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ABSTRACT 

 
This study proposes an effective method to 

robust optimize the vehicle suspension parameters. To 
implement this method, firstly, a multi-body dynamics 
model of the suspended monorail vehicle was 
constructed as a simulation model to obtain the vehicle 
running stability index. Then, the multi-combination 
suspension parameters obtained by the orthogonal 
experimental design method are brought into the 
simulation model to obtain the training samples of the 
surrogate model, and the Kriging surrogate model on 
the vehicle running stability is constructed. Finally, the 
Taguchi method is used to find the optimal 
combination of suspension parameters based on the 
Kriging surrogate model, and the running stability 
index values of the suspension parameters 
corresponding to the initial and optimal combinations 
is compared. The results show that the robust 
optimization method proposed in this paper improves 
the lateral and vertical running stability of suspended 
monorail vehicle by 10.08% and 9.18%, respectively. 
 

INTRODUCTION 
The suspended monorail system is an 

environmentally friendly transit system, which 
originated from Wuppertal and further developed in 
system is moving at the track beams, and the track 
beams are erected by the upright column in the air. The 
design of this special system has a separate right of 
way, which can alleviate the traffic congestion and 

 
 
 
 

typical characteristic of this system is that the car 
Japan (Kehler, 1976; Giesen and Mueller, 1983). The 
body is located under the bogie system, the bogie 

reduces frequent traffic accidents (Li et al., 2015; Bao 
et al., 2016). Furthermore, it has the advantages of 
high adaptability, safety and the environmental 
protection, can be as a supplement to the public 
transportation in large cities. Due to these various 
advantages, the suspension monorail system is 
developing in China and other countries, and the first 
suspension monorail traffic line using lithium battery 
as power has been built in China (Yunta et al., 2016). 

As a special urban transit system, the suspension 
monorail vehicle can be driven in the short radius 
curve and provide more spatial adaptability for the 
public transportation system in the small and medium-
sized cities. However, due to the special structure of 
vehicles and the characteristics of traffic routes, the 
dynamic performance of the suspension monorail 
vehicle is very susceptible to the impact of uncertainty 
factors under complex operating conditions (e.g. the 
mixed operating conditions of straight track and 
curved track). These uncertainty factors (for example, 
but not limited to, the vehicle speed and the force of 
crosswind) cause irregular vibration of the vehicle, 
leading to degradation of dynamic performance like 
running stability (Sim et al., 2014). Therefore, it is 
necessary to fully consider the uncertainty factors that 
cause the performance change in the optimization of 
the suspension monorail vehicle. 

The uncertainty-based optimization theory was 
first proposed by Dantzig in 1955 (Dantzig, 1955). The 
effective implementation of this theory is based on an 
optimization model containing uncertainty factors, and 
the uncertainty input on the output response is 
considered comprehensively. Among them, the robust 
design optimization method is widely accepted as a 
promising uncertainty-based optimization method, 
which can not only obtain a robust output response, but 
also maintain the insensitivity to uncertainty input 
when subjected to variations (Chen et al., 1996 1997). 
At present, the approach about robust design 
optimization method of suspended monorail vehicle is 
few, and most research literature applies the 
simulation-based design methods (Meisinger, 2009; Li 
et al. 2015; Gutarevych, 2015).  
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However, the simulation-based design methods 
have some shortcomings when it comes to practical 
engineering complex systems, such as high time 
consuming, limited accuracy and low efficiency, etc.  

Given this background, a robust optimization 
strategy was proposed for suspension parameters of 
suspended monorail vehicle to improve the running 
stability of vehicle under multiple operating 
conditions. In this strategy, the combination of Kriging 
surrogate model and Taguchi method realizes the 
robust optimization for the suspension parameters of 
suspension monorail vehicle and obtains the robust 
running stability index under the impact of uncertainty 
factors. The paper is organized as follows. The multi-
body dynamics model of suspended monorail vehicle 
is constructed in Section 2. The Kriging surrogate 
model for running stability of suspended monorail 
vehicle is established and the fitting deviation of the 
model is tested in Section 3. The results of Taguchi 
robust optimization based on the Kriging surrogate 
model and related discussion are shown in Section 4. 
Finally, the conclusions and future work are presented 
in Section 5. 
 
MULTIBODY DYNAMICS MODEL OF 
SUSPENDED MONORAIL VEHICLE 

 
Construction of suspended monorail vehicle model 

In order to construct the multi-body dynamics 
model of the suspended monorail vehicle, a certain 
type of suspended monorail vehicle is used as the 
model basis for the multi-body dynamics model. Fig.1 
is the schematic diagram of a certain type of suspended 
monorail vehicle.  

 
 
Fig. 1.  The schematic diagram of suspended 

monorail vehicle. 
 

Considering the complexity of the suspension 
monorail system, this paper makes the following 
simplification and substitution for its research: (1) The 
schematic diagram of suspension monorail vehicle, as 
illustrated in Fig. 1, was abstracted into a topological 
structure composed of several rigid bodies, joints, and 
force elements. (2) The connections between each two 
rigid bodies were simulated with equivalent force 
elements or constraints. The topological structure for 
multi-body dynamics model of suspended monorail 

vehicle was constructed as indicated in Fig. 2. 

 
 

Fig. 2.  The topological structure of suspended 
monorail vehicle. 

 
Based on the topological structure displayed in 

Fig. 2, the multi-body dynamics model of suspended 
monorail vehicle was built using the Adams software. 
Considering the characteristics of the rubber type of 
the suspended monorail vehicle, the research method 
of the power spectral density of A-level stochastic road 
roughness is used to model and analyze the track beam 
roughness of the suspended monorail system, and the 
A-level stochastic road surface simulation diagram is 
shown in Fig. 3 (GB 7031, 1986). The multi-body 
dynamics model of suspended monorail vehicle is 
shown in Fig. 4. The accuracy of the model of 
suspended monorail vehicle was verified in the 
author's master thesis (Liu, 2017). 

 

 
 
Fig. 3.  A-level stochastic road surface simulation 

diagram. 
 

 
Fig. 4.  The multi-body dynamics model of 

suspended monorail vehicle. 
Running stability simulation-based on multi-body 
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dynamics model 
 
Vehicle running stability affects both vehicle 

running quality and passenger riding comfort. The 
Sperling Index is used worldwide as an index of 
vehicle running stability (Wang, 1994). The evaluate 
an expression of running stability as follows: 

3

100.896 ( )aW F f
f

= ⋅ .         (1) 

where ƒ (Hz) is the vibration frequency of the 
vehicle body, F(ƒ) is the modifying coefficient of the 
vibration frequency, and ɑ (cm/s2) is the acceleration 
of the car body, wherein, The mounting position of 
acceleration measuring device is shown in the red dot 
(☆) in Fig. 1, which below the vertical center of the 
bogie frame, and 1000mm from the longitudinal 
symmetrical surface of the vehicle body 
 

CONSTRUCTION OF SURROGATE 
MODEL ON THE VEHICLE RUNNING 

STABILITY 
 
Basic Form of the Kriging method 

 
The Kriging method is also known as the spatial 

interpolation method, which is based on the theoretical 
and structural analysis of the variation function and a 
method for the optimal unbiased estimation of regional 
change in the finite region (Krige, 2015; Oliveira et al., 
2013; Yang, 2016). A typical Kriging surrogate model 
algorithm form as shown in Eq. (2): 

( ) ( ) ( )y X f X Z X= + ,          (2) 
where y(X) is the Kriging surrogate model, f(X) 

is the constant term of the global estimate design space. 
Z(X) is the results of the random process, which 
determines the local deviation. The variance is 2

Zσ
and the covariance is: 

2cov[ ( ), ( )] [ ( , , )]i j Z ij i jZ x Z x R x xσ θ= ,    (3) 
where xi and xj denotes two points of training 

samples, [ ( , , )]ij i jR x xθ  is the correlation function with 
θ , which is used to describe the relationship between 
xi and xj. As the relationship between any two sample 
points is related to their distance, the correlation 
function can be written as below: 

1

( , , ) ( , ),   
n

k k
i j k k k k i j

k

R x x R d d x xθ θ
=

= = −∏ ,    (4) 

where n is the number of design variables and k
ix  

and k
jx  are the corresponding k-th components of xi 

and xj in the training sample.  
The Gaussian function used in engineering 

applications is the correlation function ( , )k k kR dθ , 
whose mathematical expression as follows: 

2( , ) exp( )k k k k kR d dθ θ= − ,           (5) 

When the correlation function ( , )k k kR dθ is 

determined. Then, we have 
1( ) ( ) ( ) ( )T Ty x f x r x R y Fβ β

∧ ∧ ∧
−= + − ,         (6) 

where f(x) = [f1(x), f2(x), …, fk(x)]T, y = [y1, y2, …, 
ym]T,  rT(x) = [R(x, x1), R(x, x2), …, R(x, xm)], 
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According to the above equations, we can derive:  

2

0
max

1 ln( ) ln( )
2k

ZMLE n R
θ

σ
>

  = − +   
,      (7) 

where the variance estimate  can be calculated 
by Eq.(8) : 

2 11 ( ) ( )T
Z y F R y F

m
σ β β

∧ ∧
−= − − .       (8) 

 
The training samples and experimental design 

 
Multiple groups of test sample points need to be 

built using the experimental design method in the 
process of modeling the Kriging surrogate model. The 
orthogonal experiment design method which has the 
advantages of less testing time and even distribution of 
data can be used to solve the parameter problem of multi-
factor and multi-level. Therefore, the orthogonal 
experiment design method is used to get the sample 
points of the Kriging surrogate model and to carry out 
the experimental design. In this study, the vertical 
stiffness of the primary suspension, Kz

p, the vertical 
damping, Cz

s
, the lateral damping of the secondary 

suspension, Cy
s and the damping of the lateral damper, 

CL
s, are selected as the suspension parameters for 

robustness analysis, and the vehicle speed V, the 
passenger capacity Q and the crosswind speed v are 
selected as uncertainty factors. Four levels were 
selected for each of the suspension parameters Kz

p, Cz
s
, 

Cy
s and CL

s: level 2, which represents the initial values 
of initial parameters, and the level 1, level 3 and level 
4 respectively represent a variation of the initial value, 
and the stiffness changes by 25%, the damping 
changes by 20%. On the other hand, take four levels 
for a passenger capacity Q of no load, 1/3 load, 1/2 
load and full load. Similarly, according to the designed 
speed (60 km/h) of the suspension monorail vehicle, 
the vehicle speed V was set to four levels, and the 
range is 30 to 60 km/h. The crosswind speed v was set 
to four levels, the range of 0 to 30 m/s. The design 
variables and their level are shown in Table 1. 

According to the numbers and levels of the 
design parameters, an orthogonal form of L32(47) was 
constructed. The dynamic simulation of 32 sets of 
parameters was carried out by the dynamic simulation 
model, and the running stability index of each 
parameter combination was obtained, which are 
shown in Table 2. 

Table 1. Design parameters and their level values. 
Parameters Units Level 1 Level 2 Level 3 Level 4 

Kz
p kN/m 750 1000 1250 1500 
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Cz
s kN·s/m 80 100 120 140 

Cy kN·s/m 24 30 36 42 
CL

s kN·s/m 28 35 42 49 

V km/h 30 40 50 60 

Q kg No 
load 1/3 load 1/2 load Full load 

v m/s 0 10 20 30 

Table 2. The training sample of the Kriging model on 
running stability 

Test 
number Kz

p Cz
s Cy

s CL
s V Q v Wy Wz 

T1 1 1 1 1 1 1 1 2.237  2.371  

T2 1 2 2 2 2 2 2 2.294  2.126  

T3 1 3 3 3 3 3 3 2.242  2.061  
T4 1 4 4 4 4 4 4 2.142  1.921  

T5 1 1 1 2 2 3 3 2.173  2.084  
T6 1 2 2 1 1 4 4 2.415  2.335  
T7 1 3 3 4 4 1 1 2.016  2.059  

… … … … … … … … … … 
T30 4 2 4 3 1 3 1 2.544  2.414  

T31 4 3 1 2 4 2 4 2.008  2.037  
T32 4 4 2 1 3 1 3 2.057  2.246  

 
The Kriging surrogate model on running stability 

The regression coefficients β
∧  of Kriging 

surrogate model for the running stability index were 
calculated using the least squares method (Zeng et al., 
2015), which can be expressed as follows: 
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The unbiased variance estimation of the Kriging 
surrogate model can be described as Eq. (7). 

The following optimal problems can be solved 
by using maximum likelihood estimation, and the 
relevant parameters of the running stability index 
could be calculated by as follows: 

[ ]
[ ]
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=
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 ,(10) 

When the correlation parameters kθ  is 
determined, the relevance vector Tr for any point x 
could be calculated. Then the Kriging surrogate model 
can be established based on Eq. (2). 

 
Fitting deviation test 

To test the deviation of Kriging model, the 
coefficient of determination (R2) and the root mean 
square error (RMSE) are adopted (Cheng et al., 2015). 
R2 and RMSE can be expressed as in Esq. (11) and (12). 
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where yi is the output value of i-th sample point 

calculated by the dynamic simulation model, y
−  is the 

average output value of the sample points, iŷ is the 
response value of the Kriging model at the i-th sample 
point. m is the number of sample points. Values of R2 
closer to 1 and RMSE closer to 0, indicate that the 
fitting degree of the Kriging model is better and that 
the precision is higher. According to the Eqs. (11) and 
(12), the fitting deviation test results of the Kriging 
models of the running stability are calculated, as 
shown in Table 3. 

Table 3. Fitting deviation results of Kriging models. 

running stability index R2 RMSE 
vertical 0.9563 0.0591 
lateral 0.9823 0.0406 

 
As can be seen from Table 3, Values of R2 of the 

vehicle dynamic performance indices are all over 0.9, 
and RMSE is less than 0.2. The results show that the 
Kriging model has a sufficiently fitting accuracy and 
can be used as the basis model for the optimization of 
the suspension parameters of suspended monorail 
vehicle. 

 
ROBUST OPTIMIZATION OF 

SUSPENSION PARAMETERS BASED 
ON KRIGING MODEL 

 
Formulation of robust optimization strategy 

In this section, a robust optimization strategy 
was developed for the suspension parameters of 
suspended monorail vehicle. The mathematical 
calculation model of the robust optimization strategy 
is expressed as follows:  

1 2

1
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.(13) 

 
where W(x, z) is the objective function, 

ZW
∧ and 

yW
∧

 are the objective function based on the Kriging 
surrogate model, which represent the vertical running 
stability index and the lateral running stability index, 
respectively, where 1ω , 2ω  denotes the weight factor. xi 

denotes the i-th suspension parameter, ( )L
ix is the 

lower limit and ( )U
ix is the upper limit, where zj 
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denotes the j-th uncertainty design variable, ( )L
jz is the 

lower limit and the ( )U
jz is the upper limit. 

 
Evaluation method of design robustness 

In the Taguchi optimization method, the signal-
noise ratio η is used as an indicator of product 
robustness, indicating the degree to which the system 
responds to deviations from the desired response 
(Mohamed et al., 2015; Shin et al., 2011). A higher 
signal-noise ratio η means that the system has higher 
robustness. In this paper, the Taguchi optimization 
model was constructed based on Kriging surrogate 
model. This system response for the robust 
optimization model is the estimated response under the 
influence of control factors and noise factors, rather 
than the actual response. Therefore, according to the 
designer's requirements in the optimization model, 
three signal-noise ratio η adapted from Taguchi robust 
design quality-loss characteristics were defined as 
follows: 

(1) Smaller-the-better. 
2

10
1

110 g ( )
n

i
i

lo y
n

η
∧

=

= − ⋅ ∑ ,           (14) 

(2) Larger-the-better. 
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(3) Nominal-the-best. 
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110 g ( ( ) )
n

i
i
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n

η
∧

=

= − ⋅ −∑ ,      (16) 

where is the response value of the Kriging 
surrogate model at the i-th sample point and n is the 
number of sample points. 

 
Results and discussion 

 
Experimental design and optimization results 

For the robust optimization of suspension 
parameters based on the Kriging surrogate model, a 
cross-array design with an internal array and external 
array were applied. Here, the internal array included 
four four-level control factors: Kz

p, Cz
s, Cy

s, CL
s. The 

internal array included three four-level noise factors: 
V, Q, v. Then, a typical Taguchi robust orthogonal test 
consisting of an inner array of L16(44) for control 
factors and an outer array of L16(34) for noise factors 
was constructed, and a total of 16*16=256 simulations 
were carried out. Values of running stability index, W, 
mean value μ and the signal-noise ratio η of each group 
were calculated through the Kriging surrogate models 
of running stability. The Taguchi robust calculation 
results are shown in Table.4 and the trend of mean 
value μ and the signal-noise ratio η of 16 tests is shown 
in Fig. 5. 
 

Table 4. The robust results of suspension parameters 

Test 
number 

Suspension 

parameters 

Signal-noise 

ratio 

Mean 

value 

Kz
p Cz

s Cy
s CL

s ηy ηz μy μz 

T1 1 1 1 1 -
7.178  

-
6.728  2.279  2.165  

T2 1 2 2 2 -
6.769  

-
6.618  2.175  2.138  

T3 1 3 3 3 -
7.113  

-
6.740  2.262  2.168  

T4 1 4 4 4 -
7.218  

-
6.842  2.292  2.193  

T5 2 1 2 3 -
6.852  

-
6.530  2.195  2.116  

T6 2 2 1 4 -
6.894  

-
6.653  2.207  2.146  

T7 2 3 4 1 -
6.996  

-
6.793  2.235  2.181  

T8 2 4 3 2 -
7.057  

-
6.891  2.249  2.206  

T9 3 2 4 3 -
7.089  

-
6.582  2.256  2.128  

T10 3 3 1 2 -
6.704  

-
6.823  2.160  2.189  

T11 3 1 3 4 -
6.492  

-
6.487  2.111  2.105  

T12 3 4 2 1 -
6.817  

-
6.928  2.190  2.215  

T13 4 1 4 2 -
7.027  

-
6.628  2.242  2.140  

T14 4 2 3 1 -
6.844  

-
6.773  2.196  2.176  

T15 4 3 2 4 -
7.086  

-
6.903  2.255  2.209  

T16 4 4 1 3 -
6.902  

-
6.997  2.209  2.233  

 

 
 

Fig. 5.  Trend of mean value and signal-noise ratio. 
 

It can be seen from Fig. 5 that the signal-noise 
ratio η of test T11 is the highest among the 16 tests. 
The robustness of suspension parameter combination 
T11 is the best according to the principle that the 
greater the signal-noise ratio η, the more robustness 
the output. And the mean value μ of running stability 
index is the smallest among the 16 tests, which means 
the suspended monorail vehicle running stability 
under T11 is optimal. A comparison of running 
stability for initial and optimized suspension 
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parameters is shown in Table5. 
Analysis of Table 5 reveals that the lateral 

running stability index is improved by 10.08% from 
2.212 to 1.989, and the vertical running stability index 
is improved by 9.18% from 2.461 to 2.235. The results 
show that the proposed robust optimization method 
has significantly improved the vehicle running 
stability. 

Table 5. Mean value of W and suspension parameters 
of initial and optimized versions 

Items Kz
p Cz

s Cy
s CL

s 
Mean value  

of W 

Wy Wz kN/m kN·s/m kN·s/m kN·s/m 
Non-optimized 1000 100 30 35 2.212 2.461 

Optimized 1250 80 36 49 1.989 2.235 
Percentage (%) 25 20 20 40 10.08 9.18 

 
Justification for the selected uncertainty parameters 

In this section, control variable method was used 
to analyze the influence of uncertainty factors on the 
running stability of the vehicle. The analysis results of 
vehicle running stability are obtained, as shown in Fig. 
6 and Fig. 7. 

From the results shown in Figs. 6 and 7, an 
interesting result is that when the passenger capacity 
of vehicle is less than 1/2 load, the decline trend of 
running stability index of vehicle is slower than before 
1/3 load, yet the decline trend is faster than before 
when exceeded 1/2 load. This could be explained as 
follows: The uncertainty factors have a great influence 
on the running stability of the vehicle before the 

passenger capacity Q reaches 1/3 load, However, with 
the increase of vehicle load, a huge centrifugal force is 
generated, which increases the swing of the car body 
and affects the running stability of the vehicle, yet 
once the passenger capacity Q exceeded 1/2 load, the 
impact of uncertainty factors becomes smaller, the 
running stability index of vehicle will be rapidly 
reduced. From the running stability index in Figs. 6 
and 7, it can be noted that the running stability index 
of the vehicle can meet the ride performance 
requirements under normal operating conditions. 

Contrary to the observations in Figs. 6 and 7, the 
increase of crosswind speed and the vehicle speed 
made the running stability index of the vehicle 
increase. That is, the running stability of the vehicle 
showed an unfavorable trend. The vehicle lateral 
running stability is more obvious than the vertical 
running stability, and when the vehicle speed exceeds 
55 km/h and the crosswind speed exceeds 20 m/s, the 
number of vehicle operations should be reduced and 
necessary measures must be taken to ensure safe 
operation. 

According to the analysis of the above 
simulation results, one can note that one can 
quantitatively study the impact of three uncertainty 
parameters on vehicle running stability, which also 
proves why they must be selected as design variables 
when the vehicle running stability is studied. 

 
Optimization results robustness verification 

To further prove the effectiveness of the robust 
optimization method, the simulation analysis of 
vehicle running stability is carried out by simulating

   
(a)                                          (b) 

 

   
(c)                                          (d) 

Fig. 6 The effect of passenger capacity and cross wind on the running stability of the vehicle under the condition 
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that the vehicle speed is kept constant. (a) 30 km/h, (b) 40 km/h, (c) 50 km/h, (d) 60 km/h. 

   
(a)                                          (b) 

   
(c)                                          (d) 

Fig. 7 The effect of passenger capacity and vehicle speed on the running stability under the condition that the 
cross wind speed is kept constant. (a) 0 m/s, (b) 10 m/s, (c) 20 m/s, (d) 30 m/s. 

 
condition of a full-loaded state, the vehicle speed is 50 
km/h and the speed of the crosswind is 10 m/s. The 
suspension parameters of the non-optimized and 
optimized versions were input into the multi-body 
dynamics model of running stability for this condition. 
The time-domain diagram of the acceleration vibration is 
shown in Fig. 8.  
 

 
(a) 

 
(b) 

Fig. 8 The time-domain diagram of the acceleration 
vibration. (a) lateral direction, (b) vertical 
direction 

It can be observed in Fig. 8 that the optimized 
acceleration vibration of the suspended monorail 
vehicle is lower than that the non-optimized ones, 
which validate the dynamic performance robustness of 
the vehicle can be significantly improved.  

 
 

CONCLUSIONS 
 
This study explored the robust optimization for 

the suspension parameters of suspension monorail 
vehicle used for improving the running stability of the 
vehicle. We established a Kriging surrogate model of 
suspension monorail vehicle running stability based 
on the training samples consisting of suspension 
parameters, the uncertainty factors and running 
stability indexes under different operating conditions. 
Subsequently, we employed the Taguchi robust design 
method to derive the best suspension parameter 
combination. The following concrete conclusions can 
be drawn: 

(1) The Taguchi method suggested the 
suspension parameter value to obtain the best level of 
suspension monorail vehicle running stability. They 
were the vertical stiffness of the primary suspension 
Kz

p (1250 kN/m), the vertical damping Cz
s
, (80 kN·s/m), 

the lateral damping of the secondary suspension Cy
s 

(36 kN·s/m), and the damping of the lateral damper, CL
s 

(35 kN·s/m). 
(2) The results of robust optimization prove the 

influence of uncertainty factors (i.e., the vehicle speed, 
the passenger capacity and the crosswind speed) on the 
running stability of suspension monorail vehicles, 

(3) Dynamic simulation of the non-optimized 
and optimized suspension parameters was carried out 
using the dynamic simulation model of running 
stability under different running conditions. After 



 
J. CSME Vol.40, No.5 (2019) 

-488- 
 

optimization, the lateral and vertical running stability 
of suspended monorail vehicles were improved by 
10.08% and 9.18% respectively. 

The above results show that the running stability 
of the suspension monorail vehicle can be improved 
effectively by the robust optimization of suspension 
parameters, even under various running conditions 
considering the uncertainty factors. These results are 
expected to be the basis for improving the running 
stability of suspension monorail vehicles or for 
developing a new type of suspension monorail vehicle 
model. Meanwhile, It is worth mentioning that in 
practical complex engineering field, the multi-
objective design or optimization problems is regarded 
as the future research direction, and the development 
of effective solution method is an important part of 
future work. 
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NOMENCLATURE 
 
Kz

p vertical stiffness of the primary suspension 
 
Cz

s  the vertical damping 
 
Cy

s lateral damping of the secondary suspension 
 
CL

s the damping of the lateral damper 
 
x∈X  deterministic design variables 
 
z∈Z   the uncertainty design variables 
 
L the lower limits of design variable 
 
U the upper limits of design variable 
 
W y  the lateral running stability index  
 
W z  the vertical running stability index  
 
y(X)  the Kriging surrogate model 
 
f(X) the constant in global estimate design space 
 
Z(X) the results of the random process 
 
[ ( , , )]ij i jR x xθ    the correlation function with θ  
 
xi

k , xj
k the k-th components of xi and xj 

 
2
Zσ  the variance estimate term 

 
β
∧  the kriging model regression coefficients 

 
2σ̂  the unbiased variance estimation term 

Tr  the relevance vector 
 

R2 the coefficient of determination  
 
RMSE the root mean square error 
 
yi  the output value of i-th sample point 
 

iŷ    the response value of the Kriging model at 
the i-th sample point. 
 

m the number of sample points. 
 
η the signal-noise ratio 
 
μ the mean value of optimization results data 
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摘 要 

 

本文旨在提出一種懸掛式單軌車輛懸掛參數

有效穩健優化方法。為了實現該方法，首先，構建

了懸掛式單軌車輛的多體動力學模型作為模擬模

型，以獲得車輛運行穩定性指標。然後，將通過正

交試驗設計方法得到的多組合懸掛參數引入模擬

模型，得到代理模型的訓練樣本，並構建了車輛運

行穩定性的 Kriging代理模型。最後，使用 Taguchi

方法基於 Kriging 代理模型尋找懸掛參數的最優

組合，並比較於初始和最優組合對應的懸掛參數的

運行穩定性指標值。結果表明，本文提出的穩健優

化方法將懸掛單軌車輛的橫向和垂向運行穩定性

分別提高了 10.08％和 9.18％。 


