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ABSTRACT

This study presents an uncertainty model
predictive control (UM-MPC) algorithm that
considers the uncertainties inherent in both
environmental conditions and model parameters. Its
core aim is to bolster the tracking accuracy and control
system stability of autonomous vehicles. Establishing
a multi-cellular model to mitigate the impact of
uncertain parameters in the model. Based on the
characteristic that drivers adjust their attention
concentration according to road changes, a dynamic
rule for the weight matrix has been designed through a
large amount of comparative experimental data,
achieving a shift in the focus of the algorithm during
rolling optimization. Additionally, an adaptive
predictive adjustment function for weights is proposed,
and the optimal solution is derived through offline
analytical optimization and the improved Particle
Swarm Optimization (PSO) algorithm. Through a
Hardware-in-the-Loop platform, a comparative
analysis was conducted with the Adaptive Model
Predictive Control (AMPC) based on fuzzy rules,
affirming the effectiveness of the algorithm.

INTRODUCTION

As a revolutionary innovation, autonomous
driving technology is rapidly changing the face of
modern transportation systems. Autonomous vehicles
play a vital role in improving ride comfort, reducing
energy consumption, achieving higher road safety,
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efficiency.(Nie et al., 2022). The rapid development of
autonomous driving technology has garnered
extensive attention from society, enterprises, and
universities. However, one of the pivotal technologies
essential for achieving safe and efficient autonomous
driving is trajectory tracking.(Li et al., 2017; Nan et
al., 2017).The accuracy, robustness and real-time
performance of the trajectory tracking algorithm are
very important for the accurate control and safe
driving of the vehicle. The tracking effect directly
affects the safety and comfort of drivers and
passengers. (Xia et al., 2016). The primary function of
the trajectory tracking algorithm is to use the path
planned by the upper-level modules as a reference.
Sensors generate the target steering angle based on the
reference path data, and then transmit this target angle
to the lower-level controller, which controls the
vehicle while ensuring tracking accuracy and stability.
(Peza-Solis et al., 2022).

In the past few decades, a variety of trajectory
tracking algorithms have been proposed and studied.
Trajectory tracking control algorithms commonly
applied in autonomous vehicles include: Proportional-
Integral-Derivative Control (PID), Model Predictive
Control (MPC), Optimal Control, Fuzzy Logic control
and Kalman Filter. (Geng and Liu, 2020; Koga ef al.,
2016). These prevalent control strategies each have
their strengths and specific applications, with the
ultimate goal of achieving high-quality tracking
performance for vehicles.

Zhou et al(Zhou et al., 2019) designed the
kinematic trajectory tracking controller and the
electromechanical coupling dynamics trajectory
tracking controller based on MPC, and a set of test
devices is proposed to verify the tracking performance
of the algorithm. However, the test scene is relatively
specific and cannot fully cover the real scene; Xu et
al(Xu and Peng, 2020) employs a control method that
combines feedforward control for road curvature
handling with feedback control for response error
correction to enhance the tracking performance and
computational efficiency of the vehicle. However, the
applicability of its linear model at high speeds or in
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complex environments remains to be considered;
Hang et al(Hang and Chen, 2021) established a linear
parameter-varying system model, taking into account
the road's coefficient of friction and longitudinal
velocity, and has adopted a control method that
combines feedforward control with secondary
regulation control to eliminate errors caused by
disturbances. However, real road environment is very
complex, and considering only the coefficient of
friction is insufficient.

In actual tracking control, due to the variability of
road environments, traditional control systems are
often subjected to a range of uncertain and complex
factors such as external noise, disturbances, and
environmental changes. These factors can cause
uncertainties in the control system model and
variations in parameters, leading to a reduction in
accuracy and robustness.(Gao et al., 2023; Li et al.,
2019; Wei et al., 2023). Adaptive control can monitor
and identify the dynamic characteristics, model and
environmental changes of the system in real time, and
automatically adapt to these changes by adjusting the
parameters in real time. Compared with the traditional
control strategy with fixed parameters in advance,
adaptive control can better guarantee the tracking
performance of the controller in the face of complex

and changeable external disturbances. (Qu et al., 2020).

In order to reduce the impact of model
uncertainty. Chen et al(Chen and Chen, 2023), propose
a nonlinear adaptive fuzzy control method. By
eliminating the linearization error of the model, the
accuracy and stability are improved, and a good
tracking effect is obtained; Hu et al(Hu and Cheng,
2023) used the hybrid A-star algorithm and the
minimum capture smoothing method for trajectory
planning, and transformed the motion control formula
into an adaptive model predictive control through a
linear parameter-varying kinematic model, thereby
reducing the tracking error of the lateral position and
azimuth; In order to adapt to the complex changes of
the environment, Yang et al. (Yang et al, 2023)
designed an event-triggered model predictive control
with adaptive artificial potential field. The adaptive
artificial potential field function is added to the
original objective function to improve the obstacle
avoidance effect of the vehicle and ensure the stability
of the system to a certain extent; Luan et al. (Luan et
al., 2020) considered the steering angle oscillation
caused by multiple step changes in the target angle
actually received by the system node due to the
random network delay of the sensor and actuator and
the limitation of the CAN bus sampling mechanism of
the steer-by-wire system. An adaptive model
predictive control of linear uncertain model is
proposed. The PSO algorithm is used to calculate the
predictive time domain and the control time domain
offline to find the time domain solution to achieve the
optimal control effect.
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To effectively address the interference or
uncertainties present in the system's operating
environment, it is necessary to further enhance the
system's robustness. Mashadi et al. (Mashadi et al.,
2015) designed a p-synthesis robust controller by
combining four-wheel steering ( 4WS ) with direct
yaw moment control ( DYC ). Zhang et al. (Zhang et
al., 2021) proposed a novel robust event-triggered
fault-tolerant control strategy for automatic steering
systems. This strategy uses polyhedral set reduction
and norm-bounded uncertainty attenuation to
effectively handle uncertainties associated with
time-varying velocities and tire cornering stiffness
in the dynamic model, thereby reducing the impact
of modeling errors.

Facing the impact of external disturbances and
internal uncertainties, this paper draws inspiration
from the aforementioned scholars' research. Starting
from the underlying logic, an in-depth study of the
rolling optimization in the key part of MPC is
conducted, exploring the pattern of changes between
the prediction horizon and the weight matrix at each
step of the optimization process. At the same time,
considering the variation of a series of uncertain
factors such as the time-varying parameters of the
model and the lateral stiffness, a polyhedral model is
established. Based on an innovative adaptive control
strategy, a method of Model Predictive Control that
accounts for uncertainty (UM-MPC) is proposed. The
weight matrix in the optimization process is improved,
and an adaptive predictive level function for weight
variation is proposed according to curvature, speed,
lateral stiffness, slip rate, and temporal changes, and
the optimal values are obtained through offline
optimization and an improved Particle Swarm
Optimization (PSO) algorithm to achieve good
tracking performance. The overall framework of the
controller is shown in Figure 1.

Figure 1. Architecture of control system

The main contributions of this paper are as
follows:

(1) By comparing the tracking results, the law of
the weight matrix changing with the rolling
optimization step size is obtained, and the selection
strategy of the adaptive weight matrix according to
different working conditions is proposed.

(2) Considering the influence of dynamic
uncertain parameters, speed, lateral stiffness, slip rate
and other changes on the vehicle model, an adaptive
predictive level function for weight variation is
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proposed. This function adapts to the variations and
utilizes an enhanced Particle Swarm Optimization
(PSO) algorithm to determine the optimal coefficients
that minimize tracking error under the -current
operating conditions. This approach differs from
traditional weight adaptation based on fuzzy logic, as
it improves tracking precision and stability
comprehensively without increasing computational
load or affecting the system's real-time capabilities.

ESTABLISHMENT OF VEHICLE
DYNAMICS MODEL

In order to ensure that the motion behavior and
driving mechanical characteristics of the vehicle can
be described more accurately, the complexity of the
controller design is reduced and the amount of
calculation is reduced. In this paper, a widely used
three-degree-of-freedom vehicle dynamics model
(Yuan et al., 2019) is adopted and combined with the
error model diagram. As shown in Figure2.

Fig. 2. Vehicle Three Degree of Freedom Dynamic
Model and Tracking Error Model

The vehicle yaw dynamics equation is as follows

given the presumptions:
m(X —yp) = Fyf cos 6f — Fyrsin 5f + E,
m(y + x@) = Fyrsindy + Fypcos 6+ F,. (1)

I,¢ = a(F,f cos § + Fys sin§) — bE,,

where control quantity &5is the front wheel angle
of the vehicle; k is the curvature of the road; ¢ is the
yaw angle of the vehicle body; e, and e, are the
lateral position and heading errors, respectively; f is
the vehicle sideslip angle; y and x are the vehicle's
longitudinal and lateral speeds; I, represents the
vehicle’s moment of inertia around the z-axis. F;; is
tire force.

When calculating tire forces, it is possible to
simplify the tire model to a linear one by assuming that
the slip ratio of the wheel and the sideslip angle of the
tire are both within a small range, while neglecting the
effects of load transfer on the tire's sideslip stiffness
and the wheel's longitudinal stiffness, thereby
obtaining linear expressions for the tire's longitudinal
force and lateral force.

F,=Ca 2)

Among them, a represents the tire slip angle, and
C represents the linear cornering stiffness of the tire.
When the lateral acceleration ay is less than or equal
to 0.4g and the tire sideslip angle is less than or equal

to 6°, the expressions for the tire's lateral force and
longitudinal force are as follows:
{Fx = Cx(ﬂﬂ Fz)sf,r 3)
F, = Co(u B

The tire longitudinal force F; of the linearized
model is a linear function of the wheel longitudinal
stiffness C, and the longitudinal slip ratio s.

Based on the small angle assumption, the
expressions for the tire slip angle and the vehicle
sideslip angle are as follows:

ay = arctan(ym(p) -8 ~p+ % — &5 @)

x

a, = arctan(%) ~p - % (5)

B =arctan(3) ~ % (6)
where a; and a, are the front and rear tire
sideslip angles respectively
When taking into account the road curvature,
the lateral tracking error is significantly smaller
than the error when road curvature is not considered.
The vehicle yaw dynamics model incorporates the
varying road curvature to develop a tracking error
model.
¢, = Xsine, + ycosge, = xe, +y
. KXCoSeqp

é = T — KJ'C
A 1-key ¢

(7

where e, and e, are the lateral position error
and heading angle error of the vehicle respectively.
The 3-DOF yaw dynamics tracking error model is:

lf(ﬂ
spCip+srCiy  Caf(B+——87)éf

x=Yyyo + m m
c..Frad_g . o Iobp
}.} — —X(p + af( ::1 f) + ar(mx )
< y+ag y-b¢ (8)

o (lfcaf( % _5f)_lrcar( % ))
¢ = 5
€p =@ — KX
ey, =xe, +y
Basic parameters of the vehicle: m. C, f/Car\

Ci¢/Cy and ¢/l represent the mass of the vehicle,
the cornering stiffness and longitudinal stiffness of the
front and rear tires, and the distance from the center of
mass to the front and rear wheels, respectively.

The nonlinear model often has high accuracy, but
it will greatly increase the complexity of the controller
setting, so it is necessary to linearize the vehicle
dynamics model.

The state variable of the wvehicle is & =
[y, %, 9,9, ey, e,]". The control input vector is u =
84, additional input A = [k]", the state space form is
¢ = f(&,u,2). By linearizing the nonlinear dynamic
model(Raffo et al., 2009), and discretize the system
state to obtain:

Sk +1)=8(k) + T [f(§(k), us(k), A(K)] ©)
= F(f(k)ﬂh (k)'l(k))

where £ is the current sampling time point, k+1
is the next sampling time point, and 7 is the sampling

-659-



time.

Performing Taylor expansion at the operating
point (§,,u ,4 ), and the first-order term is retained:
Sk +1) =F(EoU),u,(k), A, (k) + Ak, (S (k) —
So(k)) + By, ,(u(k) —u ) + By, (A (k) — 4, (10)

Subtract the state variable of the working point
from the above formula to obtain the linear time-
varying system equation of the vehicle after discrete
linearization:

§(k +1) = A,o§ (k) + By, ,u (k) + By, A (k) + Dyo(11)

where Dy, = Ek+1) - (Ak‘tget(k) +
By, + By A )+ Ace. By, and By, arcall
linear time-varying Jacobian matrices:

Corttin) GO ) o GGy g
Carbs | . Car(F+29)8 aCapby .
et e 0 -SEty 000
Ake = aCar—bCay ACaf (Y +1@)=bCar(V=1rp) 0 aZC,“inCm 00 (12)
L% - 1,32 0 Lt 00
1 ey 0 0 0 %
Lo s 0 1 o o
Cap  Cap(28p-2229)) c
By, =[-= 2 5 o T« 07 (13)
g m m Iy
— -1T
sz’t =0 0 0 0 0 —x]". (14)
(k)
Define new state variable{(k) = |us(k — 1)|,
u, (k)

output state variable 7(k)and increment Au(k) =
u (k) —u (k —1) of control input. The discrete state
space controller model can be transformed into a new
form:

{(k +110) = A d(KIE) + Bypdu(kle) + D (1)

n(k(t) = Hy¢(k[t) (16)
- Ak,f Blk‘t BZk‘t _
where Ak,f = 0 1 0 ’ Bk,t =
0 0 1
Blk Dk,t
1| k,t= 0 |- sz[l 0 0]0
0 0

After obtaining the new state variable, iterate
continuously in the following time series to obtain the
prediction output expression in the prediction horizon:

Y(t) =P, q(t) + 6,4U(t) + A, Y(t) (17)

where v =mk+10 nk+20 ~ nk+N10 ~ nk+NOF »
W= [Hyde HyA%, o HyAVe HPA’.Z,IZ]T
AU = [dulk|t) dulk+1]t) dulk+2[t) - - Au(k + N, —1[6)]
Y(®) = [Die(k) Delk +1) Dyl +2) - - Die(k + N, —1)]",
H,By, 0 0 0
HpAy By, Hp,By 0 0
0, = ~N:—1 = PNe-2 5 : = ,
HpAk,t Bk.t HpAk,t Bk.t Hka,t
=N, :—1 = =N, :—2 = . ~N, :—NC =
HpAk,’; By ¢ HpAkz Bre - HpAkf; By ¢
[ HZj 0 0 0 ]
HyAy, H, 0 0 '
A, = : - : - : .
t |HI’AIZ,r ! HPAIZJ 2o HI’ I
ANy—1 ~:N -2 - ~I:IP—N J
lHPA kz HPA k,l: HPAk,t ’

where N, is the prediction horizon, and N, is
the control horizon.
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Establishment of Polytope Model

The autonomous vehicle will not only encounter
the uncertainty of the environment, but also be affected
by the uncertain parameters of its own model. In the
case of increasing speed, the impact of model
uncertainty will also intensify. When the vehicle is

. . . L1
traveling at high speed, the presence of time-variant %

parameters in the model and the strong non-linear
change of the tires can render the entire control system
highly unstable and extremely susceptible to
influences from system inputs and the external
environment. As a result, the vehicle is unable to
guarantee great tracking performance, and the
constructed model fails to accurately express the
dynamic characteristics of the vehicle.

To address this issue, this paper proposes to refine
the three-degree-of-freedom vehicle model into a
polyhedral model. Taking into account the impact of

. . 1
the vehicle's uncertain parameters: [; Cof Car],the
number of vertices of the convex polytope model is
determined to be 23, where the uncertain parameter

ranges are respectively:

1 1 1
- € [ 5 . ]
X Xmax Xmin

Cocf € [Caf,min 'Cocf,max ]

Car € [Car,‘min ) Coc‘r,max ]

According to the range of uncertain parameters,

the vertex parameters of the polytope can be
determined as:

(18)

i=1

vy = ) 7,
i1

Coy = ) T (19
2

i=1
Car = ) 7O

2
Make the following definition:

Yi = yjyk?l (] = 1'2'k = 112'l = 112) (20)
) ) ?=1Vz=1/ ) @1

- 1/Vxmin—1/Vx - 1/Vx=1/Vxmax

1 (t) - 1/Vxmin V2 (t) - 1/Vxmax

~ _ Caf,max'_caf ~ _ Caf_ca},min

yl (t) - Caf,max ! Vz (t) - Caf,min (22)

~ _ Car,max_caf A~ _ Car_car,min

" (t) - Carmax ' V2 (t) - Carmin

where 7,7,7 is the correction coefficient.
Replace a in the original state space equation with
%,Caf, C,r time-varying variable 7,1,7. The state
space parameter matrix at the ith vertex of the convex
polytope is A; B;,D; (i = 23). The forward Euler
method is used for discretization.
X(k +1) = AX(k) + Bii(k) + DA(k) (23)
A=35"yiAq; B=35"yiBa; C = X5 viCa; (24)
i & Bl=) vlda: Bai Dail (25)

8
[A B Dlen= 00{(Ad,1v3d,1de,1):(Ad,Zdez:Dd,z):“'v(Ad,qu,uDd,l)}
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where y; is a nonnegative constant.

Using the method of controlling increment, a new
state space equation is established as follows:

_[ Xk
Sty = [ﬁ(k 1)] (26)
Ek+1) = kf(k) + BkAu(k) + DpA(k)
where: 4, = [0 ] . By=|B l]-] , G =
jxk
€ o, i1, k=2.

To ensure the stability of the system, the
convergence analysis of the polyhedral model can be
conducted through the following methods.

The polyhedral model can be expressed as:

E(k + 1) = A &(k) + ByAti(k) + DpA(k)
y(k) = C&(k) 27)
[4, Bl €

where Ati(k) € R™ is the input variable;
&(k) € R™ is the state variable; y(k) € RP is the
output variable; ( is the set that describes the
model uncertainty.

Considering the uncertainties within €, the
optimization problem can be formulated as a Min-Max
optimization:

o, min (k) (28)
Au(k+i|i),i=0,1,- mAk(k+L)Bk(k+l) EQ
where Ati(k +ilk) &(k +ilk) represent the
predicted values of the state variable and control
variable at time t=k+i starting from time t=k. The
optimization objective | (k) is:
T, () T2, [ECk + ill)TQ, E(k + ilk) + Ak + i|k)TR Ak +ill)]  (29)
Traditional methods set the control rate to a fixed
value:
u(k +ilk) = Fx(k +ilk),i =0 (30)
This approach is used to obtain the upper bound
of the original optimization problem.
Consider the quadratic function:
V(x) =xTPx,P >0,V(0) =0 3D
Assuming at time k, for all {(k + i|k),Afi(k +
ilk),i =0 that satisfy equation ¢&(k+1) =
f(&(k)Ati(k)), we have:
V(Ek+i+1|k) —V(E(k +ilk)
< —[E(k + ilk)TQE(k + i|k) + Ati(k + i| k)T R Afi(k + i|k)]
(32)
It is evident that equation (32) stipulates the non-
increasing monotonicity of V(&(k|k)), hence the
polyhedron is robustly stable.

ANALYSIS OF WEIGHT VARIATION
WITH TIME DOMAIN

Rolling optimization is the biggest difference
between MPC and traditional control, which is carried
out simultaneously by local optimization and online
rolling. The process of rolling optimization predicts
the state quantity of the next moment according to the
control quantity and state quantity of the current
moment. At each sampling time, the optimal control
rate in the time domain is solved according to the

optimal performance index at that time. A set of
optimal control sequence and optimal predictive
output are obtained at time k, but only the first control
is actually executed. When the k+1 moment comes, the
previous operation is resumed, and then it is rolled one
by one until the k+N, moment stops.

At present, the path tracking control algorithm
based on MPC needs to set up the objective function
in advance, and the tracking performance mainly
depends on the optimization of the objective function.
The objective function of the Traditional MPC
controller is as folNlows:

J(EUD, ulk — 1),4U(K)) = Z 11770k + 6, k) = ey (k + 6,1 13 + Z 1 AU Ck + i, k) 1%
ijropsz i=0

(33)

where Np is Prediction time domain in MPC

algorithm; Nc is the control time domain. Q is the

output weight matrix; R is the control increment

weight matrix; p is the weight of relaxation factor; € is
the relaxation factor.

In the objective function, the first term represents
the error of the output, which signifies the tracking
performance of the autonomous vehicle. The weight
matrix Q can adjust the emphasis on each parameter in
the output. The second term represents the smoothness
of the control input, which is derived from solving a
constrained optimization problem to obtain the control
sequence. The weight matrix R can adjust the
emphasis on each parameter in the control input.
Larger weight coefficients typically enable the system
to track the reference trajectory more quickly and
accurately, but may lead to larger changes in the
control actions, thereby affecting the system's stability.
Conversely, smaller weight coefficients can make the
output response smoother, but may reduce the tracking
speed and tracking performance.

Traditional MPC controllers maintain constant
weight values at each step when facing changing road
conditions and driving states. However, the
optimization problem solved within the Np horizon at
each sampling instance is susceptible to variations in
the external driving environment. In response to the
dynamically changing road conditions, the
requirements for vehicle tracking performance are also
changing in real-time, implying that the objective
function should adapt accordingly. When driving, a
driver must consider both distant and immediate road
conditions but tends to focus more on short-term
changes in the immediate vicinity. Based on this
driving habit, the weight matrix should be optimized.
The weight matrix is defined as follows:

0 0
e=|; ¥ T Vl=eell 17 Y ew
0 -~ 0 qy 0 - 0 g
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rn 0 - 0 r 0 - 0
0 0

s e F (€
0 - 0 my_, 0 - 0 r

In the formula : q; denotes the error weight of
the output term of the optimization objective function
in each step, i=1,2...N,. The current MPC takes the
weight matrix equivalent to g; = q; ... = qyp. In this
paper, the weight coefficient g is added, In order to
achieve the purpose of the algorithm to exert different
attention in different regions.

Analysis of Variable Step Weight on Tracking
Effect

Through the aforementioned design, the first
error term of the objective function is calculated over
Np steps within each sampling period, with variations
occurring at each step. The paper conducts extensive
comparative  experiments to summarize the
relationship between tracking performance and the
pattern of weight variation. Then selects several
representative  function changes to verify the
rationality of the constructed change objective
function.

Taking the double lane change (DLC) condition
as the test, three different simulation speeds are set,
which are 30km/h, 60km/h and 90km/h respectively.
The fixed weight MPC with better tracking effect is
selected as the control group, and the weights
representing four different forms of change are
designed as the experimental group. Their modes of
variation differ in that they either gradually increase or
decrease, have a fixed change magnitude, or have a
variable change magnitude. The change of the weight
value is transformed into the function change of the
weight ratio as shown in the figure 3:

0.5 T T T T T

0.3 b

Weight proportion

0.2F P 4

—_—-—

0.0 —

Fig. 3. Different forms of weight proportion variation

The DLC working condition simulation is carried
out at the speed of 30km/h, 60km/h and 90km/h, and
the four weight change forms are compared with the
tracking effect of the traditional MPC controller. This
paper focuses on high-speed, focusing on 90km/h
simulation results, as shown in Figure 4:
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Fig. 4. Lateral position tracking effect

At the most obvious curvature change of DLC
working condition, that is, the maximum lateral error
of vehicle tracking, the tracking effects of the two
controllers are shown. It can be seen that the changing
weight method can indeed improve the tracking effect.
In order to compare more intuitively, under the
conditions of 30km/h, 60km/h and 90km/h of the
vehicle, the maximum lateral error and maximum
lateral acceleration output by the controller with
different weight changes are selected to compare with
the tracking effect of the fixed weight MPC controller.
The maximum variation and percentage are listed, as
shown in Table 1. Among them, the negative sign
indicates a decrease, and the positive sign indicates an
increase.

Table 1. Maximum Lateral deviation and Maximum
Lateral Acceleration Variation

Change  AEnmay  AEmax  AAYmax  AAYmax
mode  /m /% /9 /%
A -0.1420  -48.78 +0.0143  +3.20
B +0.0210 +3.65 -0.0225  -12.83
C -0.0138  -4.69 +0.0048  +1.10
D +0.0200 +6.72  -0.0076 -1.72

It can be seen from Table 1 that the controller
with the weight matrix changing in the form of A has
the most obvious improvement on the tracking
accuracy, which can reach 48 %, while the controller
with the weight changing in the form of B has a greater
impact on the stability without affecting the tracking
accuracy. Combined with Figure5, it can be seen that
when the weight decreases gradually, the greater the
change of the weight near the current moment, the
more obvious the tracking effect of the algorithm on
trajectory tracking. When the weight gradually
increases, the greater the weight change away from the
current moment, the more obvious the algorithm
improves the stability of trajectory tracking. This
paper only shows the four most representative changes,
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but through extensive experimentation and
summarization, the following rules governing the
variation of weights over time can be obtained, which
are then applied to the design of the controller in the
subsequent text.

(1)The greater the proportion of weight
coefficients close to the current moment, the smaller
the lateral deviation of the system's tracking, and the
better the tracking accuracy. Conversely, the greater
the proportion of weight coefficients further from the
current moment, the better the system's stability, with
a reduction in lateral acceleration and an enhanced
ability for the vehicle to stabilize.

(2)As weights gradually decrease, the greater the
change in weights close to the current moment, the
more pronounced the improvement in tracking
accuracy by the algorithm; as weights gradually
increase, the greater the change in weights further
from the current moment, the more significant the
improvement in tracking stability by the algorithm.

MODEL PREDICTIVE CONTROLLER
DESIGN CONSIDERING UNCERTAIN
FACTORS

From the analysis of the previous section, it can
be seen that with the progress of rolling optimization,
different weight changes will bring different tracking
effects, but at the same time, the change of speed will
also have a great impact on the tracking effect of the
path tracking controller. The design purpose of the
tracking controller is to ensure accurate and stable
tracking of the target path at any speed. This brings
great challenges to the adaptive model predictive
controller. According to the law of weight changing
with time domain in the above research, the proposed
controller can consider the influence factors of
curvature and slip rate at the same time according to
the change of speed, and adjust the change mode of
weight adaptively to compensate for the inaccurate
focus of the same weight change mode when the
environment changes.

When the vehicle is running at low speed, the
controller should focus on the tracking accuracy of the
lifting path. Because the lateral acceleration
corresponding to low speed driving is small, the
driving stability of the vehicle can be generally
guaranteed. When the vehicle is running at high speed,
due to the increase of lateral acceleration, the
requirements for stability are gradually increasing. At
this time, the tracking accuracy and lateral stability of
the vehicle should be taken into account. Similarly, in
different driving sections and large curvature sharp
steering sections, due to the constant predicted
distance, the controller 's control of the front wheel
angle cannot meet the road change under large
curvature. The stability and tracking accuracy of the
vehicle will be significantly affected, resulting in a
rapid decline. But the change of the time domain will

increase the computational burden. In the straight road
section, the vehicle can generally accurately track the
target path.

In this section, the road curvature and operating
speed are considered comprehensively, and the
consideration of algorithm parameters and their
impact on trajectory tracking performance, system
stability, and computational efficiency is also given
due attention. Within the constraints of the unchanged
prediction time domain, an adaptive prediction level
parameter is posited. And the undetermined coefficient
is adjusted by offline optimization multiple iterations,
so as to obtain the result of minimizing the calculation
time and tracking error. The adaptive prediction level
function is as follows:

W = FwQ(Vk, K S, f, Np) =vif + vV +tvsk+uss +usN, + b
(36)
where f is the dominant item of the weight
change mode; V,, is the longitudinal velocity of the
vehicle at time K; k,s is the road curvature and slip
rate; U;,U,,Us,U,,Us and b is the undetermined
coefficient of off-line optimization.

The offline parameter optimization model is

shown in Formula 12 and Figure 5:

mln ff = I:_llfT((DQ, (UR) +I:_22fE((1)Q, (UR)

s.t max{fT(wQ,wR)} <Ts (37)
0<wzp=<1

e ]
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i E i.‘.------‘.--‘.-.T‘_ai i
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Fig. 5. Offline optimization model diagram

where: Because the two objective functions are
not of the same order of magnitude, the scale factor
ki, k, and s;,s, are introduced. The objective
function f; is the time required for a single rolling
optimization. f5 is the tracking error of the whole
process. The constraint dictates that the computation
time for a single scroll must not surpass the sampling
time. Since q in the weight matrix generally takes a
large value, changes in a small range will have a great
impact.

The unspecified parameters within the adaptive
prediction layer function necessitate offline optimiz -
ation. The traditional particle swarm optimization
algorithm has the disadvantage of easy to fall into local
optimum.(Shami et al, 2022), In this paper, the
improved particle swarm optimization algorithm is
adopted, so that the inertia weight can be adaptively
changed with the iteration of the algorithm.
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where Wy is the adaptive inertia weight;

- Xi(t)) + szz(G(t)

best

w;t) € (Wmin Wmax); favg 18 the average value of

ﬁtness; favg € (fmax' fmin) .

The fitness of the particle is calculated by the
integral value of the tracking error between the body
position and the sideslip angle of the center of mass.
As shown in Formula 14.

19 = 0pPi + wgbipy  (39)
In the formula: fi(t) is the fitness of the particle

PS(lng and ﬁs(QM are used as evaluation indexes to judge
the driving stability of vehicles. They represent the
integral value of the lateral position error and the
integral value of the sideslip angle error of the vehicle
tracking the whole process respectively; w, and wg
are the weights of the two evaluation indexes of
vehicle tracking accuracy and stability, respectively,
which vary according to different working conditions.
When the vehicle speed is low, the adaptive function
is more focused on the tracking accuracy, and the
stability of the vehicle is more focused when the
vehicle speed is high.

In a prediction time domain, the model is
predicted by continuous iteration. predicts the state
space equation a for the next b moments, and the
resulting output equation is shown in Formula 15.

Y(B) =¥{(k1t)+OAU(k) +Tw(k) (40)

Dy By 0 0 0
DyAxBg Dy By 0 0
0= 51(4?”_11% '131(/1?”_251( DBy (41)
DAy By  DyAy "By Dy AxBy
DAy "By Dydy’ By - Dydy Byl
Dy Cy 0 0 0 l
DrAxCy Dy Cy 0 0
r=|Dxdy " Cx DAy Cp Dy Cx (42)
DydNeCy  DygAN'Cy Dy Ak Cy
DAy’ G DAy’ “C - Dy’ Gyl

Combining the polytope model established by
considering time-varying parameters and tire
cornering stiffness and the proposed adaptive
predictive weight function strategy, an adaptive model
predictive control algorithm has been developed for
uncertain systems. In order to make the high-speed
self-driving car have higher tracking accuracy and can
quickly realize the path tracking function. It is
necessary to select the appropriate optimization
objective, establish the objective function, and obtain
the future optimal control increment sequence of the
controlled system. Therefore, as shown in formula 16.
Utilizing the multi-cell dynamics model, an optimized
index for trajectory tracking dynamics is formulated
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and established.

J (X0, 2t — 1), 85000,200 ) = T 1l e, (e +0) 13,,, + N5 Wl e (e + D 13,

FEGNY R +i16) =Y (k+i10) 13
+ I I Aak + 1) I+ pe?
(43)

where Y and Y,.r are the output predictive
value and reference value of the system. In order to
meet the vehicle can achieve good tracking
performance at high speed, e, (k + i) and e,(k + i)
are added to the original objective function. They are
lateral deviation and heading deviation at time k,
respectively. The purpose of introducing two
evaluation indexes is to reduce the deviation between
the actual tracking trajectory and the reference
trajectory of the automatic vehicle and improve the
tracking accuracy of the vehicle. Q,., and Q., are
the weight coefficients of position error; Q and R are
improved weight matrices; ¢ is the relaxation factor.

Through the reformulation of the objective
function into a standard quadratic form, it is necessary
to consider not only the constraints of vehicle adhesion
conditions, but also the hard constraints of centroid
sideslip angle constraints and tire sideslip angle
constraints to ensure vehicle stability. (Kanghyun Nam
etal.,2012). Inthe adaptive adjustment of the weight
coefficient, the model should also be adaptively
changed at each sampling time, so a dynamic model
needs to be established, as shown in Equation 17 below.
To achieve a balance between the efficiency and
stability of the quadratic programming problem in
each iteration period.

min [Au(®)T, e]TH [Au(®)T, €]
+ G [Au@)T, €]

AUpin ] AU AU pax
s.t. Yhe min S |Vhe| < Yhe max
44
YVscmin — ‘; Vsc Yhemax T € (44)
O'QO+R 0
H, = [ Qo p], G,
=[2eTQ6O 0]

where AU serves as the control increment
constraint, while y,. represents the hard output
constraint. y,. serves as the soft constraint for lateral
acceleration, which can be adjusted by ¢, and e is the
tracking error in the predicted time domain.

When a vehicle is driving and suddenly
experiences a large steering angle or encounters a
slippery road surface, it can easily enter the nonlinear
operating region of the tires, where the tire forces tend
to saturate. If the saturated tire forces cannot meet the
demands of the vehicle body, it can lead to skidding
and other instability phenomena, which seriously
affect driving safety. Therefore, to avoid the
occurrence of such phenomena, it is necessary to
impose constraints on the state parameters from a
dynamics perspective, ensuring that the tires always
operate within the linear region.

The yaw dynamics model of high-speed
autonomous vehicles takes into account the matching
between the road adhesion coefficient and the tire
forces, as well as the limitations of the vehicle's lateral
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acceleration. The expression and constraint conditions
for the vehicle's lateral acceleration are as follows:
@ = i+
< )
y <
In the expression for the vehicle's lateral
acceleration > a, accounts for approximately 85%
of the maximum allowable lateral acceleration.
Therefore, the constraints on the yaw rate ¢ and
the vehicle's lateral slip angle 8 can be expressed
in the following form:
9| < 0.85% (46)

18] ~ |’;’| < arctan (0.02u9) 47)

When a vehicle experiences a sideslip, its lateral
stability is affected, which typically leads to rear-
wheel skidding. Therefore, the maximum slip angle
constraint applies to the rear wheels. The constraint
equation for the maximum yaw angle of the rear
wheels can be expressed as an inequality involving the
vehicle's lateral velocity and yaw rate:

y—bg
=2 < dsaryy,, (48)

where ag,,,  represents the tire slip angle

when the lateral force of the rear wheels reaches
saturation.

The vehicle's yaw rate can be constrained as
follows:

b
Car ®satyyrr (1+5)

t )

To ensure stability, we introduce terminal
constraints:

¢max -

E(k+Nlk)=0 (50)

The optimal value of the objective function in
each period is used as the Lyapunov function:

VoK) = min NiL, £(E(k + ), ulk +0) (1)
where: (&,u) =20 £(&,u) = 0 if and only if
E=0-u=0,

Assuming the model is unbiased and noise
interference is not considered, the following is derived
through calculation and derivation:

VOK + 1) < —£(§(k + 1),u’(k)) + VO(k) +
min{£(§(k + 1+ N),u(k + N))} (52)
Due to the presence of terminal constraints, it can

be ensured that:
min{f(x(k+1+N),u(k+N))}=0 (53)
u
Since £(&(k + 1),u(k)) = 0,it follows that
VO(k 4+ 1) <V°(k), ensuring the stability of the
closed-loop system.

RESULTS AND ANALYSIS

To wvalidate the proposed algorithm, the
hardware-in-the-loop (HIL) test platform illustrated in
Figure 6 is employed. A HIL setting includes a real
controller and a virtual controlled object, which
ensures the real-time performance of the simulation
process. The specific implementation is to build the

road model and algorithm model through CarSim and
MARLAB / Simulink, and then import them into the
PXI platform to run.

== = =
1 Steering-by-wire ~ 2Throttle-by-wire  3Electro-Hydraulic Brake 4slave computer

Smaster computer

Fig. 6. Hardware-in-the-loop

A test scenario with DLC centerline tracking
problem is selected from CarSim, and the trajectory
tracking performance and system stability of the
proposed adaptive algorithm car at high speed are
analyzed. The test speed is 90 km / h. The test vehicle
model used by is selected from carsim, and the main
parameters of the vehicle are shown in the following
Table 2.

Tab. 2. The main parameters of the experiment

Parameter Parameter
(Unit) AL (Unit) Value
m(kg) 1723 L.(kg - m?) 606.1
lf(m) 1.232 Caf/(N -66900
-rad™1)
l.(m) 1.468 Cor/(N -62700
-rad™1)
Iz 4175 g/(m-s7%) 9.8
T 0.05 € 1000
N, 12 N, 5

The framework design and parameter setting of
PSO have an important influence on the solution
process of particle swarm optimization. In this paper,
the parameter settings of PSO algorithm are shown in
Table 3.

Tab. 3. PSO Algorithm Parameter

parameter Description Value
T Maximum pumber of 300
Iterations
N Number of initial population 100
C1 Individual learning factors 0.9
C2 Group learning factor 0.9
W Inertia weight 0.7

The optimal solution obtained after iteration by
the PSO algorithm is used for the design of the control
and the resulting values of the coefficients to be
determined are shown in Table 4

Tab. 4 Optimization coefficient results
Parameter Value
V| 0.53
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V2 0.42
V3 0.005
V4 0.005
Vs 0.23
b 0.39

HIL simulation was conducted to compare
AMPC with UM-AMPC. The AMPC algorithm
utilizes a three-degree-of-freedom model and employs
fuzzy rules for adaptive control. In contrast to the
AMPC algorithm, the UM-AMPC algorithm
incorporates the control strategy proposed in this paper,
which not only adaptively adjusts parameters based on
driving conditions but also accounts for disturbances
caused by some dynamic uncertain parameters.

The reference trajectory is as follows:

dy, shape shape
Yref(p) = Tl<1 + tanh (d_xl (Xpredict(p) - Xsl) - T))

dy. shape shape
Tz (1 + tanh (d_xz (Xpredict(p) - st) I )

shape = 2.4

dx, = 25

dx, = 21.95

dy, = 4.05

dy, =5.7

Xy =27.19

X;, = 56.46

DLC tests were performed under the same
conditions for both methods, and the trajectory
tracking performance and driving stability were

analyzed. The simulation results are as follows:

(54)

Trajectory Tracking Performance Analysis

kY T L T T

e
o

Lateral Position/ (m)
Lateral Error/(m)

e

B [
‘Time/(s) Time/ (s)

Fig. 7. Lateral analysis of the vehicle

It is particularly important to verify whether the
improvement of a tracking algorithm has a good effect
and whether the tracking accuracy is improved. This
chapter first analyzes the trajectory tracking
performance of autonomous vehicles through the
lateral position and lateral tracking error of the vehicle
simulated by the HIL platform, as shown in Figure 7.
In contrast to the AMPC algorithm, the adaptive UM-
MPC algorithm yields enhanced tracking efficacy in 2
~ 8 seconds, especially in the peak error of about 6
seconds, the accuracy is improved most obviously.
This is because the UM-MPC can focus the attention
of the algorithm by changing its own parameters when
the road curvature changes sharply and the vehicle
travels faster. Through calculation and analysis, the
average tracking error is reduced by 46.11 %.
Compared with the graph in the third chapter, it is

J. CSME Vol.46, No.6 (2025)

obvious that the weight matrix with good effect can be
obtained by off-line optimization regardless of the
distance from the moment, which also verifies the
correctness of the change rule of the weight matrix
with the prediction time domain.

Vehicle Stability Analysis

Based on the analysis of tracking accuracy, the
tracking stability of the vehicle during driving is
analyzed from four aspects: target angle, yaw angle
error, yaw rate and sideslip angle error. Four indicators
are simulated by the HIL as shown in Figure 8. It can
be seen from the target angle of the controller output
that the target angle fluctuation of the UM-MPC
algorithm is relatively gentle, and it converges to a
stable state before the AMPC algorithm. In terms of
yaw angle, yaw rate and sideslip angle, the UM-MPC
algorithm can greatly reduce the average error and
keep the vehicle in a stable state. In addition, on the
sideslip angle index, the adaptive UM-MPC algorithm
shows the best performance, and the stability

improvement is particularly obvious.

N e ||
= = - amrc

—— uvee ||
— — Awpc

5 4

(deg)

\

Yaw Error/

L R T

UNMPC
- — . Awrc

Beta Error/(deg)

Time/(s) Timel/(s)

Fig. 8 Analysis of automotive stability indicators

CONCLUSIONS

This paper investigates the model predictive
method for adaptive trajectory tracking considering
time-varying parameter uncertainty models by
analyzing the patterns of temporal domain and
weight variations. To enhance the tracking accuracy,
robust stability, and computational efficiency
during the rolling optimization process, an UM-
AMPC algorithm addressing system uncertainties is
proposed. Based on the variation patterns of the
weight matrix, experiments were conducted to
explore the relationship between the changes in the
weight matrix and the tracking performance of
autonomous vehicles. Furthermore, to reduce
interference from external environments, a
polytopic model was established. Subsequently, an
adaptive weight level prediction function was
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designed based on the vehicle's longitudinal speed,
road curvature, the variation pattern of weights, and
the slip ratio. An improved particle swarm
optimization algorithm was then employed to
calculate the target parameter coefficients. To
accommodate the adaptive changes of the model at
each sampling moment, a dynamic quadratic
programming solver was designed. Finally, through
semi-physical simulation, it was verified that the
UM-MPC algorithm reduced the average yaw rate
error by 59.68% and the average tracking error by
46.11% compared to the MPC algorithm. The test
results indicate that this method can accurately
suppress the adverse effects brought by uncertain
parameters and predict the target angle signal based
on the current working state. This control algorithm
provides a safety guarantee for autono- mous
driving systems, offering improvements in stability,
accuracy, and computational efficiency over
traditional model predictive control.

Future Outlook: To further verify the feasibility
of the algorithm, road vehicle tests will also be
conducted. In addition, as this study did not consider
the impact of road gradient changes, future research
will also need to strengthen the study of the roll state
of autonomous vehicles. The algorithm will be
designed and optimized at a deeper level to further
improve vehicle stability and tracking accuracy.
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