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ABSTRACT 

 
Based on the research of wavelet neural network 

(WNN), an adaptive particle swarm optimization 
(APSO) is proposed to solve the complex nonlinear 
relationship between the vibration characteristics and 
fault types of hydropower systems. This algorithm 
combines characteristics of evolutionary compute and 
swarm intelligences. It can change inertia weight 
according to the states of the particle adaptively. APSO 
rises the training speed of wavelet neural network, and 
improves network training accuracy. Experiments 
indicate that wavelet neural network based on APSO 
contains a higher precision and faster speed of diagnosis, 
compared with back propagation (BP) neural network 
and wavelet neural network. The algorithm is a new 
method for fault diagnosis of hydroelectric generating 
units (HGU), and it can be effectively applied to 
practical engineering. 
 

INTRODUCTION 
 

HGU is a large combined equipment. There is a 
high demand in performance of electric power 
production department, especially in continuous work. 
A failure may cause chain reactions of HGU, which 
affects the entire device. And even the entire production 
process could not run properly. The importance of state 
monitoring and fault diagnosing forces people to do a lot 
of researches in the field of HGU. 

Eighty percent of the hydro generator unit faults is 
related to vibration according to the literatures (Jianwei, 
2016). HGU is a highly nonlinear system. The fault type 
and its vibration characteristics show a complex 
nonlinear relationship. Due to the influence of 
mechanical, electrical and hydraulic factors, there is a 
certain relationship between the vibration characteristics 
of HGU and the complexity and nonlinearity of fault set. 
Therefore, it is unable to get the matching relationship 
through theoretical research. Intelligent algorithm is 
commonly used to diagnose the fault of HGU. Artificial 
neural network is a network system which is constructed 
according to the principle and structure of biological 
neural networks (Mahdi, 2019- Xiaochuan, 2018). It 
becomes a common tool to diagnosis fault of HGU due 
to its powerful ability in processing parallel and 
nonlinear questions. The BP neural network is used 
more widely (Ma, 2017). However, the convergence 
speed of the algorithm is slow, and it is possible for the 
solution to fall into local minimum.  

So, optimizing and improving the algorithm on 
the precedent basis becomes a new researching approach. 
For example, on the basis of BP neural network, the 
choquet fuzzy integration (Zhang, 2013) and APSO 
algorithm to BP neural network (Jiatang, 2015), which 
have been successfully used in the vibration fault 
diagnosis of HGU, are introduced. WNN is widely used 
in fault diagnosing due to its good pattern recognition 
and approximation ability. It obtains good results in the 
researches of locomotive roller bearings and gears (Fard, 
2014) (Lifeng, 2017). Particle swarm optimization (PSO) 
algorithm is a kind of intelligent optimization algorithm 
based on cluster phenomenon. It has been successfully 
applied in the fault diagnosis of transformers and in the 
fault feature extraction of generator axes (Yanchun, 
2018) (Zhenhua, 2019). 

On the basis of the formula of the iteration, the 
particle is divided into two parts according to the 
different fitness. Each part of the weights matches 
different methods in order to achieve the purpose of 
adaptive optimization. Then APSO is used to search the 
parameters of WNN, which make the network contain 
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high training speed and high accuracy. This algorithm 
can be effectively used in the vibration fault diagnosis of 
HGU.  

 
WAVELET NEURAL NETWORK  

 
Wavelet neural network is a neural network model 

based on wavelet analysis (Amezquita, 2016)(Cha, 
2015). In the signal recognition, feature space of 
wavelet can be used as a signal classification. The core 
idea of wavelet neural network is to replace the sigmoid 
function in traditional BP neural networks by using the 
wavelet function. And wavelet transform is introduced 
into the neural network model. Through doing this, the 
learning ability of neural networks and the local 
property of wavelet algorithms are both considered. 

 ( ) 2ˆC dψ ψ λ λ λ
+∞
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= < ∞∫  (1) 
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Where ˆ ( )ψ λ  is the Fourier transform of ψ(x), 
and wavelet function ψa,b(x) can be transformed to ψ(x) 
by stretching and translating. The parameters a is scale 
factor and b is displacement factor. 
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Fig. 1.  The structure of a three-layer wavelet neural 

network. 
 

As is shown in Figure 1, M is the number of input 
layer. The number of wavelet elements in the hidden 
layer is K. The number of output layer is N. The weight 
between the m-th input layer and the k-th hidden layer is 
ωmk. The weight between k-th hidden layer and the n-th 
output layer is ωkn. Wavelet basis function serves as 
excitation function in hidden layer. ψk is Morlet mother 
wavelet.  

This wavelet is the cosine-modulated of Gauss 
Wavelet whose time domain and frequency domain 
resolution are very high. Its equation is given in (3): 

 
2 2( ) cos(1.75 )e xx xψ −=  (3)

 

Sigmoid function serves as excitation function in 

output layer and the formula is given in (4): 

 ( ) 1 (1 )uu eσ −= +  (4) 

Training sample set as X=[X1, X2,… , XM], in 
which M is the number of samples, and corresponding 
actual output is Y=[Y1, Y2,…, YN], the element of which 
can be calculated via (5). And, the expected output is 

1 2
ˆ ˆ ˆ ˆ[ , ,..., ]NY Y Y Y= . N is the number of outputs. The 

samples number is equal to the number of input layers. 
Similarly, the number of outputs is equal to the number 
of output layers in WNN. 

And summation of output layer energy error is 
E(N). Its equation is given in (6): 
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Each node determined, it is critical to choose 
appropriate parameters (ωmk, ak, bk, ωkn) for constructing 
neural networks. The weight between the m-th input 
layer and the k-th hidden layer is ωmk. Meanwhile the 
weight between the k-th hidden layer and the n-th output 
layer is ωkn. Moreover the scale factor and the 
displacement factor in the k-th hidden layer are ak and 
bk respectively in the WNN. The algorithm APSO is 
adopted to search the optimal parameters in the WNN. 
 

ADAPTIVE PARTICLE SWARM 
OPTIMIZATION WAVELET NEURAL 

NETWORK (APSO-WNN)  
 

PSO algorithm is proposed by Kennedy in 1951. 
And it was inspired by natural biological clusters. The 
basic idea is that each particle in the algorithm has the 
ability of self-recognition and of social learning 
(Zhihuai, 2015) (Ramezanpour, 2018). So that the 
particle swarm is eventually assembled into an optimal 
particle to obtain the optimal solution. The proposed 
APSO is based on traditional PSO. The different inertia 
weights are adopted in the different particles in order to 
achieve the adaptive weight in the process of iterating. 
In s-dimensional space, Xi=(xi1, xi2,…, xis) is the particle 
position vector of the i-th particle, and Vi=(vi1, vi2,…, vis) 
is the corresponding particle velocity vector. Pi=(pi1, 
pi2,…, pis) is its optimal position, while Pg=(pg1, pg2, …, 
pgs) is the optimal position of the whole swarm. During 
iterating, the speed and the position of each particle are 
updated according to (7) and (8) respectively.  

 1 1 2 2( 1) ( ) [ ( )] [ ( )]i i i i g iV j wV j c r P x j c r P X j+ = + − + − (7) 
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 ( 1) ( ) ( 1)i i iX j X j V j+ = + +  (8) 

Where j is the number of iterations and w is the inertia 
weight. The accelerating factor and social factors are c1 
and c2 respectively, usually equal to 2. The random 
numbers between 1 and 0 are r1 and r2. It is known that 
the inertia weight w plays a critical role in the process of 
searching. The scheme of APSO-WNN is listed as 
follows. 
① Initialize particle swarm; The particle dimension is 

selected and the particle position is determine 
according to the WNN parameters (ωmk, ak, bk, ωkn). 
The value of inertia weight w0, accelerating factor 
and maximum iterating number are initialized in 
this step. The precedent iteration number is equal to 
1. 

② The accuracy error of the network is used as the 
goal function to calculate the fitness. 

③ The fitness of precedent particle is compared with 
the corresponding individual extremum. Update the 
individual extreme fitness with the lesser one and 
the corresponding particle position to be local 
extremum. 

④ The minimum fitness of all particles is employed as 
the group extreme fitness, and the corresponding 
position is used as the group extremum. 

⑤ Adaptive adjustment of the weights: The fitness of 
Pi is fi, and the corresponding optimal particle 
fitness is fmin. The average fitness of particles is f . 

When the particle fitness is less than f , the particle 
is close to the global optimum. At this point, a 
smaller inertia weight should be used to stabilize the 
global optimum, and the equation is shown as Eq. 
(9). 

 min
0

min

if fw w
f f
−

= ×
−

 (9) 

When the particle fitness is greater than f , which 
is worse than all particles. A larger inertia weight 
should be applied to reach the global optimum faster. 
The equation is shown in Eq. (10). 

 11.5
1 exp[ ( )]i

w
q f f

= −
+ −

 (10) 

Where q is a constant more than 0, and w0 is an 
appropriate value between 0 and 1. 

⑥ The positions of every particle are changed 
according to (8). Set position Xi∈[Xmin, Xmax]. Let 
Xi equal to Xmin, when Xi < Xmin. On the contrary, let 
Xi equal to Xmax. 

⑦ The PSO algorithm is finished when the number of 
iterations reaches the maximum, or the fitness is 
satisfied. Otherwise turn to ②. 

 
NUMERICAL EXPERIMENT 

 
In order to evaluate the performance of APSO 

algorithm, unimodal functions (Yong, 2011) and 
multimodal functions (Yong, 2011) used to verify the 
local search ability, global search ability and 
convergence performance of the proposed algorithm. 
The two-dimensional graphs of four test functions 
corresponding to F1-F4 in AppendixⅠ are shown in 
Figure 2, respectively. The u(·) in multimodal functions 
(Yong, 2011) F3 and F4 is shown in AppendixⅠ.  

 
(a) F1 function. 

 

 
(b) F2 function. 

 
(c) F3 function. 

 

 
(d) F4 function. 
Fig. 2.  The benchmark mathematical functions. 
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Table 1. The numerical results of benchmark mathematical functions. 

Function Metric PSO FA GA FOA APSO 

F1 
Mean 0.000134 1.9322e-26 3.1571e-7 4.3764e-8 0.2231e-33 

Std 0.000201 0.7843e-23 2.3624e-6 3.2236e-8 0.3187e-30 

F2 
Mean 0.006498 2.1053e-13 1.3387e-4 1.3187e-8 5.11e-25 

Std 0.026226 5.3542e-12 1.4372e-3 1.5769e-7 1.45e-21 

F3 
Mean 0.009178 6.3136e-15 1.7826e-3 1.82e-5 0.3733e-15 

Std 0.007613 2.4725e-14 1.9835e-3 2.23e-4 0.2831e-13 

F4 
Mean 1.086375 2.4616e-11 0.15723 0.65472 0.5172e-11 

Std 0.315027 1.5232e-10 0.06361 1.45913 0.2497e-9 
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(a) The iterative curve of the algorithms in F1. 
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(b) The iterative curve of the algorithms in F2. 
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(c) The iterative curve of the algorithms in F3. 
 

100 200 300 400 50010 -15

10 -10

10-5

100

PSO
FOA
GA
FA
APSO

Fi
tn

es
s e

rr
or

Iteration  
(d) The iterative curve of the algorithms in F4. 
Fig. 3.  The convergence curves of five algorithms 

in four benchmark mathematical functions. 
 

The subfigures (a)、(b)、(c) and (d) in Figure 3 
are the convergence curves of five algorithms in four 
benchmark mathematical functions respectively. 
According to Fig. 3, APSO algorithm is superior to 
other algorithms in F1 and F2 while FOA algorithm 
is superior to APSO in F3, but its iteration times are 
greater than that in the APSO algorithm. The 
traditional PSO algorithm has the worst ability to deal 
with the F4. The APSO algorithm is better than FA 
algorithm in the F4, but its iteration times are greater 
than FA algorithm. In summary, APSO has better 
comprehensive optimization ability than other 
algorithms. 

 
Table 2. The coefficients setting of optimization 

algorithms. 

Optimization algorithm Algorithm parameters 

FOA 
Population size: 20 

Maximum number of iteration: 500 

FA 
Attractiveness coefficient: 1.0 

Light absorption coefficient: 0.8 

GA 
Crossover probability: 0.7 
Mutation probability: 0.01 

PSO 
Learning factor 1: 1.5 
Learning factor 2: 1.5 

APSO 
Study factor 1: 2 
Study factor 2: 2 
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The paper compares APSO with traditional PSO 

algorithm (Li, 2018), fruit fly optimization algorithm 
(FOA) (Guo, 2018), genetic algorithm (GA) 
(Koopialipoor, 2019) and firefly algorithm (FA) 
(Danandeh, 2018). The overall size of the algorithm 
is 30, the optimization dimension D is 20, and each 
algorithm is tested 30 times independently. And the 
mean and standard deviation (Std) of the error value 
of each algorithm function are calculated. The results 
are shown as Table 1. The parameters of five 
algorithms are shown in Table 2. 

From Appendix Ⅰ and Table 1 it can be seen 
that local optimization ability in the APSO algorithm 
on unimodal function is stronger than that in the FA 
algorithm, and the optimization of two multimodal 
functions shows that the two algorithms have their 
own advantages. As an improvement of the 
traditional PSO algorithm, APSO performs better 
than the traditional PSO algorithm. 

 
FAULT DIAGNOSIS OF 
HYDRO-GENERATION 

 
Fault Analysis of Hydroelectric Generating Set 

The relationship between fault types and 
vibration characteristics is nonlinear extremely 
because of the nonlinear system in hydro-generation. 
The vibrations in the HGU are so complicated that 
the vibrations can be divided into the hydraulic 
vibration, the mechanical vibration and the 
electromagnetic vibration (Ma, 2017). These three 
kinds of vibration often exist and interact with each 
other. At present, the vibration signal of HGU is 
needed to realize fault diagnosis. 
 
Failure Characteristics and Simulation 
Parameters Selection 

A large number of fault information is included 
in the HGU vibration signal, so vibration signal often 
serves as a kind of characteristic to diagnose the fault. 
In this paper, the energy of HGU vibration signal is 
applied as the input signal of the neural network. 
According to (Hidalgo, 2014), the time-domain 
waveform and the frequency-domain waveform of 
three kinds of fault signals are shown in Fig. 3 and 
Figure 4 respectively. 
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(a) The waveform of vortex band eccentricity failure 
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(b) The waveform of unbalance failure 
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(c) The waveform of shafting system misalignment 

failure 
Fig. 4.  The time-domain waveform. 
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(a) The spectrum of vortex band eccentricity failure 
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(b) The spectrum of unbalance failure 
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(c) The spectrum of shafting system misalignment 

failure 
Fig. 5.  The frequency-domain waveform. 
 

Some researches have been conducted for the 
vibration fault of HGU (Wenji, 2007)(Zhang, 2019). 
The spectral characteristics of the vibration signal in 
HGU obtained from the experiments are taken as the 
fault features, including the amplitude components of 
the five feature bands (0.4-0.5)f, 1f, 2f, 3f and >3f. 
Here f is the units running frequency.  

The Vortex band eccentricity is shown in the Fig. 
4 (a). The unbalance of the HGU is shown in the Fig. 
4 (b). The hydroelectric generating units shafting 
system misalignment is shown in the Fig. 4 (c). The 
subfigures (a)、 (b) and (c) in Figure 5 are the 
spectrum of the subfigures (a)、(b) and (c) in Fig. 4 
respectively. 

1. The main feature of Vortex band eccentricity 
is that the vortex band rotates in the draft tube, 
resulting in the low-frequency pressure pulsations of 
the water flow and the vibrations of related devices. 
And the corresponding characteristic signal is mainly 
reflected at 0.4-times to 0.5-times for the rotation 
frequency.  

2. The Unbalance of the HGU is caused by the 
rotor quality imbalance. It contains the following 
characteristics: its amplitude is proportional to the 
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square of the rotation frequency; and the main 
frequency of the vibration signal is the rotation 
frequency. 

3. The shafting vibration of the unit is obvious, 
when the unit is running at no-load or low-speed 
conditions. This is the main features of the HGU 
shafting system misalignment. And the fault 
characteristic signal is mainly reflected from the 
double rotation frequency and triple rotation 
frequency. Notion that the double frequency 
component characteristics are significant especially. 

The simulations were conducted by the 
algorithm APSO-WNN to diagnose the fault of HGU. 
The input node number is set to 5, and the output 
layer is set to 4. The hidden layer node is set to 9 
according to experience. The maximum number of 
iterations is selected to be 100 in APSO. The particle 
number is set to 20. The initial value of inertia weight 
is set to 0.4. The tolerance of the neural network 
output is selected to be 0.001. 

In this paper, the amplitude components of five 
characteristic bands are used as APSO-WNN fault 
data sets. The distribution of these amplitude 
components in each frequency band is shown in 
Figure 6. It can be seen that the amplitude 
components of "Vortex band eccentricity" and 
"Unbalance" faults are larger in low frequency band, 
and their fault characteristics are obvious. However, 
the amplitude components of "Misalignment" fault 
distribute uniformly in the whole frequency band, and 
its fault characteristics are not obvious. While HGU 
does not fail (Normal), the magnitude component of 
the "fault" in each frequency band is small. 
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Fig. 6.  The characteristics distribution map of 4 

faults. 
 

Table 3. The training samples. 
Fault 
types (0.4-0.5)f 1f 2f 3f >3f Target 

output 

A 

0.88 0.22 0.02 0.04 0.06 0 0 0 1 

0.90 0.20 0.05 0.02 0.02 0 0 0 1 

0.92 0.21 0.03 0.01 0.04 0 0 0 1 

0.85 0.23 0.06 0.03 0.01 0 0 0 1 

0.91 0.21 0.03 0.01 0.01 0 0 0 1 

0.86 0.23 0.06 0.03 0.02 0 0 0 1 

0.87 0.22 0.05 0.04 0.04 0 0 0 1 

0.93 0.20 0.02 0.02 0.06 0 0 0 1 

0.89 0.23 0.01 0.01 0.03 0 0 0 1 

0.93 0.23 0.04 0.03 0.02 0 0 0 1 

B 

0.04 0.98 0.10 0.02 0.02 0 0 1 0 

0.02 1.00 0.08 0.03 0.01 0 0 1 0 

0.05 0.90 0.11 0.05 0.02 0 0 1 0 

0.03 0.96 0.12 0.04 0.03 0 0 1 0 

0.05 0.90 0.11 0.05 0.01 0 0 1 0 

0.03 0.98 0.08 0.02 0.02 0 0 1 0 

0.04 1.00 0.12 0.03 0.03 0 0 1 0 

0.04 0.96 0.10 0.04 0.03 0 0 1 0 

0.01 0.97 0.09 0.01 0.01 0 0 1 0 

0.02 0.95 0.13 0.02 0.02 0 0 1 0 

C 

0.02 0.41 0.43 0.34 0.15 0 1 0 0 

0.01 0.52 0.40 0.32 0.10 0 1 0 0 

0.01 0.40 0.47 0.35 0.18 0 1 0 0 

0.03 0.45 0.42 0.28 0.29 0 1 0 0 

0.01 0.52 0.47 0.35 0.18 0 1 0 0 

0.03 0.40 0.40 0.32 0.10 0 1 0 0 

0.01 0.41 0.42 0.28 0.29 0 1 0 0 

0.02 0.45 0.43 0.34 0.15 0 1 0 0 

0.01 0.44 0.44 0.33 0.28 0 1 0 0 

0.03 0.43 0.45 0.29 0.16 0 1 0 0 

D 

0.01 0.02 0.01 0.05 0.04 1 0 0 0 

0.01 0.03 0.02 0.03 0.02 1 0 0 0 

0.02 0.01 0.05 0.07 0.01 1 0 0 0 

0.02 0.04 0.06 0.01 0.03 1 0 0 0 

0.03 0.01 0.02 0.07 0.02 1 0 0 0 

0.01 0.03 0.06 0.05 0.03 1 0 0 0 

0.01 0.04 0.01 0.03 0.01 1 0 0 0 

0.02 0.02 0.05 0.01 0.04 1 0 0 0 

0.02 0.01 0.04 0.02 0.01 1 0 0 0 

0.03 0.02 0.03 0.04 0.02 1 0 0 0 

A: Vortex band eccentricity; B: Unbalance; C: Misalignment;  
D: Normal 

 
Table 4. The part of the test samples. 

Fault types A B C D 

(0.4-0.5)f 0.82 0.02 0.01 0.01 

1f 0.28 0.91 0.48 0.05 

2f 0.05 0.08 0.48 0.02 

3f 0.04 0.01 0.36 0.03 

>3f 0.03 0.02 0.20 0.01 

Target output 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 
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A: Vortex band eccentricity; B: Unbalance; C: Misalignment;  
D: Normal 
 

The part of training samples is shown in the 
Table 3 and the part of testing samples is shown in 
the Table 4. Four elements in the target-output 
represent 4 types of faults respectively, in which the 
number 1 represents failure and the number 0 is 
non-failure in Table 3 and Table 4. 
 
Result and Analysis of Vibration Fault Diagnosis 
for Hydroelectric Generating Units 
 In order to prove the validity of the APSO-WNN 
and its advantages, the same neural network 
parameters are employed on the same computer. 
APSO-WNN, momentum gradient BP neural network 
(Na, 2014) and WNN are all trained by learning 
samples. Then input the test samples to networks.  
 

Table 5. The Test result of three algorithms. 

Fault types Methods 

 BP neural network 

A 0.27,-0.13,0.27, 0.77 

B 0.26,0.18,0.83,0.12 

C 0.36,0.72,0.34,0.15 

D 0.67, -0.01,-0.01,0.01 

 WNN 

A 0.09,-0.04,0.15,0.95 

B 0.13,0.08,0.88,0.18 

C 0.25,0.91,0.13,-0.07 

D 0.92,-0.13,0.08,0.07 

 APSO-WNN 

A -0.03,-0.01,0.02,1.02 

B 0.02,-0.04,0.99,0.11 

C -0.24,0.97,0.04,-0.01 

D 1.00,-0.01,-0.01,0.02 

A: Vortex band eccentricity; B: Unbalance; C: Misalignment;  
D: Normal. 
 

The 4 faults output corresponding to the different 
algorithms are shown in Table 5. The closer to 1 the 
value is, the higher the probability of failure is. 
Otherwise the lower the probability of failure is. The 
training curves are shown in Figure 7, Figure 8, 
Figure 9 and Figure 10. 
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Fig. 7.  The training curve of APSO-WNN. 
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Fig. 8.  The training curve of BP neural network. 
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Fig. 9.  The training curve of WNN. 
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Fig. 10.  The training curves of APSO and PSO. 
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Fig. 11.  The weight curves of the APSO and the 

PSO. 
 

From the results of Fig. 7, Fig. 8 and Fig. 9, it 
can be observed that the error trained by learning 
samples via momentum gradient BP neural network 
can reach to 0.1 after 300 iterations. And error trained 
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by the same samples via APSO-WNN can reach to 
0.001 after 83 iterations. While the ones trained via 
the wavelet neural network can also be within 0.01 
after 100 iterations. It can be observed in Table 5 that 
the results versus BP neural network can be used to 
diagnose the vibration fault types of hydraulic turbine 
generator units at a certain degree. But results versus 
APSO-WNN are significantly closer to target output, 
compared with the performance of the results of 
wavelet neural network. Meanwhile, weight curves of 
APSO and PSO are shown in Fig. 10. By comparing 
APSO and PSO, it can be found that during the 83-th 
iteration, APSO shows less error than PSO, which 
means the APSO can obtain a more suitable weight, 
while the weight of PSO is fixed. In order to change 
the training error, the initial weight of PSO must be 
changed at each iteration incessant.  

In this paper, 160 sets of fault samples are used 
to further verify the diagnostic ability of the proposed 
method for four kinds of faults. The first 80 fault data 
sets are used as training samples, and 20 training 
samples are used for each fault. The second 80 fault 
data sets are used as test samples, with 20 test 
samples for each fault. Then the four kinds of fault 
diagnosis algorithms (FOA-WNN(Jing, 2016) 、

PSO-WNN(Deyun, 2018), GA-WNN(Jiahong, 2015), 
FA-WNN(Senapati, 2013) are compared, and the 
diagnosis results of each algorithm are shown in 
Table 6. 

It can be seen in Fig. 6 that the fault signals 
generated by the HGU are distributed at a low level in 
five frequency bands while the HGU is in the 
"normal" state (no fault occurs). Therefore, the 
recognition rate of five algorithms for normal "fault" 
is higher and they are equal to 95% shown in Table 6. 

 
Table 6. The diagnostic results of different algorithm. 

Fault type 
Number 
of test 

samples 

Correct number diagnoses 

A B C D E 

Vortex band 
eccentricity 20 17 18 17 16 18 

Unbalance 20 18 17 16 15 18 

Misalignment 20 14 12 15 11 17 

Normal 20 19 19 19 19 19 

A: FOA-WNN; B: FA-WNN; C: GA-BP; D: PSO-BP; E: 
APSO-WNN 

 
Vortex band eccentricity and Unbalance have the 

obvious characteristics in distribution of frequency 
band. The proposed algorithm is identical with 
FA-WNN in identifying Vortex band eccentricity 
faults and the correct recognition rate can achieve 
90%. Similarly, FOA-WNN and the proposed 
algorithm are identical in identifying Unbalance faults 
and the correct recognition rate can reach 90%. 

"Misalignment" is one of the most difficult 

identified faults because its characteristics in each 
frequency band are not obvious enough. Therefore, 
the recognition rate of each algorithm for 
Misalignment is low, but the recognition rate in the 
proposed algorithm is higher, up to 85%. In summary, 
the proposed algorithm has a strong ability to identify 
faults comprehensively. 
 

CONCLUSIONS 
 

The proposed APSO-WNN algorithm can better 
combine APSO algorithm with WNN algorithm, and 
has stronger recognition ability for four fault types. 

1) APSO algorithm improves the global search 
ability and convergence performance of PSO 
algorithm. For unimodal functions, the optimal 
solution accuracy of the proposed algorithm can 
reach 0.2231e-33. For multimode functions, the 
optimal solution accuracy of the proposed algorithm 
is up to 0.3733e-15. 

2) APSO-WNN has lower diagnostic error. 
Compared with the traditional BP neural network and 
WNN algorithm, after 83 iterations, the error can 
reach 0.01. 

3) APSO-WNN has a good diagnostic rate for 
fault types. Compared with FOA-WNN, FA-WNN, 
GA-BP and PSO-BP, the proposed algorithm can 
diagnose the four faults of "Vortex band eccentricity", 
"Unbalance", "Misalignment" and "Normal" with a 
correct rate of 90%, 90%, 85% and 95% respectively.  
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APPENDIX 
 
I. The formula of F1～F4 function are as 

follows. 

 2

1

F1( )
D

i
i

x x
=

=∑  (11) 

 { }F2( ) max ,1i ix x i D= ≤ ≤  (12) 

 

1

1 2 2
1 1

2

1

10sin( )

( 1) 1 10sin ( )F3( )

( 1)

( ,10,100,4)
11 ( ,10,100,4)

4

n
i i i

n

n
i i

i
i i

y

y yx
n

y

u x
xy u x

π
π π−

= +

=

 
 

 − +=   + 
+ − 

+

+
= +

∑

∑ (13) 

 

2 2
1

2 2

2
1

1

( 1) [1 sin (3π 1)]

F4( ) 0.1 ( 1) [1 sin (2π )]

sin (3π )

( ,5,100,4)

n
ii

n n

n
ii

x x

x x x
x

u x

=

=

 − + +
  = + − + 
 +  

+

∑

∑

(14) 

 

( )
( , , , ) 0

( )

m
i i

i i
m

i i

k x a x a
u x a k m a x a

k x a x a

 − >
= − < <
 − − < −

 (15) 

NOMENCLATURE 
ωmk the weight between the m-th input layer and the 
k-th hidden layer in wavelet neural network 
 
ωkn the weight between the k-th input layer and the 
n-th hidden layer in wavelet neural network 
 
σ(u) the sigmoid function in wavelet neural network 
 
E(n) the summation of output layer energy error in 
wavelet neural network 
 
ψ(x) the wavelet functions 
 
w the inertia weight in APSO 
 
Xi the particle position vector of the i-th particle in 
APSO 
 
Vi the corresponding particle velocity vector in APSO 
 
Pi optimal position in APSO 

 
Pg optimal position of the whole swarm in APSO 
 
fi the fitness in APSO 
 
c1 the accelerating factor in APSO 
 
c2 the social factor in APSO 
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摘 要 

在小波神經網絡研究的基礎上，針對水電系統

震動特性與故障類型之間複雜的非線性關係，提出

了一種自適應粒子群優化算法。該算法結合了進化

計算和群體智能的特點。它可以根據粒子的狀態自

適應地改變慣性權重。自適應粒子群優化算法提高

了小波神經網絡的訓練速度，提高了網絡的訓練精

度。實驗表明，與 BP 神經網絡、小波神經網絡相

比，基於自適應粒子群優化算法的小波神經網絡具

有更高的診斷精度和更快的診斷速度。該算法是水

電機組故障診斷的一種新方法，可有效應用於實際

工程中。 

 


