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ABSTRACT 
 

This study presents an uncertainty model 
predictive control (UM-MPC) algorithm that 
considers the uncertainties inherent in both 
environmental conditions and model parameters. Its 
core aim is to bolster the tracking accuracy and control 
system stability of autonomous vehicles. Establishing 
a multi-cellular model to mitigate the impact of 
uncertain parameters in the model. Based on the 
characteristic that drivers adjust their attention 
concentration according to road changes, a dynamic 
rule for the weight matrix has been designed through a 
large amount of comparative experimental data, 
achieving a shift in the focus of the algorithm during 
rolling optimization. Additionally, an adaptive 
predictive adjustment function for weights is proposed, 
and the optimal solution is derived through offline 
analytical optimization and the improved Particle 
Swarm Optimization (PSO) algorithm. Through a 
Hardware-in-the-Loop platform, a comparative 
analysis was conducted with the Adaptive Model 
Predictive Control (AMPC) based on fuzzy rules, 
affirming the effectiveness of the algorithm. 
 

INTRODUCTION 
 

As a revolutionary innovation, autonomous 
driving technology is rapidly changing the face of 
modern transportation systems. Autonomous vehicles 
play a vital role in improving ride comfort, reducing 
energy consumption, achieving higher road safety,  

 
 
 
 
 
 

 
reducing traffic congestion and improving traffic 

efficiency.(Nie et al., 2022). The rapid development of 
autonomous driving technology has garnered 
extensive attention from society, enterprises, and 
universities. However, one of the pivotal technologies 
essential for achieving safe and efficient autonomous 
driving is trajectory tracking.(Li et al., 2017; Nan et 
al., 2017).The accuracy, robustness and real-time 
performance of the trajectory tracking algorithm are 
very important for the accurate control and safe 
driving of the vehicle. The tracking effect directly 
affects the safety and comfort of drivers and 
passengers. (Xia et al., 2016). The primary function of 
the trajectory tracking algorithm is to use the path 
planned by the upper-level modules as a reference. 
Sensors generate the target steering angle based on the 
reference path data, and then transmit this target angle 
to the lower-level controller, which controls the 
vehicle while ensuring tracking accuracy and stability. 
(Peza-Solis et al., 2022). 

In the past few decades, a variety of trajectory 
tracking algorithms have been proposed and studied. 
Trajectory tracking control algorithms commonly 
applied in autonomous vehicles include: Proportional-
Integral-Derivative Control (PID), Model Predictive 
Control (MPC), Optimal Control, Fuzzy Logic control 
and Kalman Filter. (Geng and Liu, 2020; Koga et al., 
2016). These prevalent control strategies each have 
their strengths and specific applications, with the 
ultimate goal of achieving high-quality tracking 
performance for vehicles. 

Zhou et al(Zhou et al., 2019) designed the 
kinematic trajectory tracking controller and the 
electromechanical coupling dynamics trajectory 
tracking controller based on MPC, and a set of test 
devices is proposed to verify the tracking performance 
of the algorithm. However, the test scene is relatively 
specific and cannot fully cover the real scene; Xu et 
al(Xu and Peng, 2020) employs a control method that 
combines feedforward control for road curvature 
handling with feedback control for response error 
correction to enhance the tracking performance and 
computational efficiency of the vehicle. However, the 
applicability of its linear model at high speeds or in 
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complex environments remains to be considered; 
Hang et al(Hang and Chen, 2021) established a linear 
parameter-varying system model, taking into account 
the road's coefficient of friction and longitudinal 
velocity, and has adopted a control method that 
combines feedforward control with secondary 
regulation control to eliminate errors caused by 
disturbances. However, real road environment is very 
complex, and considering only the coefficient of 
friction is insufficient. 

In actual tracking control, due to the variability of 
road environments, traditional control systems are 
often subjected to a range of uncertain and complex 
factors such as external noise, disturbances, and 
environmental changes. These factors can cause 
uncertainties in the control system model and 
variations in parameters, leading to a reduction in 
accuracy and robustness.(Gao et al., 2023; Li et al., 
2019; Wei et al., 2023). Adaptive control can monitor 
and identify the dynamic characteristics, model and 
environmental changes of the system in real time, and 
automatically adapt to these changes by adjusting the 
parameters in real time. Compared with the traditional 
control strategy with fixed parameters in advance, 
adaptive control can better guarantee the tracking 
performance of the controller in the face of complex 
and changeable external disturbances. (Qu et al., 2020). 

In order to reduce the impact of model 
uncertainty. Chen et al(Chen and Chen, 2023), propose 
a nonlinear adaptive fuzzy control method. By 
eliminating the linearization error of the model, the 
accuracy and stability are improved, and a good 
tracking effect is obtained; Hu et al(Hu and Cheng, 
2023) used the hybrid A-star algorithm and the 
minimum capture smoothing method for trajectory 
planning, and transformed the motion control formula 
into an adaptive model predictive control through a 
linear parameter-varying kinematic model, thereby 
reducing the tracking error of the lateral position and 
azimuth; In order to adapt to the complex changes of 
the environment, Yang et al. (Yang et al., 2023) 
designed an event-triggered model predictive control 
with adaptive artificial potential field. The adaptive 
artificial potential field function is added to the 
original objective function to improve the obstacle 
avoidance effect of the vehicle and ensure the stability 
of the system to a certain extent; Luan et al. (Luan et 
al., 2020) considered the steering angle oscillation 
caused by multiple step changes in the target angle 
actually received by the system node due to the 
random network delay of the sensor and actuator and 
the limitation of the CAN bus sampling mechanism of 
the steer-by-wire system. An adaptive model 
predictive control of linear uncertain model is 
proposed. The PSO algorithm is used to calculate the 
predictive time domain and the control time domain 
offline to find the time domain solution to achieve the 
optimal control effect. 

To effectively address the interference or 
uncertainties present in the system's operating 
environment, it is necessary to further enhance the 
system's robustness. Mashadi et al. (Mashadi et al., 
2015) designed a μ-synthesis robust controller by 
combining four-wheel steering ( 4WS ) with direct 
yaw moment control ( DYC ). Zhang et al. (Zhang et 
al., 2021) proposed a novel robust event-triggered 
fault-tolerant control strategy for automatic steering 
systems. This strategy uses polyhedral set reduction 
and norm-bounded uncertainty attenuation to 
effectively handle uncertainties associated with 
time-varying velocities and tire cornering stiffness 
in the dynamic model, thereby reducing the impact 
of modeling errors. 

Facing the impact of external disturbances and 
internal uncertainties, this paper draws inspiration 
from the aforementioned scholars' research. Starting 
from the underlying logic, an in-depth study of the 
rolling optimization in the key part of MPC is 
conducted, exploring the pattern of changes between 
the prediction horizon and the weight matrix at each 
step of the optimization process. At the same time, 
considering the variation of a series of uncertain 
factors such as the time-varying parameters of the 
model and the lateral stiffness, a polyhedral model is 
established. Based on an innovative adaptive control 
strategy, a method of Model Predictive Control that 
accounts for uncertainty (UM-MPC) is proposed. The 
weight matrix in the optimization process is improved, 
and an adaptive predictive level function for weight 
variation is proposed according to curvature, speed, 
lateral stiffness, slip rate, and temporal changes, and 
the optimal values are obtained through offline 
optimization and an improved Particle Swarm 
Optimization (PSO) algorithm to achieve good 
tracking performance. The overall framework of the 
controller is shown in Figure 1. 

 
Figure 1.  Architecture of control system 

 
The main contributions of this paper are as 

follows: 
(1) By comparing the tracking results, the law of 

the weight matrix changing with the rolling 
optimization step size is obtained, and the selection 
strategy of the adaptive weight matrix according to 
different working conditions is proposed.  

(2) Considering the influence of dynamic 
uncertain parameters, speed, lateral stiffness, slip rate 
and other changes on the vehicle model, an adaptive 
predictive level function for weight variation is 
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proposed. This function adapts to the variations and 
utilizes an enhanced Particle Swarm Optimization 
(PSO) algorithm to determine the optimal coefficients 
that minimize tracking error under the current 
operating conditions. This approach differs from 
traditional weight adaptation based on fuzzy logic, as 
it improves tracking precision and stability 
comprehensively without increasing computational 
load or affecting the system's real-time capabilities. 
 

ESTABLISHMENT OF VEHICLE 
DYNAMICS MODEL 

 
In order to ensure that the motion behavior and 

driving mechanical characteristics of the vehicle can 
be described more accurately, the complexity of the 
controller design is reduced and the amount of 
calculation is reduced. In this paper, a widely used 
three-degree-of-freedom vehicle dynamics model 
(Yuan et al., 2019) is adopted and combined with the 
error model diagram. As shown in Figure2. 

 
Fig. 2. Vehicle Three Degree of Freedom Dynamic 

Model and Tracking Error Model 
 
The vehicle yaw dynamics equation is as follows 

given the presumptions: 

�
𝑚𝑚(𝑥̈𝑥 − 𝑦̇𝑦𝜑̇𝜑) =  𝐹𝐹𝑥𝑥𝑥𝑥 𝑐𝑐𝑐𝑐𝑐𝑐 𝛿𝛿𝑓𝑓 − 𝐹𝐹𝑦𝑦𝑦𝑦 𝑠𝑠𝑠𝑠𝑠𝑠 𝛿𝛿𝑓𝑓 + 𝐹𝐹𝑥𝑥𝑟𝑟
𝑚𝑚(𝑦̈𝑦 + 𝑥̇𝑥𝜑̇𝜑) =  𝐹𝐹𝑥𝑥𝑥𝑥 𝑠𝑠𝑠𝑠𝑠𝑠 𝛿𝛿𝑓𝑓 + 𝐹𝐹𝑦𝑦𝑦𝑦 𝑐𝑐𝑐𝑐𝑐𝑐 𝛿𝛿𝑓𝑓 + 𝐹𝐹𝑦𝑦𝑦𝑦
𝐼𝐼𝑧𝑧𝜑̈𝜑 = 𝑎𝑎(𝐹𝐹𝑦𝑦𝑦𝑦 𝑐𝑐𝑐𝑐𝑐𝑐 𝛿𝛿 + 𝐹𝐹𝑥𝑥𝑥𝑥 𝑠𝑠𝑠𝑠𝑠𝑠 𝛿𝛿) − 𝑏𝑏𝐹𝐹𝑦𝑦𝑦𝑦

   (1) 

where control quantity 𝛿𝛿𝑓𝑓is the front wheel angle 
of the vehicle; 𝜅𝜅 is the curvature of the road; 𝜑𝜑 is the 
yaw angle of the vehicle body; 𝑒𝑒𝑦𝑦 𝑎𝑎𝑎𝑎𝑎𝑎 𝑒𝑒𝜑𝜑 are the 
lateral position and heading errors, respectively; 𝛽𝛽 is 
the vehicle sideslip angle; 𝑦̇𝑦 and 𝑥̇𝑥 are the vehicle's 
longitudinal and lateral speeds; 𝐼𝐼𝑧𝑧  represents the 
vehicle’s moment of inertia around the z-axis. 𝐹𝐹𝑖𝑖𝑖𝑖 is 
tire force. 

When calculating tire forces, it is possible to 
simplify the tire model to a linear one by assuming that 
the slip ratio of the wheel and the sideslip angle of the 
tire are both within a small range, while neglecting the 
effects of load transfer on the tire's sideslip stiffness 
and the wheel's longitudinal stiffness, thereby 
obtaining linear expressions for the tire's longitudinal 
force and lateral force. 

𝐹𝐹𝑙𝑙 = 𝐶𝐶̅𝛼𝛼                  (2) 
Among them, α represents the tire slip angle, and 

C�  represents the linear cornering stiffness of the tire. 
When the lateral acceleration ay is less than or equal 
to 0.4g and the tire sideslip angle is less than or equal 

to 6°, the expressions for the tire's lateral force and 
longitudinal force are as follows: 

�
𝐹𝐹𝑥𝑥 = 𝐶𝐶𝑥𝑥(𝜇𝜇,𝐹𝐹𝑧𝑧)𝑠𝑠𝑓𝑓,𝑟𝑟

𝐹𝐹𝑦𝑦 = 𝐶𝐶𝛼𝛼(𝜇𝜇,𝐹𝐹𝑧𝑧)𝛼𝛼            (3) 

The tire longitudinal force Fl of the linearized 
model is a linear function of the wheel longitudinal 
stiffness 𝐶𝐶𝑥𝑥 and the longitudinal slip ratio s. 

Based on the small angle assumption, the 
expressions for the tire slip angle and the vehicle 
sideslip angle are as follows: 

𝛼𝛼𝑓𝑓 = arctan(𝑦̇𝑦+a𝜑̇𝜑
𝑥̇𝑥

) − 𝛿𝛿𝑓𝑓 ≈ 𝛽𝛽 + a𝜑̇𝜑
𝑥̇𝑥
− 𝛿𝛿𝑓𝑓    (4) 

𝛼𝛼𝑟𝑟 = arctan(𝑦̇𝑦−b𝜑̇𝜑
𝑥̇𝑥

) ≈ 𝛽𝛽 − b𝜑̇𝜑
𝑥̇𝑥

       (5) 

𝛽𝛽 = arctan(𝑦̇𝑦
𝑥̇𝑥

) ≈ 𝑦̇𝑦
𝑥̇𝑥
           (6) 

where 𝛼𝛼𝑓𝑓  and 𝛼𝛼𝑟𝑟  are the front and rear tire 
sideslip angles respectively 

When taking into account the road curvature, 
the lateral tracking error is significantly smaller 
than the error when road curvature is not considered. 
The vehicle yaw dynamics model incorporates the 
varying road curvature to develop a tracking error 
model. 

�
𝑒̇𝑒𝑦𝑦 = 𝑥̇𝑥sin𝑒𝑒𝜑𝜑 + 𝑦̇𝑦cos𝜑̇𝜑𝑒𝑒𝜑𝜑 ≈ 𝑥̇𝑥𝑒𝑒𝜑𝜑 + 𝑦̇𝑦

𝑒̇𝑒𝜑𝜑 = 𝜑̇𝜑 − 𝜅𝜅𝑥̇𝑥cos𝑒𝑒𝜑𝜑
1−𝜅𝜅𝑒𝑒𝑦𝑦

≈ 𝜑̇𝜑 − 𝜅𝜅𝑥̇𝑥      (7) 

where 𝑒𝑒𝑦𝑦  and 𝑒𝑒𝜑𝜑  are the lateral position error 
and heading angle error of the vehicle respectively. 
The 3-DOF yaw dynamics tracking error model is： 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧𝑥̈𝑥 = 𝑦̇𝑦𝜑̇𝜑 + 𝑠𝑠𝑓𝑓𝐶𝐶𝑙𝑙𝑙𝑙+𝑠𝑠𝑟𝑟𝐶𝐶𝑙𝑙𝑙𝑙

𝑚𝑚
−

𝐶𝐶𝛼𝛼𝛼𝛼(𝛽𝛽+
𝑙𝑙𝑓𝑓𝜑̇𝜑
𝑥̇𝑥 −𝛿𝛿𝑓𝑓)𝛿𝛿𝑓𝑓
𝑚𝑚

𝑦̈𝑦 = −𝑥̇𝑥𝜑̇𝜑 +
𝐶𝐶 (𝑦̇𝑦+a𝜑̇𝜑𝑥̇𝑥 −𝛿𝛿𝑓𝑓)𝛼𝛼𝛼𝛼

 

𝑚𝑚
+

𝐶𝐶 (𝑦̇𝑦−b𝜑̇𝜑𝑥̇𝑥 )𝛼𝛼𝛼𝛼
 

𝑚𝑚

𝜑̈𝜑 =
(𝑙𝑙𝑓𝑓𝐶𝐶𝛼𝛼𝛼𝛼(𝑦̇𝑦+a𝜑̇𝜑𝑥̇𝑥 −𝛿𝛿𝑓𝑓)−𝑙𝑙𝑟𝑟𝐶𝐶 (𝑦̇𝑦−b𝜑̇𝜑𝑥̇𝑥 )𝛼𝛼𝛼𝛼

 )

𝐼𝐼𝑧𝑧
𝑒̇𝑒𝜑𝜑 = 𝜑̇𝜑 − 𝜅𝜅𝑥̇𝑥
𝑒̇𝑒𝑦𝑦 = 𝑥̇𝑥𝑒𝑒𝜑𝜑 + 𝑦̇𝑦

    (8) 

Basic parameters of the vehicle: m、𝐶𝐶𝛼𝛼𝑓𝑓/𝐶𝐶𝛼𝛼𝛼𝛼、
𝐶𝐶𝑙𝑙𝑙𝑙 /𝐶𝐶𝑙𝑙𝑙𝑙 and 𝑙𝑙𝑓𝑓 /𝑙𝑙𝑟𝑟  represent the mass of the vehicle, 
the cornering stiffness and longitudinal stiffness of the 
front and rear tires, and the distance from the center of 
mass to the front and rear wheels, respectively. 

The nonlinear model often has high accuracy, but 
it will greatly increase the complexity of the controller 
setting, so it is necessary to linearize the vehicle 
dynamics model. 

 The state variable of the vehicle is  𝜉𝜉 =
[𝑦̇𝑦, 𝑥̇𝑥,𝜑𝜑, 𝜑̇𝜑, 𝑒𝑒𝑦𝑦 , 𝑒𝑒𝜑𝜑]𝑇𝑇 . The control input vector is 𝑢𝑢 =
𝛿𝛿𝑞𝑞, additional input 𝜆𝜆 = [𝜅𝜅]𝑇𝑇, the state space form is 
𝜉𝜉̇ = 𝑓𝑓(𝜉𝜉,𝑢𝑢, 𝜆𝜆). By linearizing the nonlinear dynamic 
model(Raffo et al., 2009), and discretize the system 
state to obtain: 
𝜉𝜉(𝑘𝑘 + 1) = 𝜉𝜉(𝑘𝑘) + 𝑇𝑇 ⋅ [𝑓𝑓(𝜉𝜉(𝑘𝑘),𝑢𝑢1(𝑘𝑘), 𝜆𝜆(𝑘𝑘)]

= 𝐹𝐹�𝜉𝜉(𝑘𝑘),𝑢𝑢1(𝑘𝑘), 𝜆𝜆(𝑘𝑘)� (9) 

 
where k is the current sampling time point, k+1 

is the next sampling time point, and T is the sampling 
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time. 
Performing Taylor expansion at the operating 

point (𝜉𝜉𝑜𝑜 ,𝑢𝑢 𝑜𝑜 , 𝜆𝜆 𝑜𝑜), and the first-order term is retained: 
𝜉𝜉(𝑘𝑘 + 1) = 𝐹𝐹(𝜉𝜉𝑜̇𝑜(𝑘𝑘),𝑢𝑢 𝑜𝑜(𝑘𝑘), 𝜆𝜆 𝑜𝑜(𝑘𝑘)) + 𝐴𝐴𝑘𝑘,𝑜𝑜(𝜉𝜉̇(𝑘𝑘) −
𝜉𝜉𝑜𝑜(𝑘𝑘)) + 𝐵𝐵1𝑘𝑘,𝑜𝑜(𝑢𝑢 (𝑘𝑘) − 𝑢𝑢 𝑜𝑜) + 𝐵𝐵2𝑘𝑘,𝑜𝑜(𝜆𝜆 (𝑘𝑘) − 𝜆𝜆 𝑜𝑜  (10) 

Subtract the state variable of the working point 
from the above formula to obtain the linear time-
varying system equation of the vehicle after discrete 
linearization:  
𝜉𝜉(𝑘𝑘 + 1) = 𝐴𝐴𝑘𝑘,𝑜𝑜𝜉𝜉̇(𝑘𝑘) + 𝐵𝐵1𝑘𝑘,𝑜𝑜𝑢𝑢 (𝑘𝑘) + 𝐵𝐵2𝑘𝑘,𝑜𝑜𝜆𝜆 (𝑘𝑘) + 𝐷𝐷𝑘𝑘,𝑜𝑜(11) 

where 𝐷𝐷𝑘𝑘,𝑡𝑡 = 𝜉𝜉𝑡𝑡(𝑘𝑘 + 1) − �𝐴𝐴𝑘𝑘,𝑡𝑡𝜉𝜉𝑡𝑡(𝑘𝑘) +

𝐵𝐵1𝑘𝑘,𝑡𝑡𝑢𝑢 𝑡𝑡 + 𝐵𝐵2𝑘𝑘,𝑡𝑡𝜆𝜆  𝑡𝑡
�，𝐴𝐴𝑘𝑘,𝑡𝑡 ,𝐵𝐵1𝑘𝑘,𝑡𝑡 and 𝐵𝐵2𝑘𝑘,𝑡𝑡 are all 

linear time-varying Jacobian matrices: 

𝐴𝐴𝑘𝑘,𝑡𝑡 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

(𝐶𝐶𝛼𝛼𝛼𝛼+𝐶𝐶𝛼𝛼𝛼𝛼)
𝑚𝑚𝑥̇𝑥

− 𝐶𝐶𝛼𝛼𝛼𝛼(𝑦̇𝑦+𝑎𝑎𝜑̇𝜑)+𝐶𝐶𝛼𝛼𝛼𝛼(𝑦̇𝑦−b𝜑̇𝜑)
𝑚𝑚𝑥̇𝑥2

− 𝜑̇𝜑 0 (a𝐶𝐶𝛼𝛼𝛼𝛼−b𝐶𝐶𝛼𝛼𝛼𝛼)
𝑚𝑚𝑥̇𝑥

− 𝑥̇𝑥 0 0

−𝐶𝐶𝛼𝛼𝛼𝛼𝛿𝛿𝑓𝑓
𝑚𝑚𝑥̇𝑥

+ 𝜑̇𝜑 − 𝐶𝐶𝛼𝛼𝛼𝛼(𝑦̇𝑦+a𝜑̇𝜑)𝛿𝛿𝑓𝑓
𝑚𝑚𝑥̇𝑥2

0 −a𝐶𝐶𝛼𝛼𝛼𝛼𝛿𝛿𝑓𝑓
𝑚𝑚𝑥̇𝑥

+ 𝑦̇𝑦 0 0
0 0 0 1 0 0

a𝐶𝐶𝛼𝛼𝛼𝛼−b𝐶𝐶𝛼𝛼𝛼𝛼
𝐼𝐼𝑧𝑧𝑥̇𝑥

− a𝐶𝐶𝛼𝛼𝛼𝛼(𝑦̇𝑦+𝑙𝑙𝑓𝑓𝜑̇𝜑)−b𝐶𝐶𝛼𝛼𝛼𝛼(𝑦̇𝑦−𝑙𝑙𝑟𝑟𝜑̇𝜑)
𝐼𝐼𝑧𝑧𝑥̇𝑥2

0 a 2𝐶𝐶𝛼𝛼𝛼𝛼+b2𝐶𝐶𝛼𝛼𝛼𝛼
𝐼𝐼𝑧𝑧𝑥̇𝑥

0 0
1 𝑒𝑒𝜑𝜑 0 0 0 𝑥̇𝑥
0 −𝜅𝜅 0 1 0 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

(12) 

𝐵𝐵1𝑘𝑘,𝑡𝑡 = [−𝐶𝐶𝛼𝛼𝛼𝛼
𝑚𝑚

𝐶𝐶𝛼𝛼𝛼𝛼(2𝛿𝛿𝑓𝑓−
(𝑦̇𝑦+𝑎𝑎𝜑̇𝜑)

𝑥̇𝑥 )

𝑚𝑚
0 −a𝐶𝐶𝛼𝛼𝛼𝛼

𝐼𝐼𝑧𝑧
0 0]𝑇𝑇    (13) 

𝐵𝐵2𝑘𝑘,𝑡𝑡 = [0 0 0 0 0 −𝑥̇𝑥]𝑇𝑇.    (14) 

Define new state variable𝜁𝜁(𝑘𝑘) = �
𝜉𝜉(𝑘𝑘)

𝑢𝑢1(𝑘𝑘 − 1)
𝑢𝑢2(𝑘𝑘)

� , 

output state variable 𝜂𝜂(𝑘𝑘) and increment 𝛥𝛥𝛥𝛥(𝑘𝑘) =
𝑢𝑢 (𝑘𝑘) − 𝑢𝑢 (𝑘𝑘 − 1) of control input. The discrete state 
space controller model can be transformed into a new 
form: 
𝜁𝜁(𝑘𝑘 + 1|𝑡𝑡) = 𝐴̃𝐴𝑘𝑘,𝑡𝑡𝜁𝜁(𝑘𝑘|𝑡𝑡) + 𝐵𝐵�𝑘𝑘,𝑡𝑡𝛥𝛥𝛥𝛥(𝑘𝑘|𝑡𝑡) + 𝐷𝐷�𝑘𝑘,𝑡𝑡  (15) 

𝜂𝜂(𝑘𝑘|𝑡𝑡) = 𝐻𝐻𝑝𝑝𝜁𝜁(𝑘𝑘|𝑡𝑡)           (16) 

where 𝐴̃𝐴𝑘𝑘,𝑡𝑡 = �
𝐴𝐴𝑘𝑘,𝑡𝑡 𝐵𝐵1𝑘𝑘,𝑡𝑡 𝐵𝐵2𝑘𝑘,𝑡𝑡

0 1 0
0 0 1

�，𝐵𝐵�𝑘𝑘,𝑡𝑡 =

�
𝐵𝐵1𝑘𝑘

1
0
�，𝑘𝑘,𝑡𝑡 = �

𝐷𝐷𝑘𝑘,𝑡𝑡
0
0
�，𝐻𝐻𝑝𝑝 = [1 0 0]。 

After obtaining the new state variable, iterate 
continuously in the following time series to obtain the 
prediction output expression in the prediction horizon: 

𝑌𝑌(𝑡𝑡) = 𝛹𝛹𝑡𝑡𝜁𝜁(𝑡𝑡) + 𝛩𝛩𝑡𝑡𝛥𝛥𝛥𝛥(𝑡𝑡) + 𝛬𝛬𝑡𝑡ϒ(𝑡𝑡)     (17) 
where 𝑌𝑌(𝑡𝑡) = [𝜂𝜂(𝑘𝑘 + 1|𝑡𝑡) 𝜂𝜂(𝑘𝑘 + 2|𝑡𝑡) ⋯ 𝜂𝜂(𝑘𝑘 +𝑁𝑁𝑐𝑐|𝑡𝑡) ⋯ 𝜂𝜂(𝑘𝑘 +𝑁𝑁𝑝𝑝|𝑡𝑡)]𝑇𝑇 ， 

𝛹𝛹𝑡𝑡 = �𝐻𝐻𝑝𝑝𝐴̃𝐴𝑘𝑘,𝑡𝑡 𝐻𝐻𝑝𝑝𝐴̃𝐴 𝑘𝑘,𝑡𝑡
2  ⋯ 𝐻𝐻𝑝𝑝𝐴̃𝐴 𝑘𝑘,𝑡𝑡

𝑁𝑁𝑐𝑐  ⋯ 𝐻𝐻𝑝𝑝𝐴̃𝐴 𝑘𝑘,𝑡𝑡

𝑁𝑁𝑝𝑝  
�
𝑇𝑇
，  

𝛥𝛥𝛥𝛥(𝑡𝑡) = [𝛥𝛥𝛥𝛥(𝑘𝑘|𝑡𝑡) 𝛥𝛥𝛥𝛥(𝑘𝑘 + 1|𝑡𝑡) 𝛥𝛥𝛥𝛥(𝑘𝑘 + 2|𝑡𝑡) ⋯ ⋯ 𝛥𝛥𝛥𝛥(𝑘𝑘 + 𝑁𝑁𝑐𝑐 − 1|𝑡𝑡)]𝑇𝑇 
ϒ(𝑡𝑡) = �𝐷𝐷�𝑘𝑘,𝑡𝑡(𝑘𝑘) 𝐷𝐷�𝑘𝑘,𝑡𝑡(𝑘𝑘 + 1) 𝐷𝐷�𝑘𝑘,𝑡𝑡(𝑘𝑘 + 2) ⋯ ⋯ 𝐷𝐷�𝑘𝑘,𝑡𝑡�𝑘𝑘 + 𝑁𝑁𝑝𝑝 − 1��𝑇𝑇， 

𝛩𝛩𝑡𝑡 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 𝐻𝐻𝑝𝑝𝐵𝐵�𝑘𝑘,𝑡𝑡 0 0 0
𝐻𝐻𝑝𝑝𝐴̃𝐴𝑘𝑘,𝑡𝑡𝐵𝐵�𝑘𝑘,𝑡𝑡 𝐻𝐻𝑝𝑝𝐵𝐵�𝑘𝑘,𝑡𝑡 0 0

⋮ ⋮ ⋱ ⋮
𝐻𝐻𝑝𝑝𝐴̃𝐴𝑘𝑘,𝑡𝑡

𝑁𝑁𝑐𝑐−1𝐵𝐵�𝑘𝑘,𝑡𝑡 𝐻𝐻𝑝𝑝𝐴̃𝐴𝑘𝑘,𝑡𝑡
𝑁𝑁𝑐𝑐−2𝐵𝐵�𝑘𝑘,𝑡𝑡 ⋯ 𝐻𝐻𝑝𝑝𝐵𝐵�𝑘𝑘,𝑡𝑡

⋮ ⋮ ⋱ ⋮
𝐻𝐻𝑝𝑝𝐴̃𝐴𝑘𝑘,𝑡𝑡

𝑁𝑁𝑝𝑝−1𝐵𝐵�𝑘𝑘,𝑡𝑡 𝐻𝐻𝑝𝑝𝐴̃𝐴𝑘𝑘,𝑡𝑡
𝑁𝑁𝑝𝑝−2𝐵𝐵�𝑘𝑘,𝑡𝑡 ⋯ 𝐻𝐻𝑝𝑝𝐴̃𝐴𝑘𝑘,𝑡𝑡

𝑁𝑁𝑝𝑝−𝑁𝑁𝑐𝑐𝐵𝐵�𝑘𝑘,𝑡𝑡⎦
⎥
⎥
⎥
⎥
⎥
⎤

， 

𝛬𝛬𝑡𝑡 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

𝐻𝐻𝑝𝑝 0 0 0
𝐻𝐻𝑝𝑝𝐴̃𝐴𝑘𝑘,𝑡𝑡 𝐻𝐻𝑝𝑝 0 0
⋮ ⋮ ⋱ ⋮

𝐻𝐻𝑝𝑝𝐴̃𝐴 𝑘𝑘,𝑡𝑡
𝑁𝑁𝑐𝑐−1  𝐻𝐻𝑝𝑝𝐴̃𝐴 𝑘𝑘,𝑡𝑡

𝑁𝑁𝑐𝑐−2 ⋯ 𝐻𝐻𝑝𝑝
⋮ ⋮ ⋱ ⋮

𝐻𝐻𝑝𝑝𝐴̃𝐴 𝑘𝑘,𝑡𝑡

𝑁𝑁𝑝𝑝−1 𝐻𝐻𝑝𝑝𝐴̃𝐴 𝑘𝑘,𝑡𝑡

𝑁𝑁𝑝𝑝−2 ⋯ 𝐻𝐻𝑝𝑝𝐴̃𝐴𝑘𝑘,𝑡𝑡
𝑁𝑁𝑃𝑃−𝑁𝑁𝑝𝑝

⎦
⎥
⎥
⎥
⎥
⎥
⎤

。 

where 𝑁𝑁𝑝𝑝  is the prediction horizon, and 𝑁𝑁𝑐𝑐  is 
the control horizon. 

 
Establishment of Polytope Model 

The autonomous vehicle will not only encounter 
the uncertainty of the environment, but also be affected 
by the uncertain parameters of its own model. In the 
case of increasing speed, the impact of model 
uncertainty will also intensify. When the vehicle is 
traveling at high speed, the presence of time-variant 1

𝑥̇𝑥
 

parameters in the model and the strong non-linear 
change of the tires can render the entire control system 
highly unstable and extremely susceptible to 
influences from system inputs and the external 
environment. As a result, the vehicle is unable to 
guarantee great tracking performance, and the 
constructed model fails to accurately express the 
dynamic characteristics of the vehicle.  

To address this issue, this paper proposes to refine 
the three-degree-of-freedom vehicle model into a 
polyhedral model. Taking into account the impact of 
the vehicle's uncertain parameters: �1

𝑥̇𝑥
𝐶𝐶𝛼𝛼𝛼𝛼 𝐶𝐶𝛼𝛼𝛼𝛼�, the 

number of vertices of the convex polytope model is 
determined to be 23 , where the uncertain parameter 
ranges are respectively: 

1
𝑥̇𝑥
∈ �

1
𝑥̇𝑥𝑚𝑚𝑚𝑚𝑚𝑚

,
1

𝑥̇𝑥𝑚𝑚𝑚𝑚𝑚𝑚
� 

𝐶𝐶𝛼𝛼𝛼𝛼 ∈ �𝐶𝐶𝛼𝛼𝛼𝛼,𝑚𝑚𝑚𝑚𝑚𝑚 ,𝐶𝐶𝛼𝛼𝛼𝛼,𝑚𝑚𝑚𝑚𝑚𝑚 � 
𝐶𝐶𝛼𝛼𝛼𝛼 ∈ �𝐶𝐶𝛼𝛼𝛼𝛼,𝑚𝑚𝑚𝑚𝑚𝑚 ,𝐶𝐶𝛼𝛼𝛼𝛼,𝑚𝑚𝑚𝑚𝑚𝑚 � 

(18) 

According to the range of uncertain parameters, 
the vertex parameters of the polytope can be 
determined as: 

1/𝜈𝜈𝑥𝑥 = �𝛾̄𝛾𝑖𝑖(𝑡𝑡)𝜂̄𝜂𝑖𝑖

𝑖𝑖=1

2

𝐶𝐶𝛼𝛼𝛼𝛼 = �𝛾𝛾�𝑖𝑖(𝑡𝑡)𝜂𝜂�𝑖𝑖

𝑖𝑖=1

2

𝐶𝐶𝛼𝛼𝛼𝛼 = �𝛾̑𝛾𝑖𝑖(𝑡𝑡)𝜂̑𝜂𝑖𝑖

𝑖𝑖=1

2

 (19) 

Make the following definition: 
𝛾𝛾𝑖𝑖 = 𝛾̄𝛾𝑗𝑗𝛾𝛾�𝑘𝑘𝛾̑𝛾𝑙𝑙     (𝑗𝑗 = 1,2, 𝑘𝑘 = 1,2, 𝑙𝑙 = 1,2)   (20) 

∑ 𝛾𝛾𝑖𝑖8
𝑖𝑖=1 = 1            (21) 

𝛾̄𝛾1(𝑡𝑡) = 1/𝜈𝜈𝑥𝑥,𝑚𝑚𝑚𝑚𝑚𝑚−1/𝜈𝜈𝑥𝑥
1/𝜈𝜈𝑥𝑥,𝑚𝑚𝑚𝑚𝑚𝑚

, 𝛾̄𝛾2(𝑡𝑡) = 1/𝜈𝜈𝑥𝑥−1/𝜈𝜈𝑥𝑥,𝑚𝑚𝑚𝑚𝑚𝑚

1/𝜈𝜈𝑥𝑥,𝑚𝑚𝑚𝑚𝑚𝑚
  

𝛾𝛾�1(𝑡𝑡) = 𝐶𝐶𝛼𝛼𝛼𝛼,𝑚𝑚𝑚𝑚𝑚𝑚−𝐶𝐶𝛼𝛼𝛼𝛼
𝐶𝐶𝛼𝛼𝛼𝛼,𝑚𝑚𝑚𝑚𝑚𝑚

,   𝛾𝛾�2(𝑡𝑡) = 𝐶𝐶𝛼𝛼𝛼𝛼−𝐶𝐶𝛼𝛼𝛼𝛼,𝑚𝑚𝑚𝑚𝑚𝑚

𝐶𝐶𝛼𝛼𝛼𝛼,𝑚𝑚𝑚𝑚𝑚𝑚
  

𝛾̑𝛾1(𝑡𝑡) = 𝐶𝐶𝛼𝛼𝛼𝛼,𝑚𝑚𝑚𝑚𝑚𝑚−𝐶𝐶𝛼𝛼𝛼𝛼
𝐶𝐶𝛼𝛼𝛼𝛼,𝑚𝑚𝑚𝑚𝑚𝑚

,   𝛾̑𝛾2(𝑡𝑡) = 𝐶𝐶𝛼𝛼𝛼𝛼−𝐶𝐶𝛼𝛼𝛼𝛼,𝑚𝑚𝑚𝑚𝑚𝑚

𝐶𝐶𝛼𝛼𝛼𝛼,𝑚𝑚𝑚𝑚𝑚𝑚
  

(22) 

where 𝛾̄𝛾, 𝛾𝛾�, 𝛾̑𝛾  is the correction coefficient. 
Replace a in the original state space equation with 
1
𝑥̇𝑥

,𝐶𝐶𝛼𝛼𝛼𝛼 ,𝐶𝐶𝛼𝛼𝛼𝛼  time-varying variable 𝜂̄𝜂,𝜂𝜂�, 𝜂̑𝜂 . The state 
space parameter matrix at the ith vertex of the convex 
polytope is 𝐴𝐴𝑖𝑖,𝐵𝐵𝑖𝑖 ,𝐷𝐷𝑖𝑖  ( 𝑖𝑖 = 23 ). The forward Euler 
method is used for discretization. 

𝑋𝑋�(𝑘𝑘 + 1) = 𝐴̃𝐴𝑋𝑋�(𝑘𝑘) + 𝐵𝐵�𝑢𝑢�(𝑘𝑘) + 𝐷𝐷�𝜆𝜆(𝑘𝑘)     (23) 
𝐴̃𝐴 = ∑ 𝛾𝛾𝑖𝑖𝐴𝐴𝑑𝑑,𝑖𝑖

𝑖𝑖=1
8   𝐵𝐵� = ∑ 𝛾𝛾𝑖𝑖𝐵𝐵𝑑𝑑,𝑖𝑖

𝑖𝑖=1
8  𝐶̃𝐶 = ∑ 𝛾𝛾𝑖𝑖𝐶𝐶𝑑𝑑,𝑖𝑖

𝑖𝑖=1
8  (24) 

[𝐴̃𝐴 𝐵𝐵� 𝐷𝐷�] = �𝛾𝛾𝑖𝑖[𝐴𝐴𝑑𝑑,𝑖𝑖 𝐵𝐵𝑑𝑑,𝑖𝑖 𝐷𝐷𝑑𝑑,𝑖𝑖]
𝑖𝑖=1

8
[𝐴̃𝐴 𝐵𝐵� 𝐷𝐷�] ∈ 𝛺𝛺 = 𝑂𝑂𝑂𝑂{�𝐴𝐴𝑑𝑑,1,𝐵𝐵𝑑𝑑,1,𝐷𝐷𝑑𝑑,1�, �𝐴𝐴𝑑𝑑,2,𝐵𝐵𝑑𝑑,2,𝐷𝐷𝑑𝑑,2�,⋯ , �𝐴𝐴𝑑𝑑,𝑖𝑖 ,𝐵𝐵𝑑𝑑,𝑖𝑖 ,𝐷𝐷𝑑𝑑,𝑖𝑖�}

 (25) 
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where 𝛾𝛾𝑖𝑖 is a nonnegative constant. 
Using the method of controlling increment, a new 

state space equation is established as follows: 

𝜉𝜉(𝑘𝑘) = � 𝑋𝑋�(𝑘𝑘)
𝑢𝑢�(𝑘𝑘 − 1)� 

𝜉𝜉(𝑘𝑘 + 1) = 𝐴̃𝐴𝑘𝑘𝜉𝜉(𝑘𝑘) + 𝐵𝐵�𝑘𝑘𝛥𝛥𝑢𝑢�(𝑘𝑘) + 𝐷𝐷�𝑘𝑘𝜆𝜆(𝑘𝑘) 
(26) 

where:𝐴̃𝐴𝑘𝑘 = � 𝐴̃𝐴 𝐵𝐵�
0𝑗𝑗×𝑘𝑘 𝐼𝐼𝑗𝑗

�，𝐵𝐵�𝑘𝑘 = �𝐵𝐵� 𝐼𝐼𝑗𝑗�
𝑇𝑇
，𝐶̃𝐶𝑘𝑘 =

�𝐶̃𝐶 0𝑗𝑗�
𝑇𝑇
，j=1，k=2。 

To ensure the stability of the system, the 
convergence analysis of the polyhedral model can be 
conducted through the following methods. 

The polyhedral model can be expressed as: 
𝜉𝜉(𝑘𝑘 + 1) = 𝐴̃𝐴𝑘𝑘𝜉𝜉(𝑘𝑘) + 𝐵𝐵�𝑘𝑘Δ𝑢𝑢�(𝑘𝑘) + 𝐷𝐷�𝑘𝑘𝜆𝜆(𝑘𝑘) 

𝑦𝑦(𝑘𝑘) = 𝐶𝐶𝐶𝐶(𝑘𝑘) 
[𝐴̃𝐴𝑘𝑘 𝐵𝐵�𝑘𝑘] ∈ Ω 

(27) 

where Δ𝑢𝑢�(𝑘𝑘) ∈ 𝑅𝑅𝑚𝑚  is the input variable; 
𝜉𝜉(𝑘𝑘) ∈ 𝑅𝑅𝑛𝑛  is the state variable; 𝑦𝑦(𝑘𝑘) ∈ 𝑅𝑅𝑝𝑝  is the 
output variable; Ω  is the set that describes the 
model uncertainty. 

Considering the uncertainties within Ω , the 
optimization problem can be formulated as a Min-Max 
optimization: 

𝑚𝑚𝑚𝑚𝑚𝑚
Δ𝑢𝑢�(𝑘𝑘+𝑖𝑖|𝑖𝑖),𝑖𝑖=0,1,⋯,𝑚𝑚

  𝑚𝑚𝑚𝑚𝑚𝑚
𝐴𝐴�𝑘𝑘(𝑘𝑘+𝑖𝑖)𝐵𝐵�𝑘𝑘(𝑘𝑘+𝑖𝑖)]∈Ω

 𝐽𝐽 ∞(𝑘𝑘)    (28) 

where Δ𝑢𝑢�(𝑘𝑘 + 𝑖𝑖|𝑘𝑘)  𝜉𝜉(𝑘𝑘 + 𝑖𝑖|𝑘𝑘)  represent the 
predicted values of the state variable and control 
variable at time t=k+i starting from time t=k. The 
optimization objective  𝐽𝐽 ∞(𝑘𝑘) is: 
𝐽𝐽 ∞(𝑘𝑘)∑  ∞

𝑖𝑖=0 [𝜉𝜉(𝑘𝑘 + 𝑖𝑖|𝑘𝑘)T𝑄𝑄 1𝜉𝜉(𝑘𝑘 + 𝑖𝑖|𝑘𝑘) + Δ𝑢𝑢�(𝑘𝑘 + 𝑖𝑖|𝑘𝑘)T𝑅𝑅 1Δ𝑢𝑢�(𝑘𝑘 + 𝑖𝑖|𝑘𝑘)]  (29) 
Traditional methods set the control rate to a fixed 

value: 
𝑢𝑢(𝑘𝑘 + 𝑖𝑖|𝑘𝑘) = 𝐹𝐹𝐹𝐹(𝑘𝑘 + 𝑖𝑖|𝑘𝑘), 𝑖𝑖 ≥ 0      (30) 

This approach is used to obtain the upper bound 
of the original optimization problem. 

Consider the quadratic function: 
𝑉𝑉(𝑥𝑥) = 𝑥𝑥T𝑃𝑃𝑃𝑃,𝑃𝑃 > 0,𝑉𝑉(0) = 0     (31) 

Assuming at time k, for all 𝜉𝜉(𝑘𝑘 + 𝑖𝑖|𝑘𝑘),Δ𝑢𝑢�(𝑘𝑘 +
𝑖𝑖|𝑘𝑘), 𝑖𝑖 ≥ 0  that satisfy equation 𝜉𝜉(𝑘𝑘 + 1) =
𝑓𝑓(𝜉𝜉(𝑘𝑘),Δ𝑢𝑢�(𝑘𝑘))， we have: 
𝑉𝑉(𝜉𝜉(𝑘𝑘 + 𝑖𝑖 + 1|𝑘𝑘)) − 𝑉𝑉(𝜉𝜉(𝑘𝑘 + 𝑖𝑖|𝑘𝑘)
≤ −[𝜉𝜉(𝑘𝑘 + 𝑖𝑖|𝑘𝑘)𝑇𝑇𝑄𝑄1𝜉𝜉(𝑘𝑘 + 𝑖𝑖|𝑘𝑘) + Δ𝑢𝑢�(𝑘𝑘 + 𝑖𝑖|𝑘𝑘)𝑇𝑇𝑅𝑅1Δ𝑢𝑢�(𝑘𝑘 + 𝑖𝑖|𝑘𝑘)] 

(32) 
It is evident that equation (32) stipulates the non-

increasing monotonicity of 𝑉𝑉(𝜉𝜉(𝑘𝑘|𝑘𝑘)) , hence the 
polyhedron is robustly stable. 

 
ANALYSIS OF WEIGHT VARIATION 

WITH TIME DOMAIN 
 

Rolling optimization is the biggest difference 
between MPC and traditional control, which is carried 
out simultaneously by local optimization and online 
rolling. The process of rolling optimization predicts 
the state quantity of the next moment according to the 
control quantity and state quantity of the current 
moment. At each sampling time, the optimal control 
rate in the time domain is solved according to the 

optimal performance index at that time. A set of 
optimal control sequence and optimal predictive 
output are obtained at time k, but only the first control 
is actually executed. When the k+1 moment comes, the 
previous operation is resumed, and then it is rolled one 
by one until the k+Np moment stops. 

At present, the path tracking control algorithm 
based on MPC needs to set up the objective function 
in advance, and the tracking performance mainly 
depends on the optimization of the objective function. 
The objective function of the Traditional MPC 
controller is as follows: 
𝐽𝐽�𝜉𝜉(𝑘𝑘),𝑢𝑢(𝑘𝑘 − 1),𝛥𝛥𝛥𝛥(𝑘𝑘)� = � ∥ 𝜂𝜂�(𝑘𝑘 + 𝑖𝑖,𝑘𝑘) − 𝜂𝜂𝑟𝑟𝑟𝑟𝑟𝑟(𝑘𝑘 + 𝑖𝑖,𝑘𝑘) ∥𝑄𝑄2

𝑁𝑁𝑁𝑁

𝑖𝑖=0

+ � ∥ 𝛥𝛥𝛥𝛥(𝑘𝑘 + 𝑖𝑖,𝑘𝑘) ∥𝑅𝑅2
𝑁𝑁𝑁𝑁−1

𝑖𝑖=0
+ 𝜌𝜌𝜀𝜀2 

(33) 
where 𝑁𝑁𝑁𝑁 is Prediction time domain in MPC 

algorithm; 𝑁𝑁𝑁𝑁 is the control time domain。Q is the 
output weight matrix; R is the control increment 
weight matrix; 𝜌𝜌 is the weight of relaxation factor; 𝜀𝜀 is 
the relaxation factor. 

In the objective function, the first term represents 
the error of the output, which signifies the tracking 
performance of the autonomous vehicle. The weight 
matrix Q can adjust the emphasis on each parameter in 
the output. The second term represents the smoothness 
of the control input, which is derived from solving a 
constrained optimization problem to obtain the control 
sequence. The weight matrix R can adjust the 
emphasis on each parameter in the control input. 
Larger weight coefficients typically enable the system 
to track the reference trajectory more quickly and 
accurately, but may lead to larger changes in the 
control actions, thereby affecting the system's stability. 
Conversely, smaller weight coefficients can make the 
output response smoother, but may reduce the tracking 
speed and tracking performance. 

Traditional MPC controllers maintain constant 
weight values at each step when facing changing road 
conditions and driving states. However, the 
optimization problem solved within the Np horizon at 
each sampling instance is susceptible to variations in 
the external driving environment. In response to the 
dynamically changing road conditions, the 
requirements for vehicle tracking performance are also 
changing in real-time, implying that the objective 
function should adapt accordingly. When driving, a 
driver must consider both distant and immediate road 
conditions but tends to focus more on short-term 
changes in the immediate vicinity. Based on this 
driving habit, the weight matrix should be optimized. 
The weight matrix is defined as follows: 

Q =

⎣
⎢
⎢
⎡
𝑞𝑞1 0 ⋯ 0
0 𝑞𝑞2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 ⋯ 0 𝑞𝑞𝑁𝑁𝑝𝑝⎦

⎥
⎥
⎤

= ω𝑄𝑄 �

𝑞𝑞 0 ⋯ 0
0 𝑞𝑞 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 ⋯ 0 𝑞𝑞

� (34) 
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R = �

𝑟𝑟1 0 ⋯ 0
0 𝑟𝑟2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 ⋯ 0 𝑟𝑟𝑁𝑁𝑐𝑐−1

� = ω𝑅𝑅 �

𝑟𝑟 0 ⋯ 0
0 𝑟𝑟 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 ⋯ 0 𝑟𝑟

�(35) 

In the formula : 𝑞𝑞1 denotes the error weight of 
the output term of the optimization objective function 
in each step, i=1,2…Np. The current MPC takes the 
weight matrix equivalent to 𝑞𝑞1 = q2 … = qNp. In this 
paper, the weight coefficient ωQ is added, In order to 
achieve the purpose of the algorithm to exert different 
attention in different regions. 
 
Analysis of Variable Step Weight on Tracking 
Effect 

Through the aforementioned design, the first 
error term of the objective function is calculated over 
Np steps within each sampling period, with variations 
occurring at each step. The paper conducts extensive 
comparative experiments to summarize the 
relationship between tracking performance and the 
pattern of weight variation. Then selects several 
representative function changes to verify the 
rationality of the constructed change objective 
function.  

Taking the double lane change (DLC) condition 
as the test, three different simulation speeds are set, 
which are 30km/h, 60km/h and 90km/h respectively. 
The fixed weight MPC with better tracking effect is 
selected as the control group, and the weights 
representing four different forms of change are 
designed as the experimental group. Their modes of 
variation differ in that they either gradually increase or 
decrease, have a fixed change magnitude, or have a 
variable change magnitude. The change of the weight 
value is transformed into the function change of the 
weight ratio as shown in the figure 3:  

 
Fig. 3. Different forms of weight proportion variation 
 

The DLC working condition simulation is carried 
out at the speed of 30km/h, 60km/h and 90km/h, and 
the four weight change forms are compared with the 
tracking effect of the traditional MPC controller. This 
paper focuses on high-speed, focusing on 90km/h 
simulation results, as shown in Figure 4: 

 
Fig. 4. Lateral position tracking effect 

 
At the most obvious curvature change of DLC 

working condition, that is, the maximum lateral error 
of vehicle tracking, the tracking effects of the two 
controllers are shown. It can be seen that the changing 
weight method can indeed improve the tracking effect. 
In order to compare more intuitively, under the 
conditions of 30km/h, 60km/h and 90km/h of the 
vehicle, the maximum lateral error and maximum 
lateral acceleration output by the controller with 
different weight changes are selected to compare with 
the tracking effect of the fixed weight MPC controller. 
The maximum variation and percentage are listed, as 
shown in Table 1. Among them, the negative sign 
indicates a decrease, and the positive sign indicates an 
increase. 
Table 1. Maximum Lateral deviation and Maximum 

Lateral Acceleration Variation 
Change 
mode 

𝛥𝛥𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚
/𝑚𝑚 

𝛥𝛥𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚
/% 

𝛥𝛥𝛥𝛥𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚
/𝑔𝑔 

𝛥𝛥𝛥𝛥𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚
/% 

A -0.1420 -48.78 +0.0143 +3.20 
B +0.0210 +3.65 -0.0225 -12.83 
C -0.0138 -4.69 +0.0048 +1.10 
D +0.0200 +6.72 -0.0076 -1.72 
 
It can be seen from Table 1 that the controller 

with the weight matrix changing in the form of A has 
the most obvious improvement on the tracking 
accuracy, which can reach 48 %, while the controller 
with the weight changing in the form of B has a greater 
impact on the stability without affecting the tracking 
accuracy. Combined with Figure5, it can be seen that 
when the weight decreases gradually, the greater the 
change of the weight near the current moment, the 
more obvious the tracking effect of the algorithm on 
trajectory tracking. When the weight gradually 
increases, the greater the weight change away from the 
current moment, the more obvious the algorithm 
improves the stability of trajectory tracking. This 
paper only shows the four most representative changes, 
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but through extensive experimentation and 
summarization, the following rules governing the 
variation of weights over time can be obtained, which 
are then applied to the design of the controller in the 
subsequent text.  

(1)The greater the proportion of weight 
coefficients close to the current moment, the smaller 
the lateral deviation of the system's tracking, and the 
better the tracking accuracy. Conversely, the greater 
the proportion of weight coefficients further from the 
current moment, the better the system's stability, with 
a reduction in lateral acceleration and an enhanced 
ability for the vehicle to stabilize.  

(2)As weights gradually decrease, the greater the 
change in weights close to the current moment, the 
more pronounced the improvement in tracking 
accuracy by the algorithm; as weights gradually 
increase, the greater the change in weights further 
from the current moment, the more significant the 
improvement in tracking stability by the algorithm. 

 
MODEL PREDICTIVE CONTROLLER 
DESIGN CONSIDERING UNCERTAIN 

FACTORS 
 
From the analysis of the previous section, it can 

be seen that with the progress of rolling optimization, 
different weight changes will bring different tracking 
effects, but at the same time, the change of speed will 
also have a great impact on the tracking effect of the 
path tracking controller. The design purpose of the 
tracking controller is to ensure accurate and stable 
tracking of the target path at any speed. This brings 
great challenges to the adaptive model predictive 
controller. According to the law of weight changing 
with time domain in the above research, the proposed 
controller can consider the influence factors of 
curvature and slip rate at the same time according to 
the change of speed, and adjust the change mode of 
weight adaptively to compensate for the inaccurate 
focus of the same weight change mode when the 
environment changes.  

When the vehicle is running at low speed, the 
controller should focus on the tracking accuracy of the 
lifting path. Because the lateral acceleration 
corresponding to low speed driving is small, the 
driving stability of the vehicle can be generally 
guaranteed. When the vehicle is running at high speed, 
due to the increase of lateral acceleration, the 
requirements for stability are gradually increasing. At 
this time, the tracking accuracy and lateral stability of 
the vehicle should be taken into account. Similarly, in 
different driving sections and large curvature sharp 
steering sections, due to the constant predicted 
distance, the controller 's control of the front wheel 
angle cannot meet the road change under large 
curvature. The stability and tracking accuracy of the 
vehicle will be significantly affected, resulting in a 
rapid decline. But the change of the time domain will 

increase the computational burden. In the straight road 
section, the vehicle can generally accurately track the 
target path.  

In this section, the road curvature and operating 
speed are considered comprehensively, and the 
consideration of algorithm parameters and their 
impact on trajectory tracking performance, system 
stability, and computational efficiency is also given 
due attention. Within the constraints of the unchanged 
prediction time domain, an adaptive prediction level 
parameter is posited. And the undetermined coefficient 
is adjusted by offline optimization multiple iterations, 
so as to obtain the result of minimizing the calculation 
time and tracking error. The adaptive prediction level 
function is as follows: 
𝜔𝜔𝑄𝑄 = 𝐹𝐹𝜔𝜔𝑄𝑄�𝑉𝑉𝑘𝑘 ,𝜅𝜅, 𝑠𝑠, 𝑓𝑓,𝑁𝑁𝑝𝑝� = 𝜐𝜐1𝑓𝑓 + 𝜐𝜐2𝑉𝑉𝑘𝑘 + 𝜐𝜐3𝜅𝜅 + 𝜐𝜐4𝑠𝑠 + 𝜐𝜐5𝑁𝑁𝑝𝑝 + 𝑏𝑏 

(36) 
where 𝑓𝑓  is the dominant item of the weight 

change mode; 𝑉𝑉𝑘𝑘  is the longitudinal velocity of the 
vehicle at time K; 𝜅𝜅, 𝑠𝑠 is the road curvature and slip 
rate; 𝜐𝜐1, 𝜐𝜐2, 𝜐𝜐3, 𝜐𝜐4, 𝜐𝜐5  and 𝑏𝑏  is the undetermined 
coefficient of off-line optimization. 

The offline parameter optimization model is 
shown in Formula 12 and Figure 5: 

⎩
⎪
⎨

⎪
⎧𝑚𝑚𝑚𝑚𝑚𝑚   𝑓𝑓𝑓𝑓 = 𝑘𝑘1

𝑠𝑠1
𝑓𝑓𝑇𝑇�𝜔𝜔𝑄𝑄 ,𝜔𝜔𝑅𝑅� + 𝑘𝑘2

𝑠𝑠2
𝑓𝑓𝐸𝐸�𝜔𝜔𝑄𝑄 ,𝜔𝜔𝑅𝑅�

𝑠𝑠. 𝑡𝑡  𝑚𝑚𝑚𝑚𝑚𝑚�𝑓𝑓𝑇𝑇�𝜔𝜔𝑄𝑄 ,𝜔𝜔𝑅𝑅�� ≤ 𝑇𝑇𝑠𝑠
0 ≤ 𝜔𝜔𝑄𝑄 ≤ 1
0 ≤ 𝜔𝜔𝑅𝑅 ≤ 1

  (37) 

 

 
Fig. 5. Offline optimization model diagram 

 
where: Because the two objective functions are 

not of the same order of magnitude, the scale factor 
𝑘𝑘1, 𝑘𝑘2  and 𝑠𝑠1, 𝑠𝑠2  are introduced. The objective 
function 𝑓𝑓𝑇𝑇  is the time required for a single rolling 
optimization. 𝑓𝑓𝐸𝐸  is the tracking error of the whole 
process. The constraint dictates that the computation 
time for a single scroll must not surpass the sampling 
time. Since q in the weight matrix generally takes a 
large value, changes in a small range will have a great 
impact.  

The unspecified parameters within the adaptive 
prediction layer function necessitate offline optimiz -
ation. The traditional particle swarm optimization 
algorithm has the disadvantage of easy to fall into local 
optimum.(Shami et al., 2022), In this paper, the 
improved particle swarm optimization algorithm is 
adopted, so that the inertia weight can be adaptively 
changed with the iteration of the algorithm.  
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⎩
⎪
⎨

⎪
⎧𝑉𝑉𝑖𝑖

(𝑡𝑡+1) = 𝜔𝜔𝑓𝑓
(𝑡𝑡)𝑉𝑉𝑖𝑖

(𝑡𝑡) + 𝑐𝑐1𝑚𝑚1�𝑃𝑃besti
(𝑡𝑡) − 𝑋𝑋𝑖𝑖

(𝑡𝑡)� + 𝑐𝑐2𝑚𝑚2�𝐺𝐺best
(𝑡𝑡) −𝑋𝑋𝑖𝑖

(𝑡𝑡)�

𝑋𝑋𝑖𝑖
(𝑡𝑡+1) = 𝑋𝑋𝑖𝑖

(𝑡𝑡) + 𝑉𝑉𝑖𝑖
(𝑡𝑡+1)

𝜔𝜔𝑓𝑓
(𝑡𝑡) = 𝜔𝜔min + (𝜔𝜔max − 𝜔𝜔min)

𝑓𝑓𝑖𝑖
(𝑡𝑡)−𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚

𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎−𝑓𝑓min

 (38) 

where 𝜔𝜔𝑓𝑓
(𝑡𝑡)  is the adaptive inertia weight; 

𝜔𝜔𝑓𝑓
(𝑡𝑡) ∈ (𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚 ,𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚) ; 𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎  is the average value of 

fitness; 𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎 ∈ (𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚) . 
The fitness of the particle is calculated by the 

integral value of the tracking error between the body 
position and the sideslip angle of the center of mass. 
As shown in Formula 14. 

𝑓𝑓𝑖𝑖
(𝜄𝜄) = 𝜔𝜔𝑃𝑃𝑃𝑃SUM

(𝜄𝜄) + 𝜔𝜔𝛽𝛽𝛽𝛽SUM
(𝜄𝜄)       (39) 

In the formula: 𝑓𝑓𝑖𝑖
(𝑡𝑡) is the fitness of the particle 

𝑃𝑃SUM
(𝜄𝜄)  and 𝛽𝛽SUM

(𝜄𝜄)  are used as evaluation indexes to judge 
the driving stability of vehicles. They represent the 
integral value of the lateral position error and the 
integral value of the sideslip angle error of the vehicle 
tracking the whole process respectively; 𝜔𝜔𝑝𝑝 𝑎𝑎𝑎𝑎𝑎𝑎 𝜔𝜔𝛽𝛽 
are the weights of the two evaluation indexes of 
vehicle tracking accuracy and stability, respectively, 
which vary according to different working conditions. 
When the vehicle speed is low, the adaptive function 
is more focused on the tracking accuracy, and the 
stability of the vehicle is more focused when the 
vehicle speed is high.  

In a prediction time domain, the model is 
predicted by continuous iteration. predicts the state 
space equation a for the next b moments, and the 
resulting output equation is shown in Formula 15. 

𝑌𝑌(𝑘𝑘) = 𝛹𝛹𝛹𝛹(𝑘𝑘 ∣ 𝑡𝑡) + ΘΔ𝑈𝑈(𝑘𝑘) + 𝛤𝛤𝛤𝛤(𝑘𝑘)   (40) 

Θ =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ D�𝐾𝐾𝐵𝐵�𝐾𝐾 0 0 0

D�𝐾𝐾A�𝐾𝐾𝐵𝐵�𝐾𝐾 D�𝐾𝐾𝐵𝐵�𝐾𝐾 0 0
⋯ ⋯ ⋱ ⋯

D�𝐾𝐾𝐴̃𝐴𝐾𝐾
𝑁𝑁𝑐𝑐−1𝐵𝐵�𝐾𝐾 D�𝐾𝐾𝐴̃𝐴𝐾𝐾

𝑁𝑁𝑐𝑐−2𝐵𝐵�𝐾𝐾 ⋯ D�𝐾𝐾𝐵𝐵�𝐾𝐾
D�𝐾𝐾𝐴̃𝐴𝐾𝐾

𝑁𝑁𝑐𝑐𝐵𝐵�𝐾𝐾 D�𝐾𝐾𝐴̃𝐴𝐾𝐾
𝑁𝑁𝑐𝑐−1𝐵𝐵�𝐾𝐾 ⋯ D�𝐾𝐾A�𝐾𝐾𝐵𝐵�𝐾𝐾

⋮ ⋮ ⋱ ⋮
D�𝐾𝐾𝐴̃𝐴𝐾𝐾

𝑁𝑁𝑝𝑝−1𝐵𝐵�𝐾𝐾 D�𝐾𝐾𝐴̃𝐴𝐾𝐾
𝑁𝑁𝑝𝑝−2𝐵𝐵�𝐾𝐾 ⋯ D�𝐾𝐾𝐴̃𝐴𝐾𝐾

𝑁𝑁𝑝𝑝−𝑁𝑁𝑐𝑐−1𝐵𝐵�𝐾𝐾⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (41) 

Γ =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ D�𝐾𝐾𝐶̃𝐶𝐾𝐾 0 0 0

D�𝐾𝐾A�𝐾𝐾𝐶̃𝐶𝐾𝐾 D�𝐾𝐾𝐶̃𝐶𝐾𝐾 0 0
⋯ ⋯ ⋱ ⋯

D�𝐾𝐾𝐴̃𝐴𝐾𝐾
𝑁𝑁𝑐𝑐−1𝐶̃𝐶𝐾𝐾 D�𝐾𝐾𝐴̃𝐴𝐾𝐾

𝑁𝑁𝑐𝑐−2𝐶̃𝐶𝐾𝐾 ⋯ D�𝐾𝐾𝐶̃𝐶𝐾𝐾
D�𝐾𝐾𝐴̃𝐴𝐾𝐾

𝑁𝑁𝑐𝑐𝐶̃𝐶𝐾𝐾 D�𝐾𝐾𝐴̃𝐴𝐾𝐾
𝑁𝑁𝑐𝑐−1𝐶̃𝐶𝐾𝐾 ⋯ D�𝐾𝐾A�𝐾𝐾𝐶̃𝐶𝐾𝐾

⋮ ⋮ ⋱ ⋮
D�𝐾𝐾𝐴̃𝐴𝐾𝐾

𝑁𝑁𝑝𝑝−1𝐶̃𝐶𝐾𝐾 D�𝐾𝐾𝐴̃𝐴𝐾𝐾
𝑁𝑁𝑝𝑝−2𝐶̃𝐶𝐾𝐾 ⋯ D�𝐾𝐾𝐴̃𝐴𝐾𝐾

𝑁𝑁𝑝𝑝−𝑁𝑁𝑐𝑐−1𝐶̃𝐶𝐾𝐾⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (42) 

Combining the polytope model established by 
considering time-varying parameters and tire 
cornering stiffness and the proposed adaptive 
predictive weight function strategy, an adaptive model 
predictive control algorithm has been developed for 
uncertain systems. In order to make the high-speed 
self-driving car have higher tracking accuracy and can 
quickly realize the path tracking function. It is 
necessary to select the appropriate optimization 
objective, establish the objective function, and obtain 
the future optimal control increment sequence of the 
controlled system. Therefore, as shown in formula 16. 
Utilizing the multi-cell dynamics model, an optimized 
index for trajectory tracking dynamics is formulated 

and established. 
𝐽𝐽 �𝑋𝑋�(𝑘𝑘), 𝑢𝑢�(𝑡𝑡 − 1),𝛥𝛥𝑢𝑢�(𝑘𝑘),𝜆𝜆(𝑘𝑘)� = ∑ ∥ 𝑒𝑒𝑦𝑦(𝑘𝑘 + 𝑖𝑖) ∥𝑄𝑄𝑒𝑒𝑒𝑒

2𝑖𝑖=1
𝑁𝑁𝑝𝑝 + ∑ ∥ 𝑒𝑒𝜑𝜑(𝑘𝑘 + 𝑖𝑖) ∥𝑄𝑄𝑒𝑒𝑒𝑒

2𝑖𝑖=1
𝑁𝑁𝑝𝑝

                                            +∑ ∥ 𝑌𝑌(𝑘𝑘 + 𝑖𝑖 ∣ 𝑡𝑡) − 𝑌𝑌𝑟𝑟𝑟𝑟𝑟𝑟(𝑘𝑘 + 𝑖𝑖 ∣ 𝑡𝑡) ∥𝑄𝑄2𝑖𝑖=1
𝑁𝑁𝑝𝑝

                           +∑ ∥ 𝛥𝛥𝑢𝑢�(𝑘𝑘 + 𝑖𝑖) ∥𝑅𝑅2+ 𝜌𝜌𝜀𝜀2𝑖𝑖=1
𝑁𝑁𝑐𝑐

  

(43) 
where 𝑌𝑌  and  𝑌𝑌𝑟𝑟𝑟𝑟𝑟𝑟  are the output predictive 

value and reference value of the system. In order to 
meet the vehicle can achieve good tracking 
performance at high speed, 𝑒𝑒𝑦𝑦(𝑘𝑘 + 𝑖𝑖) and 𝑒𝑒𝜑𝜑(𝑘𝑘 + 𝑖𝑖) 
are added to the original objective function. They are 
lateral deviation and heading deviation at time k, 
respectively. The purpose of introducing two 
evaluation indexes is to reduce the deviation between 
the actual tracking trajectory and the reference 
trajectory of the automatic vehicle and improve the 
tracking accuracy of the vehicle. 𝑄𝑄𝑒𝑒𝑒𝑒  𝑎𝑎𝑎𝑎𝑎𝑎 𝑄𝑄𝑒𝑒𝑒𝑒   are 
the weight coefficients of position error; 𝑄𝑄 𝑎𝑎𝑎𝑎𝑎𝑎 𝑅𝑅 are 
improved weight matrices; 𝜀𝜀 is the relaxation factor. 

Through the reformulation of the objective 
function into a standard quadratic form, it is necessary 
to consider not only the constraints of vehicle adhesion 
conditions, but also the hard constraints of centroid 
sideslip angle constraints and tire sideslip angle 
constraints to ensure vehicle stability. (Kanghyun Nam 
et al., 2012)。In the adaptive adjustment of the weight 
coefficient, the model should also be adaptively 
changed at each sampling time, so a dynamic model 
needs to be established, as shown in Equation 17 below. 
To achieve a balance between the efficiency and 
stability of the quadratic programming problem in 
each iteration period.  

𝑚𝑚𝑚𝑚𝑚𝑚   [𝛥𝛥𝛥𝛥(𝑡𝑡)𝑇𝑇 , 𝜀𝜀]𝑇𝑇𝐻𝐻𝑡𝑡[𝛥𝛥𝛥𝛥(𝑡𝑡)𝑇𝑇 , 𝜀𝜀]
+ 𝐺𝐺𝑡𝑡[𝛥𝛥𝛥𝛥(𝑡𝑡)𝑇𝑇 , 𝜀𝜀] 

s.t.      �
𝛥𝛥𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚
𝑦𝑦ℎ𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚

𝑦𝑦𝑠𝑠𝑠𝑠 𝑚𝑚𝑚𝑚𝑚𝑚 − 𝜀𝜀
� ≤ �

𝛥𝛥𝛥𝛥
𝑦𝑦ℎ𝑐𝑐
𝑦𝑦𝑠𝑠𝑠𝑠

� ≤ �
𝛥𝛥𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚
𝑦𝑦ℎ𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚

𝑦𝑦ℎ𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚 + 𝜀𝜀
� 

        𝐻𝐻𝑡𝑡 = �𝛩𝛩
𝑇𝑇𝑄𝑄𝑄𝑄 + 𝑅𝑅 0

0 𝜌𝜌� ,  𝐺𝐺𝑡𝑡
= [2𝑒𝑒𝑇𝑇𝑄𝑄𝑄𝑄 0] 

(44) 

where 𝛥𝛥𝛥𝛥  serves as the control increment 
constraint, while 𝑦𝑦ℎ𝑐𝑐  represents the hard output 
constraint. 𝑦𝑦𝑠𝑠𝑠𝑠 serves as the soft constraint for lateral 
acceleration, which can be adjusted by 𝜀𝜀, and e is the 
tracking error in the predicted time domain.  

When a vehicle is driving and suddenly 
experiences a large steering angle or encounters a 
slippery road surface, it can easily enter the nonlinear 
operating region of the tires, where the tire forces tend 
to saturate. If the saturated tire forces cannot meet the 
demands of the vehicle body, it can lead to skidding 
and other instability phenomena, which seriously 
affect driving safety. Therefore, to avoid the 
occurrence of such phenomena, it is necessary to 
impose constraints on the state parameters from a 
dynamics perspective, ensuring that the tires always 
operate within the linear region. 

The yaw dynamics model of high-speed 
autonomous vehicles takes into account the matching 
between the road adhesion coefficient and the tire 
forces, as well as the limitations of the vehicle's lateral 
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acceleration. The expression and constraint conditions 
for the vehicle's lateral acceleration are as follows: 

�
𝑎𝑎𝑦𝑦 = 𝑥̇𝑥𝜑̇𝜑 + 𝑦̈𝑦
𝑎𝑎𝑦𝑦 ≤ 𝜇𝜇𝜇𝜇              (45) 

In the expression for the vehicle's lateral 
acceleration，𝑎𝑎𝑦𝑦 accounts for approximately 85% 
of the maximum allowable lateral acceleration. 
Therefore, the constraints on the yaw rate 𝜑̇𝜑 and 
the vehicle's lateral slip angle 𝛽𝛽 can be expressed 
in the following form: 

|𝜑̇𝜑| ≤ 0.85 𝜇𝜇𝜇𝜇
𝑥̇𝑥

              (46) 

|𝛽𝛽| ≈ �𝑦̇𝑦
𝑥̇𝑥
� ≤ arctan (0.02𝜇𝜇𝜇𝜇)      (47) 

When a vehicle experiences a sideslip, its lateral 
stability is affected, which typically leads to rear-
wheel skidding. Therefore, the maximum slip angle 
constraint applies to the rear wheels. The constraint 
equation for the maximum yaw angle of the rear 
wheels can be expressed as an inequality involving the 
vehicle's lateral velocity and yaw rate: 

�𝑦̇𝑦−b𝜑̇𝜑
𝑥̇𝑥
� ≤ 𝛼𝛼𝑠𝑠𝑠𝑠𝑡𝑡𝑟𝑟𝑟𝑟,𝑟𝑟𝑟𝑟            (48) 

where 𝛼𝛼𝑠𝑠𝑠𝑠𝑡𝑡𝑟𝑟𝑟𝑟,𝑟𝑟𝑟𝑟  represents the tire slip angle 
when the lateral force of the rear wheels reaches 
saturation. 

The vehicle's yaw rate can be constrained as 
follows: 

𝜑̇𝜑𝑚𝑚𝑚𝑚𝑚𝑚 =
𝐶𝐶𝛼𝛼𝛼𝛼𝛼𝛼𝑠𝑠𝑠𝑠𝑡𝑡𝑟𝑟𝑟𝑟,𝑟𝑟𝑟𝑟�1+

𝑏𝑏
a�

𝑚𝑚𝑥̇𝑥
         (49) 

To ensure stability, we introduce terminal 
constraints: 

𝜉𝜉(𝑘𝑘 + 𝑁𝑁|𝑘𝑘) = 0            (50) 
The optimal value of the objective function in 

each period is used as the Lyapunov function: 
𝑉𝑉0(𝐾𝐾) = 𝑚𝑚𝑚𝑚𝑚𝑚

𝑢𝑢
 ∑  𝑁𝑁
𝑖𝑖=1 ℓ(𝜉𝜉(𝑘𝑘 + 𝑖𝑖),𝑢𝑢(𝑘𝑘 + 𝑖𝑖)) (51) 

where: ℓ(𝜉𝜉,𝑢𝑢) ≥ 0，ℓ(𝜉𝜉,𝑢𝑢) = 0 if and only if 
𝜉𝜉 = 0，𝑢𝑢 = 0。 

Assuming the model is unbiased and noise 
interference is not considered, the following is derived 
through calculation and derivation: 

𝑉𝑉0(𝐾𝐾 + 1) ≤ −ℓ(𝜉𝜉(𝑘𝑘 + 1),𝑢𝑢0(𝑘𝑘)) + 𝑉𝑉0(𝑘𝑘) +
𝑚𝑚𝑚𝑚𝑚𝑚
𝑢𝑢
 {ℓ(𝜉𝜉(𝑘𝑘 + 1 + 𝑁𝑁),𝑢𝑢(𝑘𝑘 + 𝑁𝑁))}     (52) 

Due to the presence of terminal constraints, it can 
be ensured that: 

𝑚𝑚𝑚𝑚𝑚𝑚
𝑢𝑢
 {ℓ(𝑥𝑥(𝑘𝑘 + 1 + 𝑁𝑁),𝑢𝑢(𝑘𝑘 + 𝑁𝑁))} = 0   (53) 

Since ℓ(𝜉𝜉(𝑘𝑘 + 1),𝑢𝑢(𝑘𝑘)) ≥ 0 ,it follows that  
𝑉𝑉0(𝑘𝑘 + 1) ≤ 𝑉𝑉0(𝑘𝑘)，ensuring the stability of the 
closed-loop system. 

 
RESULTS AND ANALYSIS 

 
To validate the proposed algorithm, the 

hardware-in-the-loop (HIL) test platform illustrated in 
Figure 6 is employed. A HIL setting includes a real 
controller and a virtual controlled object, which 
ensures the real-time performance of the simulation 
process. The specific implementation is to build the 

road model and algorithm model through CarSim and 
MARLAB / Simulink, and then import them into the 
PXI platform to run.  

 
Fig. 6. Hardware-in-the-loop 

 
A test scenario with DLC centerline tracking 

problem is selected from CarSim, and the trajectory 
tracking performance and system stability of the 
proposed adaptive algorithm car at high speed are 
analyzed. The test speed is 90 km / h. The test vehicle 
model used by is selected from carsim, and the main 
parameters of the vehicle are shown in the following 
Table 2.  

Tab. 2. The main parameters of the experiment 
Parameter
（Unit） Value Parameter

（Unit） Value 

𝑚𝑚(𝑘𝑘𝑘𝑘)
 

1723 𝐼𝐼𝑥𝑥(𝑘𝑘𝑘𝑘 ⋅ 𝑚𝑚2)
 

606.1 
𝑙𝑙𝑓𝑓(𝑚𝑚)

 
1.232 𝐶𝐶𝛼𝛼𝛼𝛼/(𝑁𝑁

⋅ 𝑟𝑟𝑟𝑟𝑑𝑑−1)
 

-66900 

𝑙𝑙𝑟𝑟(𝑚𝑚)
 

1.468 𝐶𝐶𝛼𝛼𝛼𝛼/(𝑁𝑁
⋅ 𝑟𝑟𝑟𝑟𝑑𝑑−1)

 

-62700 

𝐼𝐼𝐼𝐼
 

4175 𝑔𝑔/(𝑚𝑚 ⋅ 𝑠𝑠−2)
 

9.8 
T 
𝑁𝑁𝑝𝑝 

0.05 
12 

𝜀𝜀 
𝑁𝑁𝑐𝑐 

1000 
5 

 
The framework design and parameter setting of 

PSO have an important influence on the solution 
process of particle swarm optimization. In this paper, 
the parameter settings of PSO algorithm are shown in 
Table 3.  

Tab. 3. PSO Algorithm Parameter 
parameter Description Value 

T Maximum number of 
lterations 300 

N Number of initial population 100 
C1 Individual learning factors 0.9 
C2 Group learning factor 0.9 
W Inertia weight 0.7 
 
The optimal solution obtained after iteration by 

the PSO algorithm is used for the design of the control 
and the resulting values of the coefficients to be 
determined are shown in Table 4 

Tab. 4 Optimization coefficient results 
Parameter Value 

υ1 0.53
 

④

⑤

①

②
③

① Steering-by-wire ②Throttle-by-wire ③Electro-Hydraulic Brake ④slave computer ⑤master computer
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υ2 0.42 
υ3 0.005 
υ4 0.005 
υ5 0.23 
b 0.39 

 
HIL simulation was conducted to compare 

AMPC with UM-AMPC. The AMPC algorithm 
utilizes a three-degree-of-freedom model and employs 
fuzzy rules for adaptive control. In contrast to the 
AMPC algorithm, the UM-AMPC algorithm 
incorporates the control strategy proposed in this paper, 
which not only adaptively adjusts parameters based on 
driving conditions but also accounts for disturbances 
caused by some dynamic uncertain parameters.  

The reference trajectory is as follows: 
𝑌𝑌ref(𝑝𝑝) =

𝑑𝑑𝑦𝑦1
2
�1 + tanh�

shape
𝑑𝑑𝑥𝑥1

�𝑋𝑋predict(𝑝𝑝)− 𝑋𝑋𝑠𝑠1� −
shape

2
��

𝑑𝑑𝑦𝑦2
2
�1 + tanh �

shape
𝑑𝑑𝑥𝑥2

�𝑋𝑋predict(𝑝𝑝)− 𝑋𝑋𝑠𝑠2� −
shape

2
��

 

𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎 = 2.4
𝑑𝑑𝑥𝑥1 = 25

𝑑𝑑𝑥𝑥2 = 21.95
𝑑𝑑𝑦𝑦1 = 4.05
𝑑𝑑𝑦𝑦2 = 5.7
𝑋𝑋𝑠𝑠1 = 27.19
𝑋𝑋𝑠𝑠2 = 56.46

 

(54) 

DLC tests were performed under the same 
conditions for both methods, and the trajectory 
tracking performance and driving stability were 
analyzed. The simulation results are as follows: 

 
Trajectory Tracking Performance Analysis 

 
Fig. 7. Lateral analysis of the vehicle 

 
It is particularly important to verify whether the 

improvement of a tracking algorithm has a good effect 
and whether the tracking accuracy is improved. This 
chapter first analyzes the trajectory tracking 
performance of autonomous vehicles through the 
lateral position and lateral tracking error of the vehicle 
simulated by the HIL platform, as shown in Figure 7. 
In contrast to the AMPC algorithm, the adaptive UM-
MPC algorithm yields enhanced tracking efficacy in 2 
~ 8 seconds, especially in the peak error of about 6 
seconds, the accuracy is improved most obviously. 
This is because the UM-MPC can focus the attention 
of the algorithm by changing its own parameters when 
the road curvature changes sharply and the vehicle 
travels faster. Through calculation and analysis, the 
average tracking error is reduced by 46.11 %. 
Compared with the graph in the third chapter, it is 

obvious that the weight matrix with good effect can be 
obtained by off-line optimization regardless of the 
distance from the moment, which also verifies the 
correctness of the change rule of the weight matrix 
with the prediction time domain. 

 
Vehicle Stability Analysis 

Based on the analysis of tracking accuracy, the 
tracking stability of the vehicle during driving is 
analyzed from four aspects: target angle, yaw angle 
error, yaw rate and sideslip angle error. Four indicators 
are simulated by the HIL as shown in Figure 8. It can 
be seen from the target angle of the controller output 
that the target angle fluctuation of the UM-MPC 
algorithm is relatively gentle, and it converges to a 
stable state before the AMPC algorithm. In terms of 
yaw angle, yaw rate and sideslip angle, the UM-MPC 
algorithm can greatly reduce the average error and 
keep the vehicle in a stable state. In addition, on the 
sideslip angle index, the adaptive UM-MPC algorithm 
shows the best performance, and the stability 
improvement is particularly obvious. 

 
Fig. 8 Analysis of automotive stability indicators 

 
 

CONCLUSIONS 
 
This paper investigates the model predictive 

method for adaptive trajectory tracking considering 
time-varying parameter uncertainty models by 
analyzing the patterns of temporal domain and 
weight variations. To enhance the tracking accuracy, 
robust stability, and computational efficiency 
during the rolling optimization process, an UM-
AMPC algorithm addressing system uncertainties is 
proposed. Based on the variation patterns of the 
weight matrix, experiments were conducted to 
explore the relationship between the changes in the 
weight matrix and the tracking performance of 
autonomous vehicles. Furthermore, to reduce 
interference from external environments, a 
polytopic model was established. Subsequently, an 
adaptive weight level prediction function was 
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designed based on the vehicle's longitudinal speed, 
road curvature, the variation pattern of weights, and 
the slip ratio. An improved particle swarm 
optimization algorithm was then employed to 
calculate the target parameter coefficients. To 
accommodate the adaptive changes of the model at 
each sampling moment, a dynamic quadratic 
programming solver was designed. Finally, through 
semi-physical simulation, it was verified that the 
UM-MPC algorithm reduced the average yaw rate 
error by 59.68% and the average tracking error by 
46.11% compared to the MPC algorithm. The test 
results indicate that this method can accurately 
suppress the adverse effects brought by uncertain 
parameters and predict the target angle signal based 
on the current working state. This control algorithm 
provides a safety guarantee for autono- mous 
driving systems, offering improvements in stability, 
accuracy, and computational efficiency over 
traditional model predictive control. 

Future Outlook: To further verify the feasibility 
of the algorithm, road vehicle tests will also be 
conducted. In addition, as this study did not consider 
the impact of road gradient changes, future research 
will also need to strengthen the study of the roll state 
of autonomous vehicles. The algorithm will be 
designed and optimized at a deeper level to further 
improve vehicle stability and tracking accuracy. 
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