficient approach supports autonomous cotton-
picking robot operation and serves as a reference for 
trajectory planning in other agricultural robots. 

  
 
 
 
 
 

 
 
 
 
 

  

INTRODUCTION 

The main production areas of long-staple cotton 
in China are located in Xinjiang, which is renowned 
for its exceptional quality and serves as a high-quality 
raw material for high-end textiles and special textiles 
(Hu Chunle et al.2023). Traditional spindle-type 
cotton pickers are prone to damaging cotton fibers 
during the picking process, leading to compromised 
quality. Therefore, the harvesting of long-staple cotton 
currently relies heavily on inefficient and costly 
manual methods, which is a crucial factor restricting 
the growth and strengthening of China's long-staple 
cotton industry (BM AZIMOV et al.2023 ). The 
development of efficient and precise harvesting robots 
for long-staple cotton is an important technological 
approach for implementing the strategy of building a 
strong cotton-producing country through machine 
substitution.  

The trajectory planning of cotton-picking robots 
is the key to enhancing harvesting efficiency, which 
relies heavily on precise recognition and positioning 
technologies. Currently, due to the diversity and 
complexity of cotton growth environments, research 
on cotton-picking manipulator arms at home and 
abroad is still in its infancy. Existing studies have 
primarily focused on optimizing picking paths and 
improving positioning accuracy. For instance, Ma 
Jianlin optimized cotton-picking paths via simulated 
annealing & genetic algorithms (Ma Jianlin et al., 
2018). Zhang Hao assessed cotton maturity using 
morphological features & Hough transform, though 
practical efficacy needs improvement (Zhang Hao 
et al., 2015). USN Rao proposed a cotton-picking 
robot based on dynamic Freeman coding (U Rao 
et al.,2013). Liu Xiangfei achieved trajectory planning 
for robots under jerk & velocity constraints, using 
cubic NURBS interpolation (Li Xiangfei et al., 2023). 
Liu C investigated high-speed Delta robot planning 
with a 4-3-3-4 polynomial (Liu, C et al.,2020). Lin, C.-
J. proposed an enhanced automatic TCP calibration 
method applied to six-degree-of-freedom 
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collaborative robots, achieving high-precision non-
contact calibration, optimizing robotic arm trajectory 
planning, and enhancing efficiency and accuracy (Line，
C-J et al，2023). Wang, C.-C research on trajectory 
planning of robotic arms based on dynamic double 
pendulum crank mechanism, utilizing CNN, GPR, and 
BPNN for enhanced prediction of nonlinear and 
chaotic motions (Wang, C.-C,et al 2021). 

Cao Yuting proposed a time-optimal trajectory 
planner leveraging B-spline interpolation & linear 
programming, significantly enhancing operational 
efficiency (Cao Yuting et al., 2024). Lu S addressed 
smooth motion for 3-DOF robots using minimum-jerk 
quintic polynomials (Lu S et al.,2020). Jiayu Wang et 
al. mitigated planning issues with a 3-5-3 segmented 
polynomial method for 6-DOF limbs (Jiayu Wang，et 
al,2024). Baoju Wu et al. optimized paths with quasi-
uniform B-splines for efficiency & smoothness (Baoju 
Wu,et al). Saravnan R improved accuracy & stability 
with NURBS & fuzzy functions (Saravnan R et al., 
2008). Corke optimized joint trajectories via cubic 
polynomials (Corke eta al., 2017). 

However, as cotton-picking robots continue to 
evolve, new challenges arise for trajectory planning. 
Based on existing research, this paper proposes a 
binocular vision-based trajectory planning 
optimization algorithm that combines S-shaped curve 
velocity planning with quintic non-uniform rational B-
spline curves for trajectory planning. Additionally, an 
improved particle swarm optimization algorithm is 
utilized for time-optimal planning. Simultaneously, 
the D-H modeling method is used to establish a 
manipulator arm model, providing a theoretical 
foundation and technical support for the path planning 
of cotton-picking robots. These studies lay a solid 
foundation for the further development of cotton-
picking robots. 

MATERIALS AND METHODS 

Agricultural Characteristics of Cotton 
Due to various influencing factors such as cotton 

variety, region, and lighting duration, there exist 
significant differences in the physical parameters of 
different cotton bolls from long-staple cotton. In this 
study, the Xin hai 54 long-staple cotton variety from 
the Aksu region of Xinjiang was chosen as the 
experimental material. Sampling was conducted at the 
end of October with a water content of 9.5% in cotton 
bolls. 

Trajectory Planning Overview 
Trajectory planning refers to the curve formed by 

the continuous change of the position of a moving 
point in space over time, which is essentially the 
planning of time by correlating paths with specific 
time points. For cotton-picking manipulator arms, 
trajectory planning can be further categorized into two 
planning methods: joint space planning and Cartesian 

space planning. The determination of each path point 
is typically based on the desired posture and position 
of the tool coordinate system {T} relative to the 
workstation coordinate system {S}. 

In joint space trajectory planning, the joint 
variables of the manipulator arm are transformed into 
functions closely related to time. By limiting the 
angular velocity and angular acceleration, the desired 
posture and position of each point can be obtained. On 
the other hand, Cartesian space trajectory planning 
involves converting the displacement, velocity, and 
acceleration of the manipulator arm's end-effector in 
Cartesian space into time-dependent functional 
expressions, thereby clarifying the spatial path 
morphology between path points (Chen Zhuang, 2020; 
Kuang Wenlong et al., 2020). 
S-shaped Curve 

The S-shaped acceleration and deceleration 
strategy significantly reduces the impact on the control 
system by achieving smooth transitions in the velocity 
curve, making the interpolation process more flexible 
and compliant. Additionally, the continuous variation 
of acceleration during acceleration and deceleration 
introduces a new variable, j, known as jerk, which 
reflects the change in acceleration over time. This 
innovation not only enriches the toolbox of control 
engineering but also enhances the stability of system 
operation. 

a

t

dj
d

=  （1） 

The maximum system speed, maxv  , reveals its 
operational limits, while the maximum acceleration,

maxa , embodies the peak acceleration and deceleration 
capabilities. On the other hand, jerk (j) demonstrates 
the flexibility and stability characteristics of the 
system. Greater flexibility leads to larger overshoots 
and shorter operation times, while lower flexibility 
results in smaller overshoots and longer operation 
times. Typically, when calculating the trajectory given 
the initial and final positions and initial and final 
speeds ( )minmaxminmaxminmax1010

ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,v̂,ˆ,ˆ jjaavvvqq  the 
necessary transformations are required to facilitate the 
computation. 

Joint Space Trajectory Planning 
Joint space trajectory planning involves utilizing 

models such as polynomials, parabolas, and spline 
curves for planning the individual joints of a 
manipulator arm. During the motion of the 
manipulator arm along the planned trajectory, it is 
crucial to maintain continuous and smooth changes in 
the velocity and acceleration of each joint. This 
ensures the stability of the manipulator arm's joints, 
minimizes vibrations and impacts on the mechanical 
system, and extends the lifespan of the manipulator 
arm（Ma Xiaoxiao,2019）. In this section, we optimize 
the manipulator arm trajectory based on a fifth-order 
non-uniform B-spline interpolation and combine it 
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with a particle swarm optimization algorithm to 
achieve optimal trajectory timing. 
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Quintic Non-uniform B-spline Trajectory Planning 
Utilizing the centroid points obtained from 

binocular vision as critical path points during the 
harvesting process of the manipulator arm, a B-spline 
curve function is employed to transform the junctions 
of each trajectory segment into smooth curves for 
fitting and connection. This approach not only ensures 
the continuity of high-order derivatives in trajectory 
planning, satisfying the requirements of boundary 
conditions and derivative continuity, but also exhibits 
local support, minimizing the change rate of joint 
displacements. Furthermore, due to its excellent 
scalability, this method can flexibly cope with 
complex scenarios involving multiple path points. By 
applying quintic non-uniform B-spline trajectory 
planning for the manipulator arm during harvesting, 
high-precision and high-stability trajectory planning 
for the manipulator arm is achieved（Wu Junli，2016）. 

The fundamental properties of non-uniform 
rational B-spline curves 

The non-uniform rational B-spline curve can be 
expressed as: 
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In the formula, ),...,2,1,0( nidi =  represents the 
control points corresponding to the B-spline curve, 

iw   represents the weights associated with all the 
control points, and )(, uR ki   denotes a quintic non-
uniform rational B-spline basis function, which is 
constructed based on non-periodic and non-uniform 
knots U. 
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In the above formula, k represents the degree of 
the non-uniform rational B-spline curve, and in this 
paper, k=5. The variable i indicates the index of the 
knots in the non-uniform rational B-spline curve. The 
r-th derivative of any point on the B-spline curve, 
denoted as )(r uC , can be obtained as follows: 
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Constructing a Joint Space Interpolation Function 
The main process of B-spline interpolation 

comprises two key steps: 
a. When the time nodes are not normalized, they 

undergo parameterization to derive node parameter 
values u1 that correspond to the data points ip . 

b. Building on the previous step, n+k equations 
are formulated based on the motion information of the 
start and end points to determine the new control 
vertices id . 

Through these steps, a B-spline curve can be 
constructed that interpolates the given data points 
while satisfying the motion constraints at the start and 
end points. This curve provides a smooth and 
continuous representation of the data, suitable for 
applications in robotics, animation, computer-aided 
design, and other fields. 

Improved Particle Swarm Optimization Algorithm 
Due to the employment of a fixed inertia 

coefficientω , the particle swarm optimization (PSO) 
algorithm often tends to become trapped in local 
optima, thus failing to locate the global optimal 
solution （Jiang Guoquan et al., 2017）.Consequently, 
dynamically adjusting the inertia coefficient can 
effectively address this issue.  
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Here, maxω and minω represent the maximum and 
minimum inertia coefficients, respectively. The 
current fitness value of particle i is denoted as fi, the 
average fitness value of all particles is represented by 
favg, and the minimum fitness value among all particles 
is indicated by fmin. These parameters collectively 
influence the performance and outcome of the 
algorithm. To achieve the desired output during the 
optimization process, it is crucial to carefully select 
appropriate acceleration constants, as shown in 
equations 7 and 8. 
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（8） 

In the given formula, t represents the runtime 
duration of the algorithm. The best position of the 
particles is calculated according to formula (9) to 
obtain accurate results (Li Zhi et al., 2004). 
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Based on the preset conditions of path length, 
velocity, acceleration, and harvesting time during the 
cotton picking process of the mechanical arm, the six 
joints of the mechanical arm must satisfy certain 
motion constraint equations (10-13). The kinematic 
constraints for time-optimal trajectory planning in 
joint space are as follows: 
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The model for the time-optimal trajectory 
planning problem in joint space, under the satisfaction 
of motion constraints, is formulated as: 
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This optimization problem involves nonlinear 
constraints, and the structure of function )( ir tg   is 
complex, requiring a solution that integrates various 
constraints. To address this issue, a novel objective 
function is constructed by combining the exterior point 
function method with the basic particle swarm 
optimization algorithm. 

Based on the characteristics of non-uniform B-
spline curves and the behavior of the manipulator 
during operation, this paper sets the control points of 
the velocity, acceleration, and jerk curves for each 
joint as the limiting values of the constraint conditions. 
The control points can be selected as max{0, g，(t)} to 
penalize points that violate the constraints. 
Subsequently, the particle swarm optimization 
algorithm is employed to find the new optimal solution 
for the objective function. 

( ){ } ( )( ) ( ) max 0, , , 1,2,3F t f t g t r= + =  （16） 

Time-Optimal Trajectory Planning Based on an 
Improved Particle Swarm Optimization Algorithm 
Optimization Criteria 

a. The time performance index is defined as the 
time interval between every two path points, 
represented as t(i+1)-ti. The time-optimal model is 

constructed as follows: 
1
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In the formula, Y1 represents the total time of the 
manipulator's picking process, where i denotes the 
path point, and Y1 is used to evaluate the work 
efficiency of the manipulator's picking process. 

b. Jerk Performance Index 

( )2
2 0

1
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N T

j
Y jerkj t dt

T=
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In the formula, Y2 represents the average 
acceleration to be optimized for each joint of the 
manipulator, where j denotes the joint index and N is 
the number of joints. In this paper, a six-degree-of-
freedom manipulator is employed, with N=6. jerkj(t) 
is the jerk curve function of the jth joint, which can 
evaluate the stability of the manipulator's picking 
process (Gao Xiaopeng,et al., 2023). 

Spatial Positioning of Cotton 
During the cotton picking process, the picking 

robot needs to accurately locate the cotton target object 
in outdoor environments with strong light and other 
complexities (Liu Yafang et al., 2022). To this end, an 
efficient and precise binocular matching method is 
adopted in this paper (Zhang Guohui et al., 2024). This 
method relies on a deep learning model to accurately 
capture the location and shape information of cotton, 
and achieves rapid matching through an innovative 
matching equation. After the matching is completed, 
the calculated disparity distance is used for precise 
ranging, which further enables spatial positioning.  

A binocular camera platform, constructed with 5-
megapixel industrial cameras from RealView, is 
presented. Table 1 provides a detailed enumeration of 
the cameras' technical specifications. Figure 1 offers a 
visual illustration of the binocular camera's exterior 
design. As depicted in Figure 2, the coordinate system 
is bifurcated into a world coordinate system (x, y, z), 
with the camera center as the origin, and an image 
coordinate system (u, v), anchored at the vertex of the 
image plane. This dual-system approach ensures a 
clear representation of cotton's position in both the 
real-world space and the image domain. By leveraging 
a tailored positioning equation (20), precise spatial 
localization of cotton target objects is achieved, 
facilitating advanced automation in mechanical 
engineering applications. 

i 0

i 0

/
/        

x x x z f
y y y z f

z f b d

= ×
 = ×
 = ×

（ - ）

（ - ）  （19） 

In mechanical engineering applications, x, y, z 
(mm) represent the 3D coordinates of cotton in the 
world coordinate system, while xi, yi (mm) denote their 
2D projections in the image coordinate system. The 
camera center's 2D coordinates in the image plane are 
x0, y0 (mm). The baseline b (mm) and focal length f 
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(mm) of the camera system characterize the geometric 
setup. The disparity d (mm), derived from image 
analysis, encodes depth information. This 
mathematical framework underpins precision 
measurement and control in vision-guided mechanical 
engineering systems, enabling accurate localization 
and inspection of cotton or similar materials. 

Table 1 Technical parameters of binocular camera 
Hardware performance Calibration parameters 
output 
format MJPEG/YUV focal 

distance(left) 2043.875 

frame rate 30FPS focal 
distance(right) 2064.712 

maximum 
resolution 2592*1944 image 

center(left) 
1151.527* 
925.810 

baseline 5cm image 
center(right) 

1280.002* 
960.588 

 

 
Fig 1 Physical image of binocular camera 

 

 
Fig 2 Schematic diagram of binocular camera 

coordinate System 

EXPERIMENTS AND VERIFICATION 

Binocular Vision Positioning Experiments 
As depicted in Figure 3, the first-generation 

cotton-picking robot developed by the team utilizes a 
binocular vision system to precisely acquire the 
position information of cotton bolls. The controller 
processes the data obtained by the binocular cameras, 
computing the optimal trajectory for the cotton-
picking manipulator. Upon precise positioning above 
the cotton, a negative pressure fan is activated, 

generating strong suction through the cotton-sucking 
hose to effortlessly pluck and transport the cotton into 
a storage bin.  

Prior to harvesting, binocular calibration and 
hand-eye calibration are performed to ascertain 
camera intrinsic and extrinsic parameters along with 
transformation matrices for image rectification. The 
captured images undergo cotton segmentation and 
matching, facilitating the calculation of 3D 
coordinates of picking points, thereby providing data 
support for precise harvesting. Figure 4 illustrates the 
cotton field experimentation of this first-generation 
cotton-picking robot, demonstrating its ability to 
accurately detect cotton positions and accomplish 
picking tasks. Table 2 presents the data of 15 cotton 
bolls with similar growth heights, which were acquired 
through visual localization. 

 
1.chassis,2.battery box, 3. negative pressure fan, 

4.cotton storage box,5.controller;,6.robotic 
arm,7.cotton suction hose,8.binocular camera 

Fig 3 First-generation prototype of cotton-picking 
robot 

 

 
Fig. 4 Cotton binocular vision positioning experiment 

scene 
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Table 2 binocular vision cotton positioning results 
Number X/mm Y/mm Z/mm 

1 51.121 168.334 701 

2 84.842 147.494 734 

3 80.062 107.575 751 

4 58.217 82.333 721 

5 111.272 68.883 736 

6 173.951 76.114 741 

7 99.110 149.229 720 

8 120.919 106.751 724 

9 192.965 160.769 746 

10 162.154 114.928 695 

11 239.766 133.209 710 

12 188.772 114.137 693 

13 384.114 104.148 713 

14 229.306 58.464 718 

15 191.459 50.099 725 

Trajectory Planning Simulation Testing 
During cotton harvesting, the position and 

orientation of cotton bolls rotate relative to the 
stationary cotton-picking robot. The robotic arm 
undertakes trajectory planning for cotton at similar 
heights, enabling stratified picking. Assuming a field 
operation speed of 119 cm/s, this is designated as the 
maximum joint velocity (vmax = 119 cm/s). Maximum 
acceleration (amax = 500 cm/s²) and jerk (jmax = 500 
cm/s³) are specified for the arm during harvesting. 
Figure 5 showcases the initial shortest path obtained 
via simulated annealing. Subsequently, the feasibility 
of attaining maximum velocity or acceleration is 
evaluated based on path length and harvesting time, 
with S-curve velocity profiles applied to each segment. 
Table 3 outlines the DH parameters of the robotic arm. 

Fig 5 Track planning results 
 

Table 3 D-H matrix of each joint of the manipulator 
Connecting 

Rod i 𝜃𝜃𝑖𝑖（rad） d 𝛼𝛼𝑖𝑖(rad) 𝛼𝛼𝑖𝑖 

1 -170°～170° 0 0 0 

2 -90°～165° 420 -π/2 155 

3 -205°～270° 0 0 650 

4 -270°～270° 0 -π/2 140 

5 -160°～95° 920 π/2 0 

6 -400°～400° 0 -π/2 60 

As depicted in Figure 6, velocity profiling results 
for harvesting paths reveal that the maximum 

velocities of the 1st and 15th segments are below the 
prescribed maximum robot motion speed. Under the 
given constraints, a five-segment S-curve velocity 
profile is adopted for these paths, eliminating uniform 
acceleration and deceleration phases. For segments 2 
to 14, where picking points are closely spaced, a four-
segment S-curve is planned, omitting uniform 
acceleration, deceleration, and constant velocity stages. 
Furthermore, utilizing the modified Particle Swarm 
Optimization (PSO) algorithm proposed herein, with 
500 iterations, inertia weights wmax=0.5 and wmin=0.3, 
cognitive constants C1f=0.05 and C1i=0.02, and social 
constants C2f=0.05 and C2i=0.02, a swarm size of 50 
particles is selected. 

 
Fig. 6 Path speed planning of each section 

 
As shown in Figure 7, the fifth-order polynomial 

interpolation method was employed for trajectory 
planning at the picking points, and combined with the 
optimized particle swarm optimization algorithm, the 
angular velocity, angular acceleration, and angular jerk 
variation charts for each joint of the robotic arm were 
obtained. However, upon analyzing these charts, it was 
observed that while the velocity curves were 
continuous, the acceleration and jerk curves exhibited 
discontinuity. Specifically, at t=5s, there was a sudden 
change in the acceleration of each joint, and during the 
picking process, there were significant variations in 
the joint velocity and acceleration. For instance, within 
the first 1 second of activation, the acceleration of joint 
1 and joint 2 rapidly increased from 0 rad/s² to 9.346 
rad/s² and 10.103 rad/s², respectively, with similar 
trends observed in other joints. This short-term 
acceleration caused an impact on the mechanical 
system, potentially affecting the smooth progress of 
the picking work. 
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Fig.7 Joint characteristic diagram for time-optimal 

trajectory planning using quintic polynomial 
 

During simultaneous motions of robotic arm 
joints, a joint's velocity can abruptly decrease from its 
maximum to minimum (or vice versa) within a short 

period, resulting in velocity spikes. To mitigate the 
likelihood of such velocity spikes and enhance the 
smoothness and efficiency of the robotic arm's 
movements, this paper employed fifth-order non-
uniform B-spline curve interpolation combined with 
an improved particle swarm optimization algorithm. 
As depicted in Figure 8, a comparison of the angular, 
angular velocity, and angular acceleration profiles at 
the end effector and individual joints of the robotic arm 
before and after the optimization reveals significant 
improvements. Specifically, the velocity range at the 
end effector was reduced from -9.392 rad/s to 9.089 
rad/s to -9.287 rad/s to 6.614 rad/s, and the 
acceleration range was narrowed from -28.239 rad/s² 
to 31.210 rad/s² to -17.557 rad/s² to 12.706 rad/s². 
Additionally, for each joint, the optimized angular 
velocity range decreased from -0.019 rad/s to 0.030 
rad/s to -0.015 rad/s to 0.020 rad/s, and the angular 
acceleration range decreased from -0.069 rad/s² to 
0.072 rad/s² to -0.046 rad/s². 

As demonstrated in Figure 9, the optimized 
robotic arm exhibited reduced joint speeds and 
mitigated sudden changes during startup, effectively 
alleviating impact issues. Through iterative 
optimization using the particle swarm algorithm, the 
interpolation time using fifth-order non-uniform B-
spline curve interpolation was reduced by half 
compared to fifth-order polynomial interpolation. The 
average interpolation time decreased from 0.52s to 
0.24s, and the shortest interpolation time was reduced 
from 0.516s to 0.232s. This significantly improved the 
efficiency and stability of trajectory planning, 
contributing to enhanced accuracy and efficiency in 
harvesting operations. 

 
Fig. 8 Time optimal trajectory planning using non-uniform quintic B-spline curve
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Fig. 9 Time optimal particle adaptation curve 

Experimental Verification and Analysis 
To accurately evaluate the performance of the 

trajectory planning model, validation experiments 
were conducted within a laboratory setting. Firstly, 
based on the previously acquired coordinates of fifteen 
cotton bolls, the bolls were arranged in an open area of 
the laboratory, ensuring that all bolls were positioned 
at similar heights to minimize the influence of external 
factors on the experimental results. 

Subsequently, both the pre-improvement and 
post-improvement algorithms were programmed into 
the robotic arm controller. In order to quantify and 
assess the performance of these two models, the 
trajectory planning time for the robotic arm to move 
from the first picking point, sequentially through 
thirteen cotton picking points, and finally reach the last 
picking point was recorded. Multiple trials were 
conducted, and during the data analysis phase, outliers 
and data with significant errors were excluded to 
obtain more accurate and reliable average trajectory 
planning time data. As shown in Table 4, the average 
trajectory planning time data under different control 
models are presented. 

 
Table 4 The average trajectory planning time under 

different control models 
Model Average Trajectory Planning 

Time/s 
before improvement 40.3 

after improvement 34.5 

 
Based on the data presented in Table 3, a 

substantial difference in trajectory planning time can 
be observed between the pre-improvement and post-
improvement models. The improved model, with its 
reduced average trajectory planning time, not only 
accelerates the computation of optimal paths but also 
enhances the overall efficiency of trajectory planning. 
Furthermore, this model exhibits reduced velocity 
fluctuations during operation, thereby strengthening 
operational smoothness and enhancing the reliability 
of the entire system. 

CONCLUSION 

This paper addresses the issues of execution 
efficiency, vibration, and impact during the operation 
of a long-staple cotton harvesting robotic arm. To 
tackle these problems, a time-optimal trajectory 

planning approach is proposed. The main conclusions 
are as follows: 

(1) The trajectory of the robotic arm is planned 
using fifth-order non-uniform B-spline curve 
interpolation combined with an improved particle 
swarm optimization algorithm. Compared to the pre-
improvement state, the range of velocity variations at 
the end effector of the optimized robotic arm is 
reduced from -9.392 rad/s to 9.089 rad/s to -9.287 rad/s 
to 6.614 rad/s, and the acceleration range is narrowed 
from -28.239 rad/s² to 31.210 rad/s² to -17.557 rad/s² 
to 12.706 rad/s². Additionally, for each joint, the post-
processed angular velocity range decreases from -
0.019 rad/s to 0.030 rad/s to -0.015 rad/s to 0.020 rad/s, 
and the angular acceleration range is reduced from -
0.069 rad/s² to 0.072 rad/s² to -0.046 rad/s² to 0.060 
rad/s². These improvements effectively reduce the 
velocity spikes during simultaneous joint motions of 
the robotic arm. 

(2) The use of fifth-order polynomial 
interpolation combined with a particle swarm 
optimization algorithm for trajectory planning of the 
cotton-picking robotic arm results in discontinuous 
acceleration and jerk, causing impacts on the 
mechanical system and affecting efficiency. 
Theaverage interpolation time for this method is 0.52s, 
with a minimum of 0.516s. In contrast, the adoption of 
S-curve control for harvesting speed, in conjunction 
with fifth-order non-uniform B-spline curve 
interpolation and the improved particle swarm 
optimization algorithm, significantly shortens the 
interpolation time to an average of 0.24s, with a 
minimum of 0.232s, thereby enhancing harvesting 
efficiency and providing a rapid and effective solution 
for path planning. 

(3) The improved model achieves a reduction in 
trajectory planning time from 40.3 seconds to 34.5 
seconds, enhancing planning efficiency. 
Simultaneously, the model exhibits improved speed 
and accuracy in calculating optimal paths, minimizes 
velocity spikes during operation, and enhances 
operational smoothness and reliability. 
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摘 要 

 在現代農業中採棉機器人發揮著舉足輕重的

作用。為實現採摘成本的降低、品質的提升和傚率

的提高，其操作路徑需進行精心規劃。本研究針對

長絨棉採摘機械臂的執行效率以及在運動過程中

所產生振動與衝擊問題，提出瞭一種時間最優軌跡

規劃筞畧。通過對採摘路徑的深入分析，本文采用

s 型曲線進行速度控制，實現瞭四段、五段和七段

等多種靈活的速度規劃方灋，從而確保機器人在不

同塲景下都能穩定、高傚地運行。此外，通過將五

階非均勻 B 樣條曲線與改進的粒子群算灋相結合，

進一步提升瞭軌跡規劃的精度，顯著縮短瞭插值時

間。實騐結果表明，該方灋的平均插值時間為 0.24

秒，最短插值時間達到 0.232 秒，與傳統方灋相比，

插值時間幾乎減少瞭一半。這種快速高傚的筞畧不

僅支持棉花采摘機器人的自主運行，而且為其他農

業機器人的軌跡規劃提供瞭有益的參考。 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 


