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ABSTRACT

Source-target maps play the prevailing role in
freeform lens design for diverse illumination
applications, but very few of previous studies have
taken into account the smoothness of the map. A non-
smooth map may result in a freeform lens with
discontinuous surfaces or surfaces with bulge/sharp
edges that will greatly increase the difficulty for lens
fabrication and induce large variation in the produced
irradiance distribution. In this study, a map is
proposed to achieve continuous and smooth freeform
surfaces for uniform illumination of right polygons.
The proposed map is an integration of a number of
primitive maps where a polygon is divided into a
number of symmetric quadrilaterals of the same size,
and the irradiance energy of source is also divided
into the same number of symmetric pie sectors. The
transfer of a pie sector of irradiance energy onto a
quadrilateral is derived. Procedures to implement the
proposed map are given in this study. The adequacy
of the proposed map is demonstrated by Monte Carlo
ray tracing simulation and experiment as well. The
contribution of this study is fundamental and
profound in the field of freeform lens design.
Advanced studies for uniform illumination of
arbitrary polygons are currently taken to expand the
applicability of the proposed map.

INTRODUCTION

Freeform lenses have good flexibility for design
to achieve diverse illumination profiles and irradiance
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distributions on a target plane (Ries et al., 2002; Fang
et al., 2008; Chen et al., 2010; Lin, 2014). Continuous
and smooth freeform surfaces are normally desired
since discontinuous surfaces could greatly increase
the difficulties of mold fabrication to achieve desired
irradiance distributions (Luo et al., 2010; Fang et al.,
2008). Slight variation of discontinuous surfaces can
result in large variation in the produced irradiance
distribution.

In freeform lens design, the edge-ray principle
(Ries et al., 1994) is adopted. Equi-luminous fluxes of
light source are usually regarded as the edge rays, and
the transfer of the edge rays resembles the transfer of
the irradiance energy of the source. The problem of
freeform lens design is governed by a partial
differential equation of the second order. The
equations can be solved by a humerical method for a
mesh of surface grids and spline surface construction
using a CAD software (Chen et al., 2010; Lin, 2014;
Luo et al., 2010). Each surface grid denotes the trace
of an edge ray through the surface where the surface
normals can be computed. However, there is no
guarantee that a continuous and smooth surface can fit
all the normals (Wu et al., 2014).

Mapping of the edge rays from a source to a
target is called a source-target map (Fournier et al.,
2010). The map plays the prevailing role for design of
a freeform lens for accurate irradiance distributions.
Smooth source-target maps are normally required to
achieve smooth freeform surfaces, otherwise
discontinuous surfaces or surfaces with bulge/sharp
edges could be resulted.

A smooth map satisfying the so-called
integrability condition for a freeform reflector can be
found in (Fournier et al., 2010). The map leverages
the classic property of ellipsoids where a light ray
emitted from one focus is reflected to the second
focus. However, the property of two foci does not fit
the scope for freeform lens design. Mao et al.
proposed an iteration method for regulating the
source-target map to enhance illumination uniformity
(Mao et al., 2015). Other similar methods can be
found in (Wang et al., 2009; Xia et al., 2010). Among
the methods, a substantial proportion is based on the
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source-target map, but very few of the studies have
taken into account the smoothness of the map.

This study presents a smooth map for uniform
illumination of right polygons. For the general
purpose, a right polygon is divided into a number of
symmetric quadrilaterals of the same size. Meanwhile,
the irradiance energy of source is divided into the
same number of symmetric pie sectors. The transfer
of a pie sector of irradiance energy onto a
quadrilateral is derived and it forms a primitive of the
proposed map. The adequacy of the proposed map is
demonstrated by Monte Carlo ray tracing simulation
and experiment as well.

SYSTEM EQUATIONS AND
PREVIOUS SOURCE-TARGET MAPS

Schematic of the optical system in this study is
shown in Figure 1. In the system are the point source
ps at the origin of the x-y-z coordinate system, a
freeform lens between a light source and a target
plane Sy, a freeform surface of the lens denoted by S,
and a spherical bottom surface of the lens denoted by
Sp. The lens optical axis coincides with the z axis and
an emitting light ray @ intersects with Sy, S, and Sq at
Po, Pt and pq, respectively.

\ A

Fig. 1 Schematic of optical system.

The following partial differential equations can
be developed to solve for a freeform surface mesh
(Ding et al., 2008):

le

%% = ElE,-2) =00, Bp 1005, (la)
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tz
where n denotes the lens refractive index;

(X, Y. z) and (X4, Yq, Z4) the coordinates of p:and pg,
respectively; [Nw, Ny, Nt] the surface normal at p; @&,

@y, @, the x, y, and z components of the light ray.
At the lens bottom surface, we have

£SIN(@, — @ + oy — ) = ﬁﬁn(abi — Q) (22)
_ M , (2b)

where Ry, the radius of the bottom surface; ¢ and ¢
denote the inclination angle of p,p, and p.p, ; avi and
oo the incident and refractive angles of the ray.
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Source-target maps are normally established
based on the principle of energy conservation,

Y Gp0) =Y Gr(xy): ©)
where G (p,¢) denotes the grids of equi-luminous

fluxes emitted from a source; it is in a spherical
coordinate system where g is the inclination angle and

@ is the azimuth angle of the coordinate system;
G, (xy) denotes the grids of equi-luminous fluxes on a

target plane; it is in Cartesian coordinate system.

In this study, a point source is assumed. An iso-¢
profile of source is the grids of equi-luminous fluxes
of the same inclination angle. An iso-¢ profile of
target is the grids of equi-luminous fluxes mapping on
the target plane. The iso-¢ contours of source are
assumed concentric circles. The geometry of lens for
design has a flat bottom and a freeform surface at the
top of the lens.

An equation to describe many illumination
profiles is given in (Mao et al., 2015),

| X :li (4)
a b
where n is a characteristic parameter of the profiles.
Previous maps adopt a proportional ratio of the
iso-¢ contours to the profile, so the contours and the
profile have the same shape in Figs 2 (a)-(d). For n =
2, the profile is a circle or an ellipse, and the iso-¢
contours are concentric circles or ellipses. The
distances between the center and the contour grids
G, (x,y)| vary smoothly with two maxima at the major

axis and two minima at the minor axis as shown in
Figure 2 (f). Under the proportional map, the resulting
freeform surface is smooth as shown in Fig. 2(j). The
irradiance distribution has good uniformity as shown
in Fig. 2(n) based on 500,000 light-rays tracing
simulation in LightTools. However, the proportional
map becomes non-smooth as n changes.

As n = 1, the profile becomes a rhomboid. The
iso-@ contours are also rhomboids in Fig. 2 (a).
Singular variations of |G. (x,y)| occur at the vertices of

the iso-¢ contours as shown in Fig. 2(e). It results in a
freeform surface with sharp edges at the diagonals of
the lens as shown in Fig. 2(i), and poor uniformity of
irradiance distribution is shown in Fig. 2(m).

As n = 4, the profile becomes partially flat in Fig.
2(c). The two maxima split into four. Large gradients
among the contour occur as shown in Fig. 2(g).
Freeform surfaces with bulges at the diagonals arise
in Fig. 2(k). Large surface normal change occurs
around the maxima where Fresnel loss is significant.
Surfaces with bulges could greatly reduce the
illumination uniformity as shown in Fig. 2(0).

As n further increases and approaches infinity,
the profile becomes a rectangle, and singular
variations of |G, (x,y)| occur again as shown in Figs
2(d) and 2(h). Freeform surfaces with sharp edges but

worse illumination uniformity are resulted in Figs 2(I)
and 2(p).

n
X
+
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Fig. 2 G, (x,y), |G, (x,y)| freeform lenses for four
different profiles, and irradiance distribution.

It is shown in the above examples that smooth
source-target maps are necessary and essential
conditions to achieve smooth freeform lenses without
bulge/sharp surfaces. A smooth map has smooth

variation and moderate gradients of the iso-¢ contours.

Such a map for uniform and rectangular illumination
was proposed in (Lin, 2014),

@cosé
J1-p%sin’6 '
= @sing

y= J1-9%cos’o ' (5b)
where X and y denote the normalized coordinates of
Cartesian system (x =2x/W , ¥=2y/H , W the width
of the rectangle, H the height of the rectangle); ¢ the
normalized inclination angle of equi-luminous flux
(@ = @90 Prmax the maximal inclination angle).

The iso-¢ contours of the map are

_ /XZ +y? - 2x%y? 6
= —72 =7 —gc,
¢ 1-x?y? ©

where ¢ denotes a constant and 0 < c < 1.

An example of the above rectangular map is
given in Figure 3(a). The iso-¢ contours smoothly
vary from inside circle-alike contours to outside
rectangle-alike ones. The variation of \GT(X, y)\ is
smooth as shown in Fig. 3(b). Freeform surfaces
without bulge/sharp surfaces are achieved along with
good illumination uniformity as shown in Fig. 3(c)
and 3(d).

X= (5a)

o casl>
(c) free. lens

Fig. 3 G, (x,y), [G:(x, )|, freeform lenses for uniform
rectangular illumination, and irradiance distribution.

PROPOSED SOURCE-TARGET MAPS
FOR RIGHT POLYGONAL PROFILES

In this study, a polygon is divided into a number
of symmetric quadrilaterals of the same size.
Meanwhile, the irradiance energy of source is also
divided into the same number of symmetric pie
sectors. The transfer of a pie sector of irradiance
energy onto a quadrilateral forms a primitive of the
proposed map. The number of pie sectors equals the
number of quadrilaterals and the edges of the polygon.

Examples of right polygons are shown in Figure
4 where a quadrilateral is one-third of the triangle,
one-fourth of the rhomboid, and one-fifth of the
pentagon. Since scaling and rotation do not change
the smoothness of the mapping, the sizes of the
polygons can be proportionally adjusted such that the
irradiance circle of source in solid line is
circumscribed by the polygon in dashed line.

In Fig. 4, P denotes the geometric center of both
the polygon and the source. P; and P3 are midpoints
of the polygon edges. P2 is a polygon vertex. PoP1P3
denotes a pie sector. PoP1P2P3 denotes a quadrilateral.

The quadrilateral is self symmetric at PP, and
symmetric with its neighboring quadrilaterals atP,p,

and P,P, . The pie sector has similar symmetric
properties. Due to the symmetry, the energy transfer
from a pie sector to a quadrilateral serves as a
primitive of the proposed map. For this reason, the
derivation for a primitive map is only given below.

(a) right triangle (c) right pentagon

(b) right rhomboid

Fig. 4 Pie sectors and quadrilaterals of a right polygon.
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For each of the quadrilaterals, an area-affine
coordinate system is constructed as shown in Figure 5,
and

Fofos _ AP, (7a)
0P3 PIPZ
Lili i (7b)
POPl P3 PZ
U= Area of quadrilateral P,P,P,;P, ’ (7c)
Area of quadrilateral PyP,P,P,
_ Area of quadrilateral PPy, P;,P; | (7d)

Area of quadrilateral P,R,P,P,

where (u, v) denotes the affine system coordinate
andu,vel[0,1].

In Fig. 5, points of a blue line have the same u
coordinate, and of a red line have the same v
coordinate. The coordinate scales are the same due to
the symmetry of the quadrilaterals. If the
quadrilaterals are counted in counterclockwise, the u-
axis of one system overlaps with the v-axis of its next
neighbor, and the v-axis overlaps with the u-axis of its
previous neighbor.

In Fig. 5, S is a grid point of pie sector. Its
mapping image in the quadrilateral is denoted by T.
The primitive map is

T(XY)=S(X,y) +AS, +AS,, (8a)
ASu :Su(xl y)_s(xly)’ (Sb)
AS, = S,(x )~ S(x,y)+ (80)

PSS

PuS, = P:;S: PorPe2 s (Sd)
P.S

PoaS, = P:TS; PosPez s (8e)

where Poi, Pos, P12, P32 are the edge points of the
quadrilateral; s*, s* the intersection points between

the pie sector curve and PP, and P.P, respectively,
and

P (X, Y) = (L= U)P, (X, Y) + UP,(X, Y) » (%)
P2 (X, Y) = L—=U)P,(X, y) + UP,(X, Y) (9b)
P (X, Y) = L=V)Py (X, ¥) + VR (X, Y)» (9)
Py (X,Y) = @=V)Py(X, ¥) + VP, (X, y) » (9d)

The proposed map is formed by integrating all
the primitive maps after proper scaling and rotation.
The integration becomes Eqgs (5) if the polygon is a
square. However, the closed-form formula for a
general right polygon are not available now. As an
alternative, procedures for computation of the
proposed map are given:

1. Create uniform u- and v-array for a quadrilateral
in Cartesian and area-affine coordinate using Eqs
(7c) and 7(d).

2. For each grid point S of the pie sector, compute
the mapping image T in the quadrilateral by
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interpolation for the edge points Po1, Pos, P12, P32
and the intersection points s*, S, and then using
Egs (8).

3. Perform the scaling and rotation to achieve all the
other primitive maps.
Integrate all the primitive maps to achieve the
proposed source-target map.

Fig. 5 Schematic of a primitive map.

The adequacy of the proposed map has been
tested by simulation for several polygonal
illuminations and lens sizes_with a flat bottom. The
iso-@ contours of all primitive maps join smoothly
between the neighboring quadrilaterals after
integration. The contours vary from inside circle-alike
contours to outside polygon-alike. The computations
involved to solve Eqgs (1) and (2) for generating the
freeform surface grids are performed by LabVIEW
codes written by the author. With the surface grids,
the CAD software ProE is employed to construct a
freefrom lens which is then imported into the software
LightTools for performing ray-tracing simulations.
For the polygons in Fig. 4, the proposed maps has
been applied. The results for a Lambertian LED light
are shown in Figure 6(a)~6(c). The variations of

\GT(X, y)\ are smooth as shown in Fig. 6(d)~6(f).

Smooth freeform lenses are achieved as shown in Fig.
6(g)~6(i). The lens surfaces are singled out with
slightly different curvatures which resemble the
polygons although the shapes are distorted. Good
uniformity of irradiance distribution by simulation are
shown in Fig. 6(j)~6(l).

The above freeform lenses designed by the
proposed map have been manufactured in PMMA by
CNC machining with labor-intensive polishing
applied to the lens surfaces. The labor polishing
induces imprecision about 0.03mm. However, precise
illumination profiles and good uniformity of
irradiance distribution are achieved as shown in
Figure 7 where rounded profiles at the vertices and
imprecise irradiance cut at the edges are due to the
manufacturing imprecision and the point source
assumption made in this study.
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(a) Gr(x,y), triangle (b) Gr(x,y), rhomboid (c) Gr(x.y), pentagon
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Fig. 6 Proposed source-target maps, freeform lens and
irradiance distribution for three right polygons.

b) free. lens, (c) free. lens.

(a) test

(d) free. lens,

ﬂwﬂ

(e) irr. dist., ) irr. dist., ) irr. dist.,

- |AlW

Fig. 7 Experimental test setup, freeform lenses for
uniform polygonal illumination, and
experimental results.

CONCLUSIONS

Very few of previous studies have taken into
account the smoothness of the source-target map in
design of a freeform lens. It may result in a lens with
discontinuous surfaces or surfaces with bulge/sharp
edges that will greatly increase the difficulty for the
lens fabrication and induce large variation in the
produced irradiance distribution. Hence, a smooth
source-target map for uniform polygonal illumination
is proposed to solve the problem.

In the proposed map, the polygon is divided into

a number of symmetric quadrilaterals of the same size.

Meanwhile, the irradiance energy of source is divided
into the same number of symmetric pie sectors. The

proposed map is an integration of a number of
primitive maps after scaling and rotation.

The proposed primitive map is described by Eqgs
(8) and (9) using the area-affine coordinate system of
Eqgs (7). Procedures to implement the proposed map
are given in this study. Freeform lenses designed for
uniform  polygonal illumination have been
manufactured in PMMA by CNC machining. Despite
that the freeform surfaces have 0.03mm imprecision
due to labor-intensive polishing, precise illumination
profiles and good uniformity of irradiance distribution
are achieved.

The contribution of this study is fundamental and
profound in the field of freeform lens design.
Advanced studies for uniform illumination of
arbitrary polygons are currently taken to expand the
applicability of the proposed map.
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