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ABSTRACT 
Since noise factors have a significant influence on 
vertical running stability of high-speed rail vehicles, 
robust optimization of the suspension parameters can 
improve the robustness of vehicle under different 
running conditions, and thus ensure running quality. 
Vertical stiffness and damping of primary and 
secondary suspensions were here regarded as 
controllable factors, with speed, passenger capacity 
and railway curve radius selected as noise factors. 
Then Taguchi method was  introduced to construct a 
basic robust optimization model of vehicle 
suspension parameters. Based on the advantages of 
non-linear fitting of Radial Basis Function (RBF) 
surrogate model, an RBF surrogate model of vehicle 
vertical running stability was constructed to analyze 
the influence of both controllable factors and noise 
factors. On this basis, the suspension parameter 
combination with best robustness was determined 
through internal and external orthogonal testing of 
the controllable factors and noise factors, as well as 
signal-to-noise ratio analysis. The results indicated 
that, after robust optimization of the suspension 
parameters, the mean value of the vertical running 
stability index under different running conditions was 
improved by 7.55%, and the amplitude of vertical 
running stability index over the whole range was 
reduced by 31.0%, which validated the effectiveness 
of the proposed method. 
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INTRODUCTION 

 

Vertical running stability is an important index 
employed to quantify the running quality of 
high-speed rail vehicles, which is significantly 
influenced by the mutual matching of suspension 
parameters (Cao et al., 2016). The suspension system 
of high-speed rail vehicles is a multi-parameter 
complex system composed of primary and secondary 
suspensions, whose parameters can be optimized in 
order to improve running stability and ensure vehicle 
running quality (Gialleonardo et al., 2012). Many 
scholars have carried out research on the design 
optimization of vehicle suspension parameters in 
recent years. Liao (2012) used a multi-objective 
optimization method based on a genetic algorithm to 
optimize the suspension parameters of high-speed rail 
vehicles, improving curving behaviors but also 
reducing the running stability of vehicles. Having 
confirmed certain derailment coefficients as the 
major parameters on the basis of the partial least 
squares method, Ying et al. (2015) established a 
Kriging surrogate model and optimized the thresholds 
of suspension parameters, thereby acquiring the 
latter’s maximum feasible interval. Sayyaadi and 
Shokouhi (2009) introduced a complete nonlinear 
thermo-dynamic air spring model and optimized the 
air suspension parameters of rail vehicles using the 
Genetic Algorithm optimization method, improving 
riding comfort and reducing values of the ride 
comfort index by about 10%. Baek et al. (2013) 
optimized the suspension parameters of high-speed 
electric multiple units with ten degrees of freedom, 
reducing the vertical vibration of the vehicles. Chen 
et al. (2015) built a multi-body dynamic rigid-flexible 
coupling model based on the multi-body system 
dynamics, then he created a kriging model to describe 
the relationship of vehicle ride comfort evaluation 
indices and suspension parameters. The vehicle ride 
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Fig. 1 Vertical dynamics model of a rail vehicle 
 
comfort performance was improved after 
multi-objective optimization using NSGA-II. 

However, these previous studies were carried 
out under stable running conditions and did not 
consider noise factors during the vehicle running 
process, such as the railway curve radius, speed, and 
passenger capacity. All of these factors have an 
influence on vehicle vertical running stability and can 
lead to the absence of optimal running stability when 
the above suspension parameters are adopted under 
multiple running conditions (Shen, 2013). 

In the present paper, noise factors were taken 
into consideration due to their significant influence on 
the vertical running stability of vehicles, with the 
robust optimization method introduced in the 
development of research aimed at the robust 
optimization of the suspension parameters of 
high-speed rail vehicles. The RBF surrogate model 
was then used to simulate the complex non-linear 
relationship between suspension parameters and 
vertical running stability. Suspension parameter 
combination with optimum robustness under the 
influence of noise factors was obtained via internal 
and external orthogonal testing of controllable factors 
and noise factors, with signal-to-noise ratio analysis 
carried out to achieve robust optimization of the 
suspension parameters under multiple running 
conditions. 

 
ROBUST OPTIMIZATION STRATEGY 

 

Controllable factors and noise factors 
The robust design method is widely employed to 

ensure the stable performance of products even when 
the environment or product parameters are changed. 
In the robust design process, those factors that can be 
determined by designers are known as controllable 
factors, with those that can't known as noise factors; 
uncertainty in the latter can thus have a significant 
influence on system output. In order to identify the 
controllable factors and noise factors that affect the 
vertical running stability of vehicles, a vertical 
dynamic model is often developed. 

High-speed rail vehicles can be regarded as 
multi-body systems consisting of a car body, two  
frames, four wheel-sets, primary suspension, and 
secondary suspension. The wheel-sets and the frame 
are connected by the primary suspension, and the 
frame and the car body by the secondary suspension, 
together forming a complete suspension system. A 
vertical dynamics model of a typical rail vehicle 
(Yang et al., 2014) is shown in Figure 1. 

The parameters Kpz, Cpz, Ksz and Csz, whose 
values can be selected within a certain range, affect 
vehicle vertical running stability significantly (Yang 
et al., 2015, Chi et al., 2007). These four parameters 
were thus selected here as the controllable factors, 
represented as C{Kpz、Cpz、Ksz、Csz}. 

The passenger capacity of a vehicle changes 
during the running process, leading to the variation of 
vehicle gravity and affecting the vertical running 
stability. The braking and acceleration of a vehicle 
during the running process affect vehicle speed and 
dynamic performance, while the railway curve radius 
is different on different lines, also resulting in 
changes to the vertical running stability of the vehicle 
(Liao et al., 2011). Therefore, speed, passenger 
capacity and railway curve radius were selected as 
the noise factors, represented as N{v、M、R}. 

 
Basic robust optimization model 

For the robust optimization of vehicle 
suspension parameters, the vertical running stability 
index W was taken as the optimization target, the 
suspension parameters C{Kpz、Cpz、Ksz、Csz}as the 
optimization parameters, and the surrogate model of 
vertical running stability as the optimization target 
function. Considering the standard constraint value 
and the variation range of the suspension parameters 
(GB/T 5599-1985:1985), the basic model of vehicle 
suspension parameter robust optimization can be 
expressed as follows: 
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vehicle vertical running stability, W is the vertical 
running stability index, and c1, c2, c3 and c4 
respectively represent Kpz, Cpz, Ksz, and Csz. 

The signal-to-noise ratio is an important index 
used to evaluate the anti-jamming ability of robust 
optimization. In the present study, the smaller the 
value of the vertical running stability index, the more 
stable the running of the vehicle. This means that the 
mean μ and variance σ2 of the vertical running 
stability index should be as small as possible. As the 
greater the signal-to-noise ratio η the more robust the 
output (Che et al., 2009) , the former was set as: 

2 21/ ( )η µ σ= +                (2)                                                                                                        
Equation (3) is obtained by employing common 

logarithms to convert the signal-to-noise ratio η to the 
decibel value in Equation (2). 

2 210 lg( )η µ σ= − +             (3)                                        
On the basis of probability and statistics, μ2+σ2 

can be replaced by the unbiased estimates of the 
output function value, with the converted 

 

signal-to-noise ratio formula thus: 
2110lg( )iW

n
η = −                (4)                                                                     

where Wi is the output value of the target function, i.e., 
the vertical running stability index. 
   As stated above, the greater the signal-to-noise 
ratio, the more robust the output. Therefore, the 
suspension parameter combination associated with 
the best robustness can be identified by comparing 
the signal-to-noise ratios of different test 
combinations. 
 
Taguchi Robust Optimization of Suspension 
Parameters  

The Taguchi method is based on experimental 
design aimed at improving the quality and robustness 
of a product (Yadav et al., 2010). The procedure 
employed here in the Taguchi robust optimization of 
vehicle suspension parameters is shown in Figure 2, 
and mainly involved the following steps: 

(1) The multi-body dynamics simulation model 
of a rail vehicle is constructed in order to implement 
the simulation of vertical running stability. 

(2) C{Kpz、Cpz、Ksz、Csz}, N{v、M、R} are 
selected as the design parameters. The test sample 
points, utilized to construct the RBF surrogate model 
of vehicle vertical running stability, are calculated via 
the vehicle simulation model of vertical running 
stability. 

 
 

Fig. 2 The procedure of Taguchi robust optimization on suspension parameters 
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 (3) C{Kpz、Cpz、Ksz、Csz} are selected as the 
controllable factors of Taguchi robust optimization, 
and N{v、M、R} are chosen as the noise factors. The 
vertical running stability index W of each design 
parameter combination is calculated through the RBF 
surrogate model of vehicle vertical running stability. 
Then the controllable factor combination, associated 
with the best robustness, is obtained via 
signal-to-noise ratio analysis. 

(4) The optimal combination of controllable 
factors is simulated using the multi-body dynamics 
simulation model of the rail vehicle, and the variation 
in vertical running stability index W values is 
compared.  

 
CONSTRUCTION OF DYNAMIC  

SIMULATION MODEL 
 

Evaluation index of vehicle running stability 
Vehicle running stability affects both vehicle 

running quality and passenger riding comfort. The 
Sperling Index is used worldwide as an index of 
vehicle running stability (Yan and Fu, 2012), and is 
formulated as follows : 

3

100.896 ( )aW F f
f

= ⋅            (5)                                                
 

where a (unit: cm/s2) is the vertical vibration 
acceleration of the car body, f (unit: Hz) is the 
vertical vibration frequency of the car body, and F(f) 
is the modifying coefficient of the vibration 
frequency. 

The modifying coefficient of the vibration 
frequency is expressed as shown in Equation (6) 
when calculating the vertical stability index: 
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The acceleration and frequency of vehicle 
vibration will change over time. When calculating  
vehicle stability, the vibration waveform should thus 

be grouped according to the vibration frequency, and 
the stability index W calculated according to the 
values of the different accelerations in each frequency 
group as follows: 

10 10 1010
1 2 NW W W W= + + +      (7)                                          

where N is the total number of the frequency group. 
 
Construction of multi-body dynamics model  

Considering that the rail vehicle system is 
complex, this paper makes the following simplified 
and alternative to its research: (1) The model of rail 
vehicle vertical dynamics, as illustrated in Fig. 1, was 
abstracted into a topological structure composed of 
several rigid bodies, joints, and force elements. (2) 
Based on the laws of motion and relations between 
all the rigid bodies, the car body, bogie frame and 
wheel-sets were set in six degrees of freedom (6 DOF 
no W/R-Functon), as the linear motion along the 
z-axis and the rotation about the x-axis, the wheel-set 
can be set as six not-separate degrees of with two 
constraints (6 DOF W/R-Functon). (3) The 
connections between each two rigid bodies were 
simulated with equivalent force elements or 
constraints. The topological structure of the rail 
vehicle multi-body dynamics simulation model was 
constructed as indicated in Figure 3. 

Referring to a certain type of high-speed rail 
vehicle, the main kinetic parameters are shown in 
Table 1. Based on the topological structure displayed 
in Fig. 3, the rail vehicle multi-body dynamics 
simulation model was built using the SIMPACK 
multi-body dynamics simulation software program, 
taking the German high interference track spectrum 
as the vertical track irregularity excitation. Here the 
suspension system is the key to constructing the 
simulation model. In this model the wheel-sets and 
bogie frame are connected by the primary suspension, 
as well as the vertical damping facilities and axle box 
positioning devices, with the frame and car body 
connected by the secondary suspension, as well as 
vibration damping components such as anti-yaw  

 

 
 

Fig. 3 The topological structure of the multi-body dynamics simulation model of rail vehicle 
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Fig. 4  The multi-body dynamics simulation model of rail vehicle 
 
damping, lateral damping, and vertical damping. 
Spring and damping were abstracted into force 
elements containing three-dimensional stiffness and 
vertical damping in SIMPACK. Therefore, in the 
model the primary suspension is replaced by four sets 
of compact force elements, and the secondary 
suspension is replaced by six sets of compact force 
elements. The multi-body dynamics simulation model 
of the rail vehicle is shown in Figure 4. 
  
Table 1 The main kinetic parameters of a certain type 

of high-speed rail vehicle 
Parameters Value Units 

Half distance between bogie centers (Lc) 17500 mm 
Wheelbase of bogie (Lw) 2500 mm 

Wheel rolling circle diameter 860 mm 
Car body mass (mc) 32.5 t 

Bogie mass (mb1/ mb2) 2.56 t 
Wheelset mass (mw1/ mw2/ mw3/ mw4) 2.08 t 

Car body nod movement of inertia (Ic) 1500.8 t·m2 
Bogie nod movement of inertia (Ib1/ Ib2) 1.405 t·m2 
Vertical displacement of car body (Zc) --- --- 

Vertical displacement of bogie (Zb1/ Zb2) --- --- 
Random rail irregularities (Zw1/ Zw2/ Zw3/ Zw4) --- --- 
Vertical stiffness of primary suspension (Kpz) 1000 kN/m 
Vertical damping of primary suspension (Cpz) 25.0 kN·s/m 

Vertical stiffness of secondary suspension (Ksz) 154 kN/m 
Vertical damping of secondary suspension (Csz) 40 kN·s/m 

 
Simulation of Vehicle Running Stability Based on 
the Multi-body Dynamics Simulation Model 

The vertical running stability W can be 
calculated based on the simulation process for vehicle 
running stability shown in Figure 5 via the 
multi-body dynamics simulation model. To determine 
the quantitative relations between W and the 
suspension parameters Kpz, Cpz, Ksz, and Csz, the  
 

 
suspension parameters in the system file (.sys) of the 
multi-body dynamics simulation model were 
parameterized, with the parsing and replacement 
methods then introduced to substitute the 
corresponding suspension parameters, and the new 
(.sys) file used for simulation. Finally, the vertical 
running stability W was calculated through the 
analysis, time-domain integration and filtering 
processing of the vehicle dynamic performance 
results. 
 

 
 
Fig. 5 Simulation process for vehicle running stability 

 
CONSTRUCTION OF RBF 

SURROGATE MODEL OF VERTICAL 
RUNNING STABILITY 

 
Basic Form of the RBF Surrogate Model 

The RBF surrogate model is also known as the 
Radial Basis Function surrogate Model. In this model 
the Euclidean distance between the point to be 
measured and the sample point is used as the 
independent variable, with the complex 
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multi-dimensional problem transformed into a 
one-dimensional problem by calculating the response 
value of the point to be measured via linear weighting 
(Shi et al., 2016). 

The RBF surrogate model, which possesses 
firm function approximation ability, faster 
convergence speed and higher accuracy, offers a 
convenient method with which to deal with the 
non-linear relationship between design parameters 
and target responses. Therefore, in order to obtain 
values of the vehicle running stability index quickly 
and accurately, the dynamic simulation model of 
vertical running stability is here replaced by the RBF 
surrogate model. 

The mathematical formula of the RBF 
surrogate model can be described as follows in 
Equation (8):

 
1

( ) ( )
n

i i
i

W C x xωφ
=

= −∑             (8)                                           

where ωi is the weight coefficient, ( )ix xφ − is the 
selected as-radial basis function, and ||x-xi|| is the 
Euclidean distance between point x and the ith 
sample point xi. 

Typically, the commonly used radial basis 
function are shown as follows: 
Gaussian basis function:  

2
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( )

x xi
cix x eφ

− −

− =            (9)  

Multi-quadratic basis function: 
1

2 2 2( ) ( )i ix x x x cφ − = − +      (10)  

Reciprocal multi-quadratic basis function: 
1

2 2 2( ) ( )i ix x x x cφ
−

− = − +      
(11)

 
where c is a given real number greater than zero. 

When Eq. (8) is applied to prediction, the 
following interpolation conditions must be satisfied: 

 ( ) ( )i iY x W x=                 (12)                                                   
where i is the number of sample points from 1 to n, 
Y(xi) is the predicted response value, and W(xi) is the 
precise output value. 

Substituting Equation (12) into Eq. (8), 
Equations (13) and (14) can be obtained as follows: 
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where ω=[ω1,…, ωn ]T is the vector consisting of 

weight coefficients, jiij xxr −= (i,j=1,…,n) is the 

Euclidean distance formed by the sample points, and 
W=[W1,…,Wn]T is a vector composed of the output 
values calculated by the dynamic simulation model. 

After the determination of the design 
parameters, the test sample points were obtained from 

the experimental design, with the precise values of 
the sample points then obtained by simulation in the 
dynamic simulation model of the vertical running 
stability. The RBF surrogate model of vehicle vertical 
running stability can be constructed by selecting the 
radial basis function ( )ix xφ − and using Eqs. (13) 
and (14) to calculate the weight coefficient ω. 

 
Orthogonal Experimental Design of Suspension 
Parameter 

Multiple groups of suspension parameter 
sample points must be built using the experimental 
design method in the process of modeling the RBF 
surrogate model of vehicle vertical running stability. 
The orthogonal experiment design method (Huang et 
al., 2004), which has the advantages of reduced 
testing times and even distribution of data, can be 
used to solve both multi-factor and multi-level 
coefficient problems. Therefore, the orthogonal 
experiment design method was here employed in 
order to determine the sample points of the RBF 
surrogate model, with C{Kpz、Cpz、Ksz、Csz} and N{v、
M、R} selected as the design parameters in carrying 
out the experimental design. 

Three levels were selected for each of the 
suspension parameters Kpz, Cpz, Ksz, and Csz: level 2, 
which represents the initial values of the design 
parameters; and level 1 and level 3, which 
respectively represent a variation of ± 20% of the 
initial value. Three levels were also employed for 
passenger capacity M - no load, half load, and full 
load - to simulate the change in passenger capacity 
during vehicle running. Similarly, and according to 
the design standard for the curve radius of a 
high-speed passenger line (Zhu and Yi, 2011), the 
railway curve radius R was set to 6 km, 7 km, and 8 
km. Since the object of the present paper is a 
high-speed vehicle travelling at a speed of 300 km/h, 
the vehicle speed v was selected in the range of 200 
to 300 km/h. 

The design parameters and their level values 
are summarized in Table 2. 

 
Table 2 Design parameters and their level values 

Parameters Kpz Cpz Ksz Csz v M R 
Units kN/m kN·s/m kN/m kN·s/m km/h kg km 

Level 1 800 20 123.2 32 200 no  6 
Level 2 1000 25 154 40 250 half  7 
Level 3 1200 30 184.8 48 300 full 8 

 
According to the numbers and levels of the 

design parameters, an orthogonal array of L27(37) 
was constructed. The dynamic simulation of 27 sets 
of parameters was then carried out by the dynamic 
simulation model of vertical running stability, thereby 
obtaining values of the vertical running stability 
index W for each parameter combination, as shown in 
Table 3. 
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Table 3 Test sample of the RBF surrogate model on 
vertical running stability 

Test 
number 

Design parameters Sample value 
Kpz Cpz Ksz Csz v M R W 

T1 1 1 1 1 1 1 1 2.025 
T2 1 1 1 1 2 2 2 2.242 
T3 1 1 1 1 3 3 3 1.989 
T4 1 2 2 2 1 1 1 2.078 
T5 1 2 2 2 2 2 2 2.296 
T6 1 2 2 2 3 3 3 1.769 
T7 1 3 3 3 1 1 1 2.211 
T8 1 3 3 3 2 2 2 2.223 
T9 1 3 3 3 3 3 3 2.247 

T10 2 1 2 3 1 2 3 2.016 
T11 2 1 2 3 2 3 1 2.054 
T12 2 1 2 3 3 1 2 2.146 
T13 2 2 3 1 1 2 3 2.374 
T14 2 2 3 1 2 3 1 1.941 
T15 2 2 3 1 3 1 2 2.281 
T16 2 3 1 2 1 2 3 2.054 
T17 2 3 1 2 2 3 1 1.857 
T18 2 3 1 2 3 1 2 2.080 
T19 3 1 3 2 1 3 2 1.996 
T20 3 1 3 2 2 1 3 1.952 
T21 3 1 3 2 3 2 1 1.743 
T22 3 2 1 3 1 3 2 2.038 
T23 3 2 1 3 2 1 3 1.976 
T24 3 2 1 3 3 2 1 1.788 
T25 3 3 2 1 1 3 2 2.116 
T26 3 3 2 1 2 1 3 2.147 
T27 3 3 2 1 3 2 1 2.119 

 
The RBF Surrogate Model of Vertical Running 
Stability 

The reciprocal multi-quadratic basis function 
shown in Equation (11) was used as the radial basis 
function, take c = 1. 

Since Eq. (13) does not overlap at the sample 
points and the radial basis function ( )ix xφ − is a 
positive definite function, the weight coefficient w 
has a unique solution, as illustrated in Equation (15): 

1−= ⋅ω φ W                   (15) 
The weight coefficient ω can be calculated via 

Eqs. (13), (14) and (15) using the test sample value W 
of the RBF surrogate model of vertical running 
stability shown in Table 3. 

ω=[2.0238  2.2406  1.9878  2.0767  
2.2945  1.7677  2.2098  2.2215  2.2458  2.0145 
2.0527  2.1447  2.3726  1.9397  2.2797  2.0526  
1.8558  2.0788  1.9934  1.9507 1.7401  2.0369  
1.9749  1.7867  2.1147  2.1458  2.1175]T。 

The RBF surrogate model of vehicle vertical 
running stability could then be constructed by 
substituting weight coefficient ω into Eq. (8), which 
obtains the response value of the point to be 
measured. 

 
Error Testing of the RBF Surrogate Model of 

Vertical Running Stability 
To test the fitting precision of the RBF 

surrogate model of vertical running stability, the 
coefficient of determination R2 and the root mean 
square RMSE were adopted to determine the fitting 
error (Qiu et al., 2016). The coefficient of 
determination R2 and the root mean square RMSE can 
be expressed as in Equation (16) and Equation (17) as 
follows: 
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where m is the number of sample points obtained to 
test the fitting precision of the RBF surrogate model, 
yi is the output value of the ith sample point 
calculated by the dynamic simulation model,y is the 
average output value of the sample points, and iŷ is 
the response value of the surrogate model of vehicle 
running stability at the ith sample point. 

Values of R2 closer to 1 and RMSE closer to 0 
indicate that the fitting degree of the surrogate model 
is better and that the precision is higher. 

Ten sets of vertical running stability index 
values W were randomly selected from Table 3, 
calculated based on the dynamic simulation model of 
vertical running stability as the error test sample. 
These 10 sets of sample points were then substituted 
into the constructed RBF surrogate model to obtain 
the corresponding vertical running stability index. In 
this case the coefficient of determination R2 of the 
RBF surrogate model of vertical running stability was 
0.982, and the root mean square RMSE was 0.073, 
calculated according to Eqs. (16) and (17), 
respectively. These values indicate that the fitting 
error of the RBF surrogate model is suitably small, 
and that the RBF surrogate model of vertical running 
stability could be used to fit the running stability 
analysis results obtained via the dynamic simulation 
model of rail vehicle vertical running stability. 

 
TAGUCHI ROBUST OPTIMIZATION 

OF SUSPENSION PARAMETERS  
 
Factor classification and levels 

In order to improve the vertical running 
stability of the vehicle under the influence of the 
noise factors. C{Kpz、Cpz、Ksz、Csz} were selected as  
the controllable factors, with each factor 
characterized by 4 levels whose interval varied by 
±30% from the initial value. Similarly, N{v、M、R} 
were selected as the noise factors with which to 
optimize the suspension parameters. In this case, 
three levels were set for passenger capacity M of no 

javascript:void(0);
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load, half load and full load, while the railway curve 
radius R was set at 6 km, 7 km, 8 km, and 9 km. 
Finally, the vehicle speed v was assigned four levels 
ranging from 180 to 300 km/h. All factors and their 
levels are summarized in Table 4. 

 
Table 4 Factors and their levels 

Factors Parameters Units Level 1 Level 2 Level 3 Level 4 

Control
lable 

factors 

Kpz kN/m 700 900 1100 1300 
Cpz kN·s/m 17.5 22.5 27.5 32.5 
Ksz kN/m 107.8 138.6 169.4 200.2 
Csz kN·s/m 28 34 46 52 

Noise 
factors 

M kg no half full  
R km 6 7 8 9 
v km/h 180 220 260 300 

 
Experimental design and optimization results 

An orthogonal array of L16(44) was selected to 
represent the controllable factors, with one of 
L16(31*42) representing the noise factors in the 
experimental design. According to the internal array 
of controllable factors and the external array of noise 
factors, an internal and external orthogonal test table 
was constructed and a total of 16 * 16=256 
simulations were carried out. Values of the vertical 
running stability index W, mean value μ and 
signal-to-noise ratio η of each group were calculated 
through the RBF surrogate model of vertical running 
stability. The orthogonal test table and calculation 
results are shown in Table 5, and the trend of the 
mean value μ and the signal-to-noise ratio η of the 16 
tests is shown in Figure 6.  

It can be seen from Fig. 6 that the 
signal-to-noise ratio η of test T9 is the highest among 
the 16 tests. Thus, the robustness of suspension 
parameter combination T9 is the best according to the 
principle that the greater the signal-to-noise ratio, the  
more robust the output. And the mean value μ of the   

vertical running stability index is the smallest among 
the 16 tests, which indicates that the vertical running 
stability of the vehicle under T9 is optimal. 

A comparison of vertical running stability index 
values for initial and optimized suspension 
parameters is shown in Table 6. 

 

 
 
Fig. 6 Trend of the mean value and the 

signal-to-noise ratio 
 
Table 6 Mean value of W and suspension parameters 

of initial and optimized versions 

Items Kpz 
(kN/m) 

Cpz 
(kN·s/m) 

Ksz 
(kN/m) 

Csz 
(kN·s/m) 

Mean 
value of W 

Non-optimized 1000 25 154 40 2.067 
Optimized 1100 17.5 169.4 52 1.911 

Percentage (%) 10 30 10 30 7.55 
 
Analysis of Table 6 reveals that the vertical 

running stability index is improved by 7.55% from 
2.067 to 1.911 under the different running conditions, 
indicative of a considerable improvement due to 
robust optimization. 

 
Table 5 Orthogonal experiment and results 

        Internal array 
External array 

M 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 
Mean 
μ 

Signal 
-to 

-noise  
Ratio 
η 

v 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 
R 1 2 3 4 1 3 2 4 1 2 3 4 1 2 3 4 

Test Kpz Cpz Ksz Csz                  

T1 1 1 1 1  1.90 1.88 2.20 2.04 1.89 2.12 2.19 1.93 1.89 2.07 2.09 2.24 1.97 2.27 2.23 2.16 2.067  -6.325  
T2 1 2 2 2  2.27  1.95  2.23  1.72  2.05  2.23  1.93  1.75  2.26  2.00  1.96  2.29  1.85  2.29  2.05  2.07  2.056  -6.296  
T3 1 3 3 3  1.90  1.87  2.24  1.94  1.89  1.83  1.86  2.08  1.82  2.10  2.07  1.78  1.99  1.98  1.83  2.34  1.970  -5.916  
T4 1 4 4 4  2.33  2.03  2.16  2.08  1.83  1.92  1.94  2.01  1.98  2.02  1.96  2.04  1.77  1.95  1.92  1.84  1.986  -5.979  
T5 2 1 2 3  2.18  2.00  2.14  2.17  2.05  1.94  1.90  2.35  1.92  2.01  1.77  2.17  2.00  2.33  1.84  2.13  2.056  -6.288  
T6 2 2 1 4  2.17  1.86  1.87  1.93  2.29  2.00  1.93  2.03  1.97  2.24  1.87  1.82  2.00  2.16  2.06  2.06  2.016  -6.111  
T7 2 3 4 1  2.31  1.80  1.94  2.17  1.79  1.80  1.82  1.92  2.09  2.10  2.05  1.78  1.98  2.26  2.24  2.01  2.004  -6.070  
T8 2 4 3 2  1.84  2.08  2.04  2.00  1.91  2.18  1.82  2.01  2.15  1.90  1.78  2.03  1.92  1.90  1.79  1.83  1.949  -5.812  
T9 3 1 3 4  1.84  1.81  1.83  1.76  1.94  1.78  2.17  2.00  1.96  1.77  1.98  1.91  2.23  1.80  1.93  1.86  1.911  -5.644  
T10 3 2 4 3  1.97  1.92  1.72  2.15  1.78  1.88  2.09  2.02  1.74  2.16  1.98  2.00  1.96  1.83  2.30  2.24 1.984  -5.980  
T11 3 3 1 2  1.95  1.79  1.87  2.19  2.01  2.02  2.34  2.06  1.85  2.03  1.80  1.93  1.94  2.13  1.93  1.91  1.984  -5.974  
T12 3 4 2 1  1.98  2.09  1.90  2.12  1.87  2.19  1.93  2.08  1.94  2.10  1.94  2.03  1.75  2.21  1.85  1.95  1.996  -6.018  
T13 4 1 4 2  2.33  1.80  1.86  1.87  2.27  2.25  1.80  1.78  1.95  2.01  2.04  1.90  1.99  1.87  2.18  2.21  2.007  -6.085  
T14 4 2 3 1  1.83  1.85  1.81  2.03  1.86  2.24  2.13  1.89  1.89  1.84  2.08  2.02  1.80  2.06  2.07  1.85  1.953  -5.834  
T15 4 3 2 4  2.13  1.73  1.78  1.82  1.83  1.98  1.81  1.76  1.96  1.83  2.33  1.89  2.12  1.99  2.00  1.95  1.932  -5.748  
T16 4 4 1 3  1.75  2.05  2.05  1.86  1.80  1.83  1.86  1.79  1.87  1.74  2.17  1.90  2.31  2.09  2.21  2.04  1.958  -5.867  
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Table 7 Combination of running conditions and vertical running stability index comparison 
Conditions S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 

M 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 
v 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 
R 1 2 3 4 1 3 2 4 1 2 3 4 1 2 3 4 

Non-optimized 1.90 1.76 2.24 2.04 1.89 2.02 2.10 1.93 1.81 1.97 2.09 2.04 1.87 2.17 2.13 2.16 

Optimized 1.84 1.81 1.83 1.77 1.94 1.78 2.01 1.87 1.96 1.78 2.06 1.91 2.03 1.80 1.93 1.86 

 
VALIDATION OF TAGUCHI 

OPTIMIZATION RESULTS 
 
As displayed in Table 7, in order to verify the 

effect of Taguchi robust optimization of the 
suspension parameters, 16 types of vehicle running 
conditions were obtained according to the test order 
of the external array of noise factors shown in Table 4. 
Values of the non-optimized and optimized vertical 
running stability indexes were then compared for 
each of the 16 types of different vehicle running 
conditions, with the initial and optimized suspension 
parameters entered into the dynamic simulation 
model of vertical running stability to calculate the 
dynamic performance of the rail vehicle. A summary 
of the comparison of vertical running stability index 
is shown in Figure 7. 

 

 
 
Fig. 7 Comparison of vertical running stability index 

 
It can be seen in Fig. 7 that under most running 

conditions, values of the optimized vertical running 
stability index are lower than those obtained prior to 
optimization. And the amplitude of the vertical 
running stability index over the whole interval is 0.42, 
while 0.29 after optimization, which is reduced by 
31.0%. 

Under running condition S3, the robust 
optimization effect is the most obvious, with the 
difference between the non-optimized and optimized 
versions of the vertical running stability index equal 
to 0.37. However, under the conditions of S2, S5, S9 
and S13, the vertical running stability index is a little 
worse than before optimization, but all of them are 
within the optimum evaluation grade of vertical 
running stability of rail vehicle in China. 

Running condition S11 is defined as a 
full-loaded state, whose railway curve radius is equal 
to 8 km and running speed 260 km/h. As S11 is the 
most similar of all the tested conditions to the actual  
running situation of high-speed rail vehicles, the 
suspension parameters of the non-optimized and  

 
optimized versions were input into the dynamic 
simulation model of vertical running stability for this 
condition. The time domain graph of the vertical 
acceleration comparison is shown in Figure 8, the 
amplitude of the vertical acceleration is clearly in 
decline. 

 

 
 

Fig. 8 Comparison of the vertical acceleration in S3 
 
Under running condition S11, the speed, 

railway curve radius and passenger capacity were 
changed and then inputed into the dynamic 
simulation model of vertical running stability for 
simulation and analysis, a comparison of the vertical 
running stability index values under different noise 
factors is shown in Figure 9. 

 

 
 

Fig. 9 Comparison of vertical running stability 
indexes under the influence of noise factors 
 

It can be seen from Fig. 9 that the vertical 
running stability index gradually increases with an 
increase in vehicle speed, with the fluctuation 
amplitude across the whole interval smaller than that 
obtained prior to parameter optimization. In contrast, 
an increase in the railway curve radius and passenger 
capacity results in a gradual decrease in the vertical 
running stability index, although the fluctuation 
amplitude of the vertical running stability is again 
smaller than that observed before the optimization of 
the suspension parameters. 
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In summary, the above analyses have proven 
that vehicle robustness can be significantly improved 
after Taguchi robust optimization of suspension 
parameters, thus validating the effectiveness of this 
method. 

 
CONCLUTIONS 

 
In this paper, an RBF surrogate model of 

high-speed rail vehicle vertical running stability was 
established. The suspension parameter combination 
associated with the best robustness under the 
influence of selected noise factors was then obtained 
via the Taguchi robust optimization method, leading 
to an obvious improvement in the vertical running 
stability of the vehicle under different running 
conditions. The following concrete conclusions can 
be drawn: 
(1)  The control factors and noise factors associated 

with the running process of a rail vehicle were 
determined, enabling the subsequent 
establishment and design of a robust 
optimization model and scheme for the vehicle 
suspension parameters. 

(2)  A multi-body dynamics simulation model of the 
vertical running stability of the rail vehicle and 
its suspension system was established based on 
the vertical dynamic model, with the vertical 
running stability of the vehicle then calculated 
through the established model. 

(3)  A test sample for the RBF surrogate model was 
obtained via the orthogonal experiment design 
method, with the RBF surrogate model of the 
vertical running stability model constructed 
based on the simulation of the multi-body 
dynamics simulation model. 

(4)  Vertical stiffness and vertical damping of the 
primary and secondary suspensions  were taken 
as the controllable factors, and speed, passenger 
capacity and railway curve radius selected as the 
noise factors based on the Taguchi method. 
Vertical running stability index values under 
different running conditions were then 
calculated using the RBF surrogate model. The 
suspension parameter combination associated 
with the best robustness under the influence of 
the noise factors was obtained according to the 
principle of the greater the signal-to-noise ratio, 
the more robust the output. 

(5)  Dynamic simulation of the non-optimized and 
optimized suspension parameters was carried 
out using the dynamic simulation model of 
vertical running stability under different running 
conditions. After optimization, the mean value 
of the vertical running stability index was 
improved by 7.55% and the amplitude of the 
vertical running stability index over the whole 
range was reduced by 31.0%, vehicle robustness 
was improved significantly. 

(6) The traditional optimization method only 
considers the influence of suspension parameters 
on vehicle running performance, and the 
suspension parameters optimization results are 
different under different running conditions. 
Compared with the traditional optimization 
method, the method proposed in this paper 
considered noise factors and multiple running 
conditions, the optimization results can be 
applied to a variety of running conditions,   
vehicle robustness was improved significantly, 
thus validating the effectiveness of the proposed 
method. 
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摘要 

考慮雜訊因數對高速軌道車輛垂向運行平穩

性的影響，對懸掛參數進行穩健優化可以提高車輛

在不同運行工況條件下的抗干擾性，保證車輛運行

品質。引入田口穩健優化方法，以一、二系垂向剛

度、阻尼為可控因數，以車速、載客量及軌道曲線

半徑為雜訊因數，構建懸掛參數穩健優化設計基本

模型。利用徑向基代理模型非線性擬合的優勢，構

建車輛垂向運行平穩性徑向基代理模型，精確分析

可控因數和雜訊因數對車輛垂向運行平穩性的影

響。在此基礎上，通過對可控因數和雜訊因數進行

內外正交試驗和信噪比分析，獲得在雜訊因數影響

下穩健性最優的懸掛參數組合。算例表明，對懸掛

參數進行穩健優化後，在不同行駛工況下車輛的垂

向運行平穩性指標均值比優化前提高了 7.55%，且

優化後車輛垂向運行平穩性指標在整個區間的波

動幅度較優化前降低了 31.0%，顯著提高了車輛的

穩健性。 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


