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ABSTRACT 

 
This paper introduces a spindle imbalance 

detection method based on principal component 
analysis and a self-organizing map for machine tools 
under computer numerical control. By analyzing 
vibration signals collected during spindle operation, 
the method extracted eight key frequency-domain 
features, including spindle rotation and bearing 
characteristic frequencies. These features were refined 
through principal component analysis to eliminate 
collinearity while preserving essential information. A 
diagnostic model was established using a self-
organizing map trained exclusively with healthy state 
data, enabling the autonomous monitoring of spindle 
health conditions. The method’s effectiveness was 
validated through extensive experiments on a 
YCM_NDV102A vertical machining center. 
Experiments revealed accuracy of 99.7% and 100% in 
identifying normal spindle conditions and imbalance 
states, respectively. Overall, the proposed method 
performed similarly to a supervised learning method 
but did not require fault data for model training, 
making it more suitable for industrial applications. 
 

INTRODUCTION 
 

In modern manufacturing, spindle systems play a 
key role in the use of computer numerical control 
(CNC) machine tools because these systems’ 
operation directly affects machining precision and 
 
 
 
 
 
 
 

product quality. Detection of spindle imbalance is a 
major challenge in maintaining machining accuracy 
and extending equipment’s lifespan. The traditional 
detection methods are primarily manual inspection 
and scheduled maintenance, which are time-
consuming and require substantial human resources 
(Dai et al., 2022). These conventional approaches 
typically lack real-time monitoring capabilities, 
potentially leading to delayed fault detection and high 
maintenance costs (Cao et al., 2017; Wong et al., 2020). 
These limitations are particularly prominent in high-
speed-machining environments, in which spindle 
imbalance can result in poor surface quality, 
accelerated tool wear, and even equipment safety 
concerns (Dai et al., 2022; Huang et al., 2015). 

Recent advancements in condition monitoring 
technology have underscored the effectiveness of 
vibration signal analysis in detecting spindle 
imbalance. Vibration-based monitoring offers several 
advantages, including noninvasive measurement, real-
time detection capability, and high sensitivity to 
mechanical anomalies (Gangsar and Tiwari, 2020). 
According to the literature, the vibration signals 
generated during a spindle’s operation contain key 
information regarding the spindle’s dynamic behavior, 
and these signals can be used to identify imbalance 
conditions before any severe damage occurs 
(Kuntoğlu et al., 2021). In addition, analyzing the 
spectral features of vibration signals can help identify 
various spindle fault modes, with imbalance fault 
characteristics being particularly distinctive modes 
(Hsieh et al., 2015). Moreover, integrating edge 
computing architecture can substantially improve the 
efficiency of data processing, enabling real-time fault 
detection (Wójcicki et al., 2021). Empirical mode 
decomposition can be used to process nonstationary 
vibration signals, and it can be combined with adaptive 
threshold recommendation to enhance detection 
accuracy (Olalere et al., 2023; Zheng et al., 2022). 
Deep learning technology can be employed for signal 
processing and feature extraction (Tama et al., 2023). 
Various vibration signal–based deep learning fault 
detection methods have been developed, including 
graph-based neural networks, physics-informed 
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machine learning, and transformer convolutional 
network–based fault diagnosis. However, these 
methods require large amounts of fault data for 
training, and obtaining these data is often difficult in 
industrial environments. 

Intelligent diagnostic technology plays a key role 
in spindle health monitoring (Cao et al., 2017). Despite 
the potential of machine learning in spindle fault 
detection, most of the currently available machine 
learning methods rely on supervised learning 
(Fernandes et al., 2022). These methods typically 
require data from both healthy and faulty states for 
model training, which poses major limitations in 
practical applications in which fault data may be 
scarce or unavailable, thereby necessitating the 
development of more practical semisupervised or 
unsupervised learning techniques (Denkena et al., 
2021). Many detection systems require manual 
parameter adjustment and threshold setting, which 
reduces their adaptability to wide-ranging operating 
conditions (Kuntoğlu et al., 2021; Olalere et al., 2023; 
Wójcicki et al., 2021; Zheng et al., 2022). Both 
automatic system parameter adjustment and adaptive 
threshold setting are crucial to improving a detection 
system’s robustness (Thoppil et al., 2022). Methods 
combining multisource data and multiscale analysis 
can enhance detection reliability (Ma et al., 2023), 
although effectively integrating such information 
remains challenging. Additionally, maintaining high 
detection accuracy while reducing computational load 
in complex industrial environments remains an 
essential research task (Hassan et al., 2023). 
According to the latest research trends, digital twin 
technology can be applied to spindle health monitoring 
(Peng et al., 2022). Moreover, establishing accurate 
digital models integrated with real-time monitoring 
data can help predict spindle dynamic behavior and 
potential failures. 

To address the aforementioned challenges, this 
paper introduces a spindle imbalance detection 
method (SIDM) that integrates principal component 
analysis (PCA) with a self-organizing map (SOM). 
This method involves extracting frequency-domain 
features from vibration signals, refining these features 
through PCA, and establishing a diagnostic model by 
using an SOM. Unlike traditional supervised learning 
techniques, this method requires only healthy state 
data to establish an effective detection mechanism. 
The effectiveness of the proposed method was 
demonstrated through experiments on a vertical 
machining center, and the results indicate its excellent 
detection performance. 

The remainder of this paper is organized as 
follows. Section 2 describes the experimental setup 
and data collection process, including vibration signal 
measurements conducted using accelerometers 
installed on a vertical machining center spindle. 
Section 3 introduces the theoretical framework of the 
proposed method, including feature extraction, PCA-

based feature refinement, and SOM-based detection 
model development. Section 4 discusses the 
effectiveness of the proposed method, as shown 
through comprehensive experimental validation and a 
comparison with traditional supervised learning 
methods. Finally, Section 5 summarizes the main 
findings and contributions of this study. 
 

EXPERIMENTAL ANALYSIS 
 

To validate the effectiveness of the proposed 
method, experiments were conducted using a 
YCM_NDV102A vertical machining center. Because 
of the major effects of spindle vibration characteristics 
on machining precision and equipment lifespan, the 
experimental design prioritized the acquisition and 
analysis of accurate vibration signals. Data were 
collected at a sampling frequency of 12,800 Hz by 
using a single-axis accelerometer (model: PCB 
601A02) installed on a spindle as shown in Figure 1. 
The specifications of the accelerometer and data 
acquisition module (model: NI 9234) are presented in 
Table 1 and Table 2, respectively. The spindle was 
operated at 10,000 RPM under no-load conditions, 
with each measurement of duration 1 s constituting a 
complete data record. Over a period of 1 month (from 
April 8 to May 9, 2024), 51,750 normal spindle 
operation data points and 1,800 unbalanced spindle 
operation data points were collected. 
 

 
Fig. 1. Setup for accelerometer installation and data 

acquisition system configuration. 
 

To train and validate our model, we simulated 
changes in spindle dynamic balance by replacing the 
locking screws on the terminal key, in accordance 
with the manufacturer’s recommendations. The 
terminal key plays a crucial role in the entire spindle 
system, primarily ensuring accurate and secure 
installation of the tool holder in the spindle shaft 
(Figure 2(a)). When the tool holder is inserted into the 
spindle shaft, the keyway on the tool holder must 
precisely align with the terminal key fixed on the 
spindle shaft. A precise fit ensures effective and stable 
transmission of torque from the spindle to the tool 
holder during operation. 

 
Table 1. Accelerometer specifications 
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Parameter Value 
Sensitivity 500 mV/g 
Frequency range (±3dB) 0.17 ~ 8000 Hz 
Measuring range ±10 g 
Broadband Resolution 35 µg 

 

Table 2. Data acquisition module specifications 

Parameter Value 

Input Range ±5 V 
Maximal Sampling rate 51.2 kHz 
Resolution  24 bits 
Built-in filter Anti-aliasing filter 

 
The experimental design defined the spindle state 

with standard-mass screws (5.3 g) installed as the 
healthy baseline state, representing the optimal 

dynamic balance conditions during spindle operation. 
The standard screws were replaced with lighter screws 
(4.6 g) selected from the manufacturer's approved 
replacement parts list, and the mass difference of 0.7 
g (representing a 13.2% reduction from the standard 
mass) resulted in a prominent dynamic imbalance in 
the spindle system (Figure 2(b)). This carefully 
controlled mass differential was sufficient to induce 
detectable dynamic imbalance while remaining within 
the manufacturer's safety parameters for experimental 
testing. Such an approach enabled the establishment 
of a complete data set containing different spindle 
operating states, providing a reliable experimental 
foundation for subsequent analyses and validation. 
This experimental design not only simulated potential 
spindle imbalance scenarios in actual working 
environments but also ensured experimental 
controllability and data reproducibility. 

 

  
(a) (b) 

Fig. 2. Generation of spindle dynamic imbalance by altering the terminal key screw’s mass: (a) screw installation 
position and (b) screw selection. 

 
THEORETICAL FRAMEWORK AND 

ANALYTICAL METHODS 
 
Feature Extraction 

In this study, we performed feature extraction on 
each 1-s vibration signal. As shown in Table 3, the 
extracted features were primarily spindle rotation 
frequency features and bearing vibration features. For 
the spindle rotation frequency features, we used the 
spindle’s rotational frequency as the fundamental 
frequency (fd = 166.67 Hz). Using fast Fourier 
transform (FFT), we extracted four features 
representing the spectral amplitudes of the 
fundamental frequency and its harmonic frequencies. 
These features effectively reflected the dynamic 
balance state of the spindle. 

For the bearing vibration features, we conducted 
an envelope spectrum (enveloped-FFT spectrum) 
analysis, particularly because low contact stability 
between bearing components under spindle imbalance 
conditions can induce abnormal vibration, which 

typically has intermittent or amplitude modulation 
characteristics (Rodet and Philippe, 1992). Envelope 
spectrum analyses demodulate and remove high-
frequency carrier signals, highlighting low-frequency 
modulation signals and thereby making bearing-
related characteristic frequencies more identifiable. 
Using this analysis, we extracted four key features 
from the envelope spectrum: the ball pass frequency 
outer (BPFO) amplitude, ball pass frequency inner 
(BPFI) amplitude, ball spin frequency (BSF) 
amplitude, and fundamental training frequency (FTF) 
amplitude. 

In summary, we established a feature set 
containing eight frequency-domain features. These 
features were the key frequency components of both 
spindle rotation and bearing operation, thereby 
effectively characterizing the dynamic operational 
state of the spindle. 
 
 
 
Table 3. Feature extraction methods and mathematical 
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expressions for spindle vibration analysis. 

Feature Expression Description 

PnX 𝑠𝑠(𝑛𝑛 × 𝑓𝑓𝑑𝑑),  
𝑛𝑛 = 1, 2, 3, 4 

Amplitudes corresponding 
to the harmonic frequencies 
of n × fd in an FFT spectrum 

PBSF Amplitude corresponding to a BSF of 1,876 Hz in an 
enveloped-FFT spectrum 

PFTF Amplitude corresponding to an FTF of 76 Hz in an 
enveloped-FFT spectrum 

PBPFI Amplitude corresponding to a BPFI of 2,532 Hz in 
an enveloped-FFT spectrum 

PBPFO Amplitude corresponding to a BPFO of 2,135 Hz in 
an enveloped-FFT spectrum 

*Note: xi = (x1, x2, …, xN) is the sequence of the time-
domain signal; s(k) is the amplitude corresponding to a 
frequency of k Hz in the FFT spectra of xi. 

 
Feature Data Set Refinement Based on PCA 

After features are extracted, refining the feature 
data set is essential for establishing a robust and 
efficient diagnostic model. Major collinearity may 
exist between the extracted features, and this 
interdependence among features not only increases 
computational complexity but also may lead to model 
redundancy, leading to poor diagnostic performance 
(Shekar et al., 2017). To address this problem, we 
conducted PCA (Wold et al., 1987) to achieve feature 
dimensionality reduction. This approach can 
effectively eliminate the collinearity between features 
while preserving the main information in the data, 
thereby ensuring linear independence between the 
features used to establish the diagnostic model. 

Data preprocessing is essential before PCA is 
performed for dimensionality reduction. Different 
features may be recorded using differing units of 
measurement, and these scale differences may cause 
certain features to have a disproportionate influence 
during analysis (Geladi and Kowalski, 1986). To 
eliminate this possibility, we adopted z-score 
standardization, which involves subtracting the mean 
from each feature’s original data and dividing by the 
standard deviation (Patro and Sahu, 2015). This 
standardization approach not only makes different 
features comparable but also enhances the accuracy 
and reliability of subsequent PCA. In accordance with 
the PCA principles, the z-score standardized feature 
data set X ∈ ℜm×n (where m represents the number of 
samples and n represents the number of features) can 
be expressed as 
 

𝐗𝐗 = 𝐭𝐭𝐏𝐏T (1) 
 

In this equation, P consists of a series of principal 
component loading vectors (PCLVs) and can be 
expressed as P = [p1, …, pi, …, pn], where pᵢ 
represents the ith PCLV, which is the ith eigenvector 
of the autocorrelation matrix of X, with λᵢ being its 
corresponding eigenvalue. The magnitude of 
eigenvalues directly reflects the importance of 

corresponding PCLVs in explaining the original data 
variance, with small eigenvalues indicating that 
variation in a specific direction primarily originates 
from noise and can therefore be ignored during 
dimensionality reduction. Meanwhile, t consists of all 
principal component score vectors corresponding to 
the principal components and can be expressed as t = 
[t1, …, ti, …, tn]. To quantify the contribution of each 
PCLV to the original data variance, we calculated the 
contribution rate fⱼ of each PCLV, which is the ratio of 
the eigenvalue of that principal component to the sum 
of all eigenvalues: 
 

𝑓𝑓𝑗𝑗 =
𝜆𝜆𝑗𝑗

∑ 𝜆𝜆𝑖𝑖𝑛𝑛
𝑖𝑖=1

, 𝑗𝑗 = 1, 2, … , 𝑛𝑛 (2) 

 
We selected the most appropriate degree of 

dimensionality reduction given the cumulative 
contribution rate. The typical approach is to sort the 
contribution rates fⱼ from highest to lowest and to 
select the first r PCLVs whose cumulative 
contribution rate is above a predetermined threshold. 
This approach enables the original n-dimensional 
feature space to be reduced to r dimensions: 
 

𝐭𝐭𝑟𝑟 = 𝐗𝐗𝐩𝐩𝑟𝑟, (3) 
 
where Pr = [p1, …, pr] consists of the selected r PCLVs 
and tr is the new dimensionality-reduced feature data 
set. 
 
Development of a Detection Model Based on SOM 

In this study, an SOM (Huang et al., 2007) was 
used as an unsupervised learning technique to detect 
spindle state anomalies. The SOM was selected 
because of its unique competitive learning mechanism, 
which can effectively project high-dimensional 
training samples onto a two-dimensional neuron grid 
while preserving topological relationships. This 
dimensionality-reduction mapping approach not only 
retains the key clustering characteristics of the training 
data but also yields intuitive and easily interpretable 
visualizations, thereby facilitating understanding and 
analysis of complex high-dimensional data 
relationships. Figure 3 illustrates the key steps in the 
SOM training process. During the learning process of 
an SOM, a key feature is its preservation of input 
space topological properties through neighborhood 
functions. This mechanism ensures that similar input 
patterns are mapped to adjacent neurons during 
training, thereby enabling the formation of meaningful 
local structures in the two-dimensional grid space. 
This topology-preserving characteristic makes SOMs 
particularly suitable for anomaly detection tasks, 
particularly because they can effectively capture 
nonlinear relationships and potential anomalous 
patterns in data.  

In a trained SOM network, the network structure 
clearly depicts the relationships between neighboring 
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neurons. Because adjacent neurons have similar 
feature representations in the original input space, 
SOMs effectively reflect the inherent relationships 
and patterns in the input data. Each SOM neuron 
represents a weight vector, which after training 
essentially becomes a representative center point of 
input data clusters, providing key reference 
benchmarks for subsequent anomaly detection. 
 

 
Fig. 3. Training process diagram for SOM. 

 
RESULTS AND DISCUSSION 

 
To evaluate the effectiveness of the proposed 

method, we conducted a data analysis and validation 
experiment. We divided the collected data, which 
consisted of 51,750 normal spindle operation samples 
and 1,800 unbalanced spindle operation samples, into 
four feature subsets (A, B, C, and D) on the basis of 
their temporal characteristics (Table 4). Feature 
subsets A and B consisted of normal spindle operation 
data collected from April 8 to April 24 (randomly 
distributed at a ratio of 7:3), feature subset C consisted 
of normal spindle operation data collected from April 
25 to May 9, and feature subset D consisted of 
unbalanced spindle operation data collected on April 
16. 

Figure 4 illustrates the overall training and 
testing process. In the model training phase, we used 
feature subset A to train the PCA model. 
Comprehensive analysis of the PCLV cumulative 
contribution rates revealed that the first five principal 
components achieved a cumulative contribution rate 
of 82% (Figure 5), which is widely accepted as a 
suitable threshold in engineering applications (Jolliffe, 
1982). The sixth principal component would only 
contribute an additional 5% to the explained variance, 
while the remaining components collectively account 

for less than 15% of the total variance. Given that this 
marginal increase in information retention does not 
justify the corresponding increase in computational 
complexity, these remaining components were 
reasonably regarded as influences on secondary 
variations. Therefore, we chose to retain the first five 
principal components for subsequent feature 
dimensionality reduction.  

 

 
Fig. 4. Training and testing with feature subsets A, B, 

C, and D. 
 

 
Fig. 5. PCLV selection. 

 
After determining the optimal number of 

principal components, we selected feature subset A for 
PCA model dimensionality reduction, and we 
subsequently used this subset to train the SOM model. 
This SOM network structure design followed the 
empirical formula M ≈ 5√L (Tian et al., 2014), where 
M represents the number of neurons and L represents 
the training data volume. For this study, we adopted a 
40 × 40 map size configuration with a total of 1,600 
neurons and 400 training iterations. To establish 
reliable anomaly detection criteria, we proposed a 
monitoring control limit (MCL) method based on a 
minimum quantification error (MQE) (Huang et al., 
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2007). We used the following equation to determine 
the MQE required for establishing the MCL: 
 

MQE = ‖𝐝𝐝 − 𝐰𝐰‖, (4) 
 
where d represents the data obtained from feature 
subset B after PCA model dimensionality reduction 
and w is the weight vector of the best matching unit in 
the SOM for feature subset B. Using the MQEs of 
feature subset B, we precisely quantified the 
difference between the input data and the training 
model. This quantification approach provided a 
reliable indicator of spindle state anomaly detection, 
enabling the system to identify potential spindle 
imbalance states in a timely manner. Overall, the MCL 
revealed two judgment thresholds, with differing 
levels of strictness, through the MQE distribution 
characteristics of feature subset B. These two 
thresholds were MCL3 and MCL6, corresponding to 
the mean MQE plus three and six standard deviations, 
respectively: 
 

MCL3 = 𝜇𝜇 + 3𝜎𝜎, (5a) 
MCL6 = 𝜇𝜇 + 6𝜎𝜎, (5b) 

 
where σ and μ represent the standard deviation and 
mean, respectively, of the MQEs of feature subset B. 
Because the data in feature subset B all pertained to 
normal spindle operation, the MCL established with 
these data served as a threshold for distinguishing 
between healthy and unbalanced spindle states. 
Comparison of new samples with the established MCL 
led to these samples being classified as normal or 
unbalanced spindle states. According to our 
experimental results (Table 5), when MCL6 was used 
as the judgment threshold, the correct identification 
rate for feature subset C (normal spindle state) was 
99.7%, and the correct identification rate for feature 
subset D (unbalanced spindle state) was 100%. These 
values represent a major improvement over the 
accuracy of 96.53% achieved when MCL3 was used, 
indicating that a more permissive threshold setting 
may be more suitable for practical applications. 

To further confirm the effectiveness of the 
proposed method, we compared it with other 
traditional supervised learning techniques. 
Specifically, we selected a support vector machine 
(SVM) (Liua et al., 2019; Shuo et al., 2022) as our 
benchmark method, with a radial basis function as the 
kernel function to construct a classifier. Subsequently, 
we randomly divided feature subset D into D1 and D2 
at a ratio of 1:1, with feature subsets A and D1 used 
for SVM model training and feature subsets C and D2 
used for performance validation. The results indicated 
that although the SVM approach achieved high 
accuracy of 99.8% and 100% in identifying normal 
and unbalanced spindles, respectively, this supervised 
learning technique required training data from both 
normal and unbalanced states, which is often difficult 

to achieve in practical applications. Notably, the 
computation time for establishing a diagnostic model 
was evaluated using an AMD Ryzen 9-5900HS (3.30 
GHz, 32GB RAM) system. The model training time 
for SIDM and SVM methods were 13.4s and 4.5s, 
respectively, indicating that the SVM method reduces 
training time by 66%. By contrast, although the 
proposed method exhibited slightly lower accuracy in 
normal spindle judgment compared with the SVM 
approach (96.53% with MCL3 and 99.7% with MCL6), 
it enabled establishment of the diagnostic model and 
MCL judgment threshold on the basis of only 
vibration signals from normal spindle operation; data 
from unbalanced spindles were not required. This 
ability makes the proposed method more practical and 
universally applicable in industrial applications, 
particularly in scenarios in which fault data are 
difficult to obtain or undesirable to generate. 
 
Table 4. Details of the four feature subsets. 

Subset Number of data points Experiment date Spindle status 

A 13,860 April 8 to April 24 Normal 

B 5,940 April 8 to April 24 Normal 

C 31,950 April 25 to May 9 Normal 

D 1,800 April 16 Unbalanced 

 
Table 5. Detection results of the proposed method. 

MCL MCL3 MCL6 
Subset C D C D 
Actual 
spindle state 

Normal Unbalanced Normal Unbalanced 

Classified as 
normal 

30,841 0 31,855 0 

Classified as 
unbalanced 

1,109 1,800 95 1,800 

Accuracy 96.53% 100% 99.7% 100% 

 
CONCLUSIONS 

 
In this study, we developed and validated an 

SIDM to address the challenge of health monitoring 
for CNC machine tool spindles. Our main 
contributions and findings are summarized as follows: 
 

(1). The proposed feature extraction technique 
combines spindle rotation and bearing 
characteristic frequencies to effectively 
capture the dynamic characteristics of 
spindle operation. In addition, the 
integration of PCA for feature refinement 
successfully reduces data dimensionality 
while retaining 82% of the original 
information in the first five principal 
components. 
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(2). The adoption of an SOM combined with an 
innovative MCL approach was found to 
result in high performance in distinguishing 
normal from unbalanced spindle states. In 
the case of MCL6, the proposed method 
achieves accuracy of 99.7% in normal state 
identification and 100% in imbalance 
detection, confirming the method’s 
reliability in practical applications. 

(3). The proposed method performs similarly to 
traditional supervised learning techniques, 
such as SVMs, but it eliminates the need for 
fault data during model training. This ability 
makes the proposed method particularly 
valuable in industrial environments in which 
fault data are difficult to obtain or generate. 

 
Overall, the proposed SIDM represents a major 

advancement in automated spindle health monitoring, 
providing a practical solution for improving 
maintenance efficiency and reducing machine 
downtime in modern manufacturing facilities. 
 

ACKNOWLEDGMENT 
 
This study was supported by the Precision Machinery 
Research Development Center and the National 
Science and Technology Council of Taiwan (contract 
no. NSTC-113-2221-E-150-033). 
 

REFERENCES 
Cao, H., Zhang, X., and Chen, X., "The Concept and 

Progress of Intelligent Spindles: A 
Review," Int. J. Mach. Tools Manuf., Vol. 112, 
pp. 21-52(2017).  

Dai, Y., Tao, X., Li, Z., Zhan, S., Li, Y., and Gao, Y., 
"A Review of Key Technologies for High-
Speed Motorized Spindles of CNC Machine 
Tools," Machines, Vol. 10, No. 2, p. 145 
(2022).  

Gangsar, P., and Tiwari, R., "Signal Based Condition 
Monitoring Techniques for Fault Detection 
and Diagnosis of Induction Motors: A State-
of-the-Art Review," Mech. Syst. Signal 
Process., Vol. 144, p. 106908(2020).  

Hsieh, N.K., Lin, W.Y., and Young, H.T., "High-
Speed Spindle Fault Diagnosis with the 
Empirical Mode Decomposition and 
Multiscale Entropy Method," Entropy, Vol. 
17, No. 4, pp. 2170-2183(2015).  

Denkena, B., Dittrich, M.A., Noske, H., Stoppel, D., 
and Lange, D., "Data-Based Ensemble 
Approach for Semi-Supervised Anomaly 
Detection in Machine Tool Condition 
Monitoring," CIRP J. Manuf. Sci. Technol., 
Vol. 35, pp. 795-802(2021).  

Fernandes, M., Corchado, J.M., and Marreiros, G., 

"Machine Learning Techniques Applied to 
Mechanical Fault Diagnosis and Fault 
Prognosis in the Context of Real Industrial 
Manufacturing Use-Cases: A Systematic 
Literature Review," Appl. Intell., Vol. 52, No. 
12, pp. 14246-14280(2022).  

Geladi, P., and Kowalski, B.R., “Partial Least-Squares 
Regression: A Tutorial,” Anal. Chim. Acta, 
Vol. 185, pp. 1-17(1986). 

Hassan, I.U., Panduru, K., and Walsh, J., "Review of 
Data Processing Methods Used in Predictive 
Maintenance for Next Generation Heavy 
Machinery," Data, Vol. 9, No. 5, pp. 69(2024).  

Huang, P., Lee, W.B. and Chan, C.Y., "Investigation 
of the Effects of Spindle Unbalance Induced 
Error Motion on Machining Accuracy in 
Ultra-Precision Diamond Turning," Int. J. 
Mach. Tools Manuf., Vol. 94, pp. 48-56(2015).  

Huang, R., Xi, L., Li, X., Liu, C.R., Qiu, H. and Lee, 
J., “Residual Life Predictions for Ball 
Bearings Based on Self-Organizing Map and 
Back Propagation Neural Network Methods,” 
Mech. Syst. Signal Process., Vol. 21, No. 1, pp. 
193-207(2007). 

Jolliffe, I.T., “A note on the use of principal 
components in regression,” Journal of the 
Royal Statistical Society. Series C (Applied 
Statistics), Vol. 31, No. 3, pp. 300-303(1982). 

Kuntoğlu, M., M., Salur, E., Gupta, M.K., Sarıkaya, 
M., and Pimenov, D.Y., "A State-of-the-Art 
Review on Sensors and Signal Processing 
Systems in Mechanical Machining 
Processes," Int. J. Adv. Manuf. Technol., Vol. 
116, No. 9, pp. 2711-2735(2021).  

Liua, J.Y., Yub, X.G., and Hana, Q.K., “Research on 
Fault Diagnosis of Aeronautic Gear Based on 
Permutation Entropy and SVM Method,” J. 
Chin. Soc. Mech. Eng., Vol. 40, No. 4, pp. 
413-422(2019). 

Ma, W., Liu, X., Yue, C., Wang, L., and Liang, S.Y., 
"Multi-Scale One-Dimensional Convolution 
Tool Wear Monitoring Based on Multi-Model 
Fusion Learning Skills," J. Manuf. Syst., Vol. 
70, pp. 69-98(2023).  

Olalere, I.O., and Olanrewaju, O.A., "Tool and 
Workpiece Condition Classification Using 
Empirical Mode Decomposition (EMD) with 
Hilbert–Huang Transform (HHT) of Vibration 
Signals and Machine Learning Models," Appl. 
Sci., Vol. 13, No. 4, pp. 2248(2023).  

Rodet, X., and Philippe, D., “Spectral Envelopes and 
Inverse FFT Synthesis,” 93rd Audio Eng. Soc. 
Convention (1992). 

Patro, S.G.K., and Sahu, K.K., “Normalization: A 
Preprocessing Stage,” arXiv preprint 
arXiv:1503.06462 (2015). 

Peng, F., Zheng, L., Peng, Y., Fang, C., and Meng, X., 
"Digital Twin for Rolling Bearings: A Review 
of Current Simulation and PHM 



 
J. CSME Vol.46, No.6 (2025) 

-608- 
 

Techniques," Measurement, Vol. 201, pp. 
111728(2022).  

Shekar, A.K., Bocklisch, T., Sánchez, P.I., Straehle, 
C.N., and Müller, E., “Including Multi-
Feature Interactions and Redundancy for 
Feature Ranking in Mixed Datasets,” 
In Joint European Conference on Machine 
Learning and Knowledge Discovery in 
Databases, LNAI (10534), pp. 239-255(2017). 

Shuo, W.A.N.G., Zhenliang, Y.U., Xu, L.I.U., and 
Zhipeng, L.Y.U., "Fault Monitoring and 
Diagnosis of Motorized Spindle in Five-Axis 
Machining Center Based on CNN-SVM-
PSO," Mech. Eng. Sci., Vol. 4 No. 2, pp. 21-
29(2022).  

Tama, B.A., Vania, M., Lee, S., and Lim, S., "Recent 
Advances in the Application of Deep Learning 
for Fault Diagnosis of Rotating Machinery 
Using Vibration Signals," Artif. Intell. 
Rev., Vol. 56, No. 5, 4667-4709(2023).  

Thoppil, N.M., Vasu, V., and Rao, C.S.P., "Bayesian 
Optimization LSTM/bi-LSTM Network with 
Self-Optimized Structure and 
Hyperparameters for Remaining Useful Life 
Estimation of Lathe Spindle Unit," J. Comput. 
Inf. Sci. Eng., Vol. 22 No. 2, p. 021012(2022).  

Tian, J., Azarian, M.H., and Pecht, M., “Anomaly 
Detection Using Self-Organizing Maps-Based 
K Nearest Neighbor Algorithm,” PHM Soc. 
Eur. Conf., Vol. 2. No. 1(2014). 

Wold, S., Esbensen, K., and Geladi, P., “Principal 
Component Analysis,” Chemom. Intell. Lab. 
Syst., Vol. 2, Nos. 1-3, pp. 37-52(1987).  

Wójcicki, J., Leonesio, M., and Bianchi, G., "Potential 
for Smart Spindles Adoption as Edge 
Computing Nodes in Industry 4.0," Procedia 
CIRP ,Vol. 99, pp. 86-91(2021).  

Wong, S.Y., Chuah, J.H., and Yap, H.J., "Technical 
Data-Driven Tool Condition Monitoring 
Challenges for CNC Milling: A Review," Int. 
J. Adv. Manuf. Technol., Vol. 107, pp. 4837-
4857(2020).  

Zheng, Q., Chen, G., and Jiao, A., "Chatter Detection 
in Milling Process Based on the Combination 
of Wavelet Packet Transform and PSO-
SVM," Int. J. Adv. Manuf. Technol., Vol. 120, 
No. 1, pp. 1237-1251(2022).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


