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ABSTRACT

The velocity profile and pressure gradient of the
unsteady state unidirectional flow of a generalized
Burger fluid in an annular pipe with different given
volume flow rate conditions are investigated in this
study. Traditional models of this fluid is often solved
by a partial (or ordinary) differential equation
(PDE/ODE) with initial values or some boundary
conditions. However, it is not enough to describe the
phenomenon of Burger fluid in the real case. In this
research, we added the inlet volume flow rate as an
initial condition of the PDE. In order to understand the
different flow characteristics, two basic flow situations
are solved based on the prescribed flow conditions
including a suddenly started flow and a constant
accelerated flow, respectively. Finally, the linear
acceleration and oscillatory flow is also considered in
the last two cases.

INTRODUCTION

Scientist and engineers are interested in the
Newtonian fluid because it can be used in a wide range
of applications, such as chemical engineering,
mechanical engineering, petroleum engineering,
nuclear industries, geophysics and bioengineering.
Burger fluid is one kind of the Newtonian fluids. This
fluid is quite special because its’ partial differential
equation (PDE) is linear and it is more complicated
than Oldroyd-B fluid. Many researchers focused on
the study of Burger fluid and its qualitative properties.
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For example, Hu et al. (2013) got unstable modes of
Burger fluid. Some investigators studied the numerical
solution related to Burger fluid. For instance, Tripathi
(2011) focused on the numerical study of peristaltic
flow of generalized Burger fluid. Recently, great
attention had been paid to the exact solution (Tong and
Shan 2009, Hayat et al. 2011, Khan et al. 2011). Hayat
et al. (2011) developed the exact solution of a non-
Newtonian fluid between the micro-parallel plates.
Khan et al. (2011) got the exact solutions of Stokes
second problem. Besides the exact solutions of some
unsteady lows of generalized Burgers’ fluid in an
annular pipe are obtained by Tong and Shan (2009).

The present study suggests inlet volume flow rate
as a condition of the PDE. In traditional, a model of
the fluid often be a PDE with initial values or some
boundary values. In real world, initial values and
boundary values are not enough to describe the
phenomenon of Burger fluid. Add the inlet volume
flow rate is more actually than traditional conditions.
In this paper, we have solved the governing equation
with initial, boundary, inlet volume flow rate
conditions by Laplace transform and the exact solution
is obtained. The flow behavior could be explained by
these analytical solutions in the following cases.

METHODOLOGY
Mathematical formulations
The assumptions of the unsteady flow of the
incompressible fluid of a Burger type in an annular
pipe are as follows:
(1) The fluid velocity of the direction of the pipe
radius is zero.
(2) The flows are axisymmetric pipe-like.
(3) The axial velocity is only dependent on the pipe
radius.
The generalized Burger fluid has the form with the
constitutive relationship of t as follows (Khan et al.
2011):

A+ 4,0, + 1,07)7 = u(l+ 4,0, + 1,07)0,u (2.1



where 7 is the tangential stress tension, 4, and

8

respectively, A, and A, are the new material
parameters of the generalized Burger’ fluid, gz isthe

dynamic viscosity and U is the velocity.
The motion equation of the axial flow is written

are the relaxation and retardation times,

as

p@tW=8rT+%r—8Zp (2.2)

where p is the constant density of the fluid.
Inserting (2.1) into (2.2) eliminating 7 yields
1+ 20, +ko?)ou
1

23
P v +16,+982)@ + 18, )u(r 1) §
p Oz r

1P s the pressure gradient that acts on
p Oz

where

Y H

yo)
kinematical viscosity and 4 = 4,k = 4,,1 =vA,,q = v4,-

the liquid along the z -direction, is the

Methodology of solution
Since the governing equation, boundary
conditions and initial condition are known, the
problem is well posed. In general, it is not convenient
to solve this equation by the method of separation of
variables or eigenfunction expansion. In this study, the
Laplace transform method is used to reduce two
variables into single variable. This procedure greatly
reduces the difficulties of treating the original
differential equation.
The governing equation of motion in z-direction
is
L+ 20, +ko?)ou
1op
p oz
As the radius of duct is R and the boundary
conditions are

u(R,t)=0, (3.2
u(R,,t)=0. (3.3
The problem can be solved if the pressure

gradient is known. In this study, the pressure gradient
is determined indirectly by

jF:Z 2zru(r,t)dr = 7(RZ —R2)u, () =Q(t)  (3.4)

where up(t) is the given average inlet velocity and Q(t)
is known inlet volume flow rate. Eq. (3.4) is termed as
additional condition.

The above governing equation, boundary
conditions and initial condition are prescribed and can
be solved by the Laplace transform technique, which
yields the following equations:

(3.1)

+(v+10, +q0?)(0? +%8,)U(r,t)-
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governing equation
o’u(r,s) 1 ou(r,s) s+A4s’+ks’

oa*  r or v +ls+qs’ u(r.s) 2k
1 1 op(z,s) (35)
Cp(v+ls+gs?) oz
with boundary conditions
u(R,s)=0 (3.6)
u(R,,s)=0 (3.7)
and additional condition
I:: 2zru(r,s)dr = 7(R —R?)u, (s)- (3.8)

Eg. (3.5) is a second order non-homogeneous
ordinary differential equation. The homogeneous part
is the modified Bessel’s equation of zeroth order and
the particular solution is assumed to be YV , the
complete solution is

u(r,s) =al,(mr) +bK,(mr) + ¥ (3.9
2 31
where m o (3FAS K
v +Is+gs®

The boundary conditions Eq. (3.6) and Eq. (3.7)
are used to solve for the two arbitrary coefficients a
and b . Substituting Eq. (3.6) and Eq. (3.7) into Eq.
(3.9) gives

b:—la,
H

T (3.10)
Y= a[ﬁ Ko(le) - Io(le)]
Where H = K, (mR,) - Ky (MR,),T = 1,(MR,) - I, (MR,) -
From the additional condition of Eq. (3.8),
j: 2zr[al, (mr) +bK, (mr) + ¥]dr
=u,(s)7(R; —RY)
substituting Eq. (3.10), a is readily obtained as

B u,(s)(R; —R?)
a= 2PH — VT +[mTK,(mR,) — mHI,(mR,)](R? - R? ;3'12

V= RK,(MR) - R,K,(MR,), P = R,1,(MR,)~ R, (MR,).
Substituting Eqg. (3.10) into Eq. (3.9), gives

u(r,s) :%{H[lo(mf)— lo(MR)]-T[Ky(mr)—Ky(mR (3.13

(3.11)

)
or
u(r,s) =u,(s)x(r,s) (3.14)
where
Q(r,s)
=£{H[|o(mr)—lo(m&)]—T[Ko(mr)—Ko(le)] §3'15
where |, (RZ -R?) .
" 2PH — VT +[mTK,(mR,) —mHI, (MR,)[(R - R?)
Taking the inverse Laplace transform, the
velocity profile is
u(r,t) = i_jw_mup(s)Q(r, s)e’'ds. (3.16)
2m V—loo
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Furthermore, the pressure gradient is found by
substituting Eqg. (3.10) into Eq. (3.5) to give
op(z.s) _

o U, (S)(=p)(s + As? + ks®) ¥ (3.17)
or
op(z,s)
o (3.18)

=U,(s)(=p)(s+4s" + kSS)A[% Ko(MR) =1, (MR,)]

Using the inverse transform formula, the pressure
gradient distribution can also be obtained.

ILLUSTRATION OF CASES
In this study, we solved different cases to
understand the different flow characteristics. In first
case, the piston velocity u_(t) moves with a constant

acceleration. The piston starts suddenly from the rest
and then maintains this velocity in the second case.
Finally, the linear acceleration and oscillatory piston
motion are also considered in the last two cases,
respectively.

Case 1. Constant acceleration piston motion
The piston motion of constant acceleration can be
described by the following equation.

t)=a t= Upt
up()_ap - K

where a, is the constant acceleration, u,

(4.1)

is the

final velocity after acceleration, and t; is the time

period of acceleration.
Taking the Laplace transform of Eq. (4.1) and
then get
u,

u,(s) _t— (4.2)

From Eq. (3.16), we obtain the velocity profile as

u(r,s)
u,

27zt i

A1)~ 1 (R TIK () - K, (TR o5} §4'3
From the above expression, the integration is
determined using complex variable theory, as
discussed by Arpaci [6]. It is easily observed that

S =0 is a pole of order 2. Therefore, the residue at
s=0 is

Res(O)f [(ar +c+d|nr)t+?r +4ir Inr +gr? +hh]

R

where
d In—2,c=-aR?-dInR

_2ARI-R) |
=,

RZ)(INRR, +1) + 2R2INR, —2R?INR,,
LA (RE-RE+ 2
2

+—(R?InR, —=RZInR,)],
(RZ RE) 16y )4\/(2 , —RIINR)]

-2

P:m2

g=

R, ! v (4.4
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1 A 06 pb

+(2—E>( F-R)

+E(RZ InR,—R/InR)].

The other singular points are the roots of
following transcendental equation:
H x{2PH - 2VT +[mTK,(mR,) - mH1,(MR)I(R; -R?) (4.5

)
Setting m =i« , we have
H, x{2P,H, -2V, T, +[aT,Y, (aR,) —aH I, (MR )I(R; -R$) =0 16
1,(MR,) = 3, (aR,), Ko (MR,) = Y, (aR,), (4.6)
sz :Yo(aRz)_Yo(aR1)vT :‘Jo(aRz)_‘]o(aR1)’ (47)

V, =R\Y,(aR,) - R,Y,(¢R,),P, =R,J,(aR,) - R J, (aR,).
If a,, n=123,...,

Sin1Sons Sy, are roots of

oo, are zeros of Eq. (4.6), then

ks +(A+alq)s® +A+a’)s+a’v=0, (4.8)

n=123,...,0 . These are simple poles, and the
residues at all of these poles can be obtained as
U, e"'RR(r
Res(s, )= Z» €7 RR() i=123 (4.9)
0 San ( m)
where
RR(r) = (R} = RO {H[I,(mr) — I, (MR)1-T[K,(mr) - Ko (MR)1}, (4.10)
Q'(si,)=H.W+H,W"i=123, )
where
W =2P,H, -2V, T, +[aT,Yo(aR) ~aH, J,(MaR)I(R; —R?),
w ':a—a[ZF‘; H, +2PH, - V,T, -V, T, +[T. Y, (aR) +aT, Y, (aR)
& 4.11)
-ReTY,(eR)~H,J)(@R)~aH,J(aR)~RaH, & (@R)I(R; -R?) (4.
0
Hi, = 2R, (aR,) - RY, (aR)]
da _ 1 (v+Is+0s®)(L+24s+3ks?) — (s + As” +ks®)(I + 2qs)
s 2a (v+ls+0s’)’ " (4.12)

Adding Res(0) , Res(s,) . Res(s,) and

Res(s,,) a complete solution for constant
acceleration case is obtained as
M:(ar2+c+d In r)t+ir“+ir2 Inr+gr?
u, 16y 4v
Spnt Syt St (4'13
+hh+2( e & JRR(r) )
n1\ Sin Q ) SZHQQ'(SQH) SanZQ’(ssn)

where  RR(r),Q'(s,, )i =1,2,3, are defined in Egs.
(4.9)-(4.12).

The first term on the right-hand side of Eq. (4.13)
represents the steady state velocity, the second term is
the transient response of the flow to an abrupt change
either in the boundary conditions, body forces,
pressure gradient or other external driving force.

Eg. (3.20) is used to determine the pressure
gradient in this flow field, and follows the same
procedure for soIving velocity profile

Res(0)= pU"( t—

In——4v(f +g)+c—4al), (4.14)



PY, PP(s,,)
tO Slanl(Sln)

Sppt

e,

Res(s

1n):_

. (4.15)
PP(s;,) = (8, +25,," + ksma)[ﬁ Ko(mR) — 1, (MR)I(R; ~ RY),
i=1,2,3
U
Res(szn): _p p PZP(SZn) esmt'
to 550 Q(sz0)
pli)J 2lr;’F’(S 2; (4.16)
Res(s,, )= ———" n7_glurl,

tO Ssan'(Ssn )

Therefore, the pressure gradient is

LJ(Z’t):&{tg—vln&—w(f+g)+c—4al

oz t, P R

—i{ PP(Si) gaut , PP(Ga) gue, PP(Sw) e (4
n=1 slan'(Sm) SZnZQI(SZn) sanZQl(san)

where PP(s; ),i=12,3 are defined in Eq. (4.15),
Q'(s,, )i =123, are defined in Eqgs. (4.9)-(4.12).

Case 2. Suddenly started flow
For a suddenly started flow between the parallel
surfaces, the piston motion can be described as follows

_ |0 fort<0,
P U, fort>0,

where U o

(4.18)

is the constant velocity.
In which case the velocity profile is

u(rt)

U

P

=ar?+c+dinr

(4.19
RR )

Sont esznt

) 5%Q ()

e

5Q' ( 5) " 50Q (50

+z[

)

=-aR;}

where 2
—In=2 R, d=
P

R2),c
R, )

a 2
(RE - —dInR,,
In&
1
P=(RZ-RZ)(INRR, +1)+2RZInR, —2RZInR,,
Q'(s;,)i=12,3 are defined in Egs. (4.11) and (4.12),
and the pressure gradient is

ap(z.t) - {8\/ '”%’ZLPZ(‘?;)) .

oz

PP(S2) gout
53,Q'(55,)

PR, |
T 5@ ()

‘‘‘‘‘

where PP(s, ),i=12,3 are defined in Eq. (4.15),
RR(r).Q’(s,,).i =1,2,3, are defined in Egs. (4.09)-
(4.12).

Case 3. Linear acceleration piston motion
The piston motion of linear acceleration can be
described by the following equation:

U
u,(t)=a,t’ =[t”Jt2 (4.21)
0
where &, is the constant acceleration, U p s the
final velocity after acceleration, and t; is the time

period of acceleration.
In which case the velocity profile is

17)
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u("’70%:(arz+c+d|nr)t2+[ir“-v-irzlnr-v-kkrz+m]t
u, 8v 2v
+Jr6+Lr“+Mr2+N+3g—vr"lnr+%(l—l;)rzlnr (4_22)
es“‘ 853"(
) B I LU
2 _p2
where d:72(R2 Rl), —Eln&,c=—aRf—dlnR1,
P P R
P= (R2 -R:)(INRR, +1)+2R2InR, —2RZInR,,
d
kk = (Rz R? )[?( 2 Rf‘)+;(Rz2 InR, =R InR,)],
RS kk d 4 4 d 4 4
m= (RE- R)[*(z R+ (5 =16 (R ~ R+ (R InR, ~RYInR,)],
_ a
288v ’
1—(kk+22a 21—7)
1
=m[J(R§—R1)+L(R;—R1) , —R/ InRy)
+9(,1-l)(R§ InR, -RZInR)],
2 1%
LR R - )(RE-RY) - S (- DIRE -R)
(RZ RZ) 4 3 57612
Yo Z(R InR, - RS InR)——(/l—f)(R INR, —R! INR)].
and the pressure gradient is
M:BUP{—tB—VIn&—d—4vg+c—4al
ozt P R
& PPGM) . PPM) o . PP .| (4.23)
Z{o() 2R TSR
where PP(s, ),i =1,2,3 are defined in Eq. (4.15),

RR(r) , Q'(s, )i=12,3, are defined in Egs. (4.9)-
(4.12).

Case 4. Oscillatory piston motion
The oscillating piston motion starting from rest is
considered. The piston motion is described as
0 fort <0,
u,= .
P U, sin(wt) fort >0,
Taking the Laplace transform of Eq. (4.24), and we
have

(4.24)

()= Sziiwz (4.25)
Substituting Eq. (4.25) into Eqg. (3.18) to find the
velocity profile. The poles are simple polesat s=+iw
and the roots of ahcosah —sin ah =0. The solution
to the velocity profile is

M. e valy-io)-eoty il

s>0-

(4.26
RR )

N Z[ gt N gt N gt
(s +07)Q () (52 +0")Qsz0) (85, +0")Q(s0)

where Q(y,s) is defined by Eq. (3.17), and the
pressure gradient is obtained as
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Khan, M., Anjum, A., and Fetecau, C., “On exact
solutions of Stokes second problem for a Burgers’
fluid, II. The cases y = A2/4 and y > A2/4,” Z.
Angew. Math. Phys., Vol. 62, Issue 4, pp. 749-759
(2011).

Tong, D., and Shan, L., “Exact solutions for
generalized Burgers’ fluid in an annular pipe,”

(ipw+ 0By )e“T (io) Meccanica, Vol. 44, Issue 4, pp. 427-431 (2009).

ap(z,t):_& +(_iwp+O_Boz)e—iimtl—~(_iw) (4.27) Tripathi, D., “Numerical study on peri_staltic flow c_Jf
oz 2 ) ) generalized Burgers’ fluids in uniform tubes in
PP(s,,) o the presence of an endoscope,” Int. J. Numer.

(Sln2+w2)Q'(51n)e Method. Biomed. Eng., Vol. 27, Issue 11, pp.

) P 1812-1828 (2011).
+HZ +4(52n2 +0)2)(57'(33")e u
PPy

] (53ﬂ2+w2)Q'(53n) ] L5 g o
where PP(s, ),i=12.3 are defined in Eq. (4.15), Iﬁ”? '? SE m& E N Burger

RR(r),Q'(s, ).i=123, are defined in Egs. (4.9)- m~ ;tlg_ﬁs iﬂ r‘,, ;;;ﬁ, A
(4.12) and

I(s) = (s + A8 +ks3)A[lK0(mR1)— 1, (MR,)] TR *ﬂﬁ R ERT

Sanl

(4.28
and ., _ (s+ﬂs +ks; ) ) wﬁz
v+Is+qs

A N
CONCLUSIONS . Rl s
The analytical solutions of velocity profile and il o SR

pressure gradient to the different types of piston

motion that corresponding to the given inlet volume Fﬁ §p

flow rate are solved by using Laplace transform. The WA 4 PR s

pressure gradient for each flow condition can be

derived from the given function of volume flow rate

with the same method. It is very beautiful for fully

developed flows that the relaxation time only appears “‘Lﬁ &

as the motion is unsteady. o s " 5 T, pEed
The present method only can be used for models :\ﬁ 1 L:,‘ j <~ PT; Bk it E; i . j{ F,jlf—;

of linear PDE due to the limitation of Laplace A l\E R 3 Burger i 88 ch2t 48 fi £ i

transform. However, it still remains open and needs LR L o O Rl

further investigation for models of nonlinear PDE in FEEE Ao Ed - R g ’”'ﬁv (& ¥ ) e
the future. &> 42 (PDE/ODE) % fj% - #a » &§ F
T s % fy it Burgerin 88 chIR % {% e iz BT
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