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ABSTRACT

This paper introduces a spindle imbalance
detection method based on principal component
analysis and a self-organizing map for machine tools
under computer numerical control. By analyzing
vibration signals collected during spindle operation,
the method extracted eight key frequency-domain
features, including spindle rotation and bearing
characteristic frequencies. These features were refined
through principal component analysis to eliminate
collinearity while preserving essential information. A
diagnostic model was established using a self-
organizing map trained exclusively with healthy state
data, enabling the autonomous monitoring of spindle
health conditions. The method’s effectiveness was
validated through extensive experiments on a
YCM _NDV102A  vertical machining center.
Experiments revealed accuracy of 99.7% and 100% in
identifying normal spindle conditions and imbalance
states, respectively. Overall, the proposed method
performed similarly to a supervised learning method
but did not require fault data for model training,
making it more suitable for industrial applications.

INTRODUCTION

In modern manufacturing, spindle systems play a
key role in the use of computer numerical control
(CNC) machine tools because these systems’
operation directly affects machining precision and
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product quality. Detection of spindle imbalance is a
major challenge in maintaining machining accuracy
and extending equipment’s lifespan. The traditional
detection methods are primarily manual inspection
and scheduled maintenance, which are time-
consuming and require substantial human resources
(Dai et al., 2022). These conventional approaches
typically lack real-time monitoring capabilities,
potentially leading to delayed fault detection and high
maintenance costs (Cao etal., 2017; Wong et al., 2020).
These limitations are particularly prominent in high-
speed-machining environments, in which spindle
imbalance can result in poor surface quality,
accelerated tool wear, and even equipment safety
concerns (Dai et al., 2022; Huang et al., 2015).
Recent advancements in condition monitoring
technology have underscored the effectiveness of
vibration signal analysis in detecting spindle
imbalance. Vibration-based monitoring offers several
advantages, including noninvasive measurement, real-
time detection capability, and high sensitivity to
mechanical anomalies (Gangsar and Tiwari, 2020).
According to the literature, the vibration signals
generated during a spindle’s operation contain key
information regarding the spindle’s dynamic behavior,
and these signals can be used to identify imbalance
conditions before any severe damage occurs
(Kuntoglu et al., 2021). In addition, analyzing the
spectral features of vibration signals can help identify
various spindle fault modes, with imbalance fault
characteristics being particularly distinctive modes
(Hsieh et al., 2015). Moreover, integrating edge
computing architecture can substantially improve the
efficiency of data processing, enabling real-time fault
detection (Wojcicki et al., 2021). Empirical mode
decomposition can be used to process nonstationary
vibration signals, and it can be combined with adaptive
threshold recommendation to enhance detection
accuracy (Olalere et al., 2023; Zheng et al., 2022).
Deep learning technology can be employed for signal
processing and feature extraction (Tama et al., 2023).
Various vibration signal-based deep learning fault
detection methods have been developed, including
graph-based neural networks, physics-informed
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machine learning, and transformer convolutional
network—based fault diagnosis. However, these
methods require large amounts of fault data for
training, and obtaining these data is often difficult in
industrial environments.

Intelligent diagnostic technology plays a key role
in spindle health monitoring (Cao et al., 2017). Despite
the potential of machine learning in spindle fault
detection, most of the currently available machine
learning methods rely on supervised learning
(Fernandes et al.,, 2022). These methods typically
require data from both healthy and faulty states for
model training, which poses major limitations in
practical applications in which fault data may be
scarce or unavailable, thereby necessitating the
development of more practical semisupervised or
unsupervised learning techniques (Denkena et al.,
2021). Many detection systems require manual
parameter adjustment and threshold setting, which
reduces their adaptability to wide-ranging operating
conditions (Kuntoglu et al., 2021; Olalere et al., 2023;
Wojcicki et al., 2021; Zheng et al., 2022). Both
automatic system parameter adjustment and adaptive
threshold setting are crucial to improving a detection
system’s robustness (Thoppil et al., 2022). Methods
combining multisource data and multiscale analysis
can enhance detection reliability (Ma et al., 2023),
although effectively integrating such information
remains challenging. Additionally, maintaining high
detection accuracy while reducing computational load
in complex industrial environments remains an
essential research task (Hassan et al., 2023).
According to the latest research trends, digital twin
technology can be applied to spindle health monitoring
(Peng et al., 2022). Moreover, establishing accurate
digital models integrated with real-time monitoring
data can help predict spindle dynamic behavior and
potential failures.

To address the aforementioned challenges, this
paper introduces a spindle imbalance detection
method (SIDM) that integrates principal component
analysis (PCA) with a self-organizing map (SOM).
This method involves extracting frequency-domain
features from vibration signals, refining these features
through PCA, and establishing a diagnostic model by
using an SOM. Unlike traditional supervised learning
techniques, this method requires only healthy state
data to establish an effective detection mechanism.
The effectiveness of the proposed method was
demonstrated through experiments on a vertical
machining center, and the results indicate its excellent
detection performance.

The remainder of this paper is organized as
follows. Section 2 describes the experimental setup
and data collection process, including vibration signal
measurements conducted using accelerometers
installed on a vertical machining center spindle.
Section 3 introduces the theoretical framework of the
proposed method, including feature extraction, PCA-

J. CSME Vol.46, No.6 (2025)

based feature refinement, and SOM-based detection
model development. Section 4 discusses the
effectiveness of the proposed method, as shown
through comprehensive experimental validation and a
comparison with traditional supervised learning
methods. Finally, Section 5 summarizes the main
findings and contributions of this study.

EXPERIMENTAL ANALYSIS

To validate the effectiveness of the proposed
method, experiments were conducted using a
YCM _NDV102A vertical machining center. Because
of the major effects of spindle vibration characteristics
on machining precision and equipment lifespan, the
experimental design prioritized the acquisition and
analysis of accurate vibration signals. Data were
collected at a sampling frequency of 12,800 Hz by
using a single-axis accelerometer (model: PCB
601A02) installed on a spindle as shown in Figure 1.
The specifications of the accelerometer and data
acquisition module (model: NI 9234) are presented in
Table 1 and Table 2, respectively. The spindle was
operated at 10,000 RPM under no-load conditions,
with each measurement of duration 1 s constituting a
complete data record. Over a period of 1 month (from
April 8 to May 9, 2024), 51,750 normal spindle
operation data points and 1,800 unbalanced spindle
operation data points were collected.

Fig. 1. Setup for accelerometer installation and data
acquisition system configuration.

To train and validate our model, we simulated
changes in spindle dynamic balance by replacing the
locking screws on the terminal key, in accordance
with the manufacturer’s recommendations. The
terminal key plays a crucial role in the entire spindle
system, primarily ensuring accurate and secure
installation of the tool holder in the spindle shaft
(Figure 2(a)). When the tool holder is inserted into the
spindle shaft, the keyway on the tool holder must
precisely align with the terminal key fixed on the
spindle shaft. A precise fit ensures effective and stable
transmission of torque from the spindle to the tool
holder during operation.

Table 1. Accelerometer specifications
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Parameter Value
Sensitivity 500 mV/g
Frequency range (£3dB) 0.17 ~ 8000 Hz
Measuring range +10g
Broadband Resolution 35 ug

Table 2. Data acquisition module specifications

Parameter Value
Input Range 5V
Maximal Sampling rate 51.2 kHz
Resolution 24 bits

Built-in filter Anti-aliasing filter

The experimental design defined the spindle state
with standard-mass screws (5.3 g) installed as the
healthy baseline state, representing the optimal

Terminal key

(@)

Standard-mass screw

dynamic balance conditions during spindle operation.
The standard screws were replaced with lighter screws
(4.6 g) sclected from the manufacturer's approved
replacement parts list, and the mass difference of 0.7
g (representing a 13.2% reduction from the standard
mass) resulted in a prominent dynamic imbalance in
the spindle system (Figure 2(b)). This carefully
controlled mass differential was sufficient to induce
detectable dynamic imbalance while remaining within
the manufacturer's safety parameters for experimental
testing. Such an approach enabled the establishment
of a complete data set containing different spindle
operating states, providing a reliable experimental
foundation for subsequent analyses and validation.
This experimental design not only simulated potential
spindle imbalance scenarios in actual working
environments but also ensured experimental
controllability and data reproducibility.

Reduced-mass screw

VRN

“(b)

Fig. 2. Generation of spindle dynamic imbalance by altering the terminal key screw’s mass: (a) screw installation

position and (b) screw selection.

THEORETICAL FRAMEWORK AND
ANALYTICAL METHODS

Feature Extraction

In this study, we performed feature extraction on
each 1-s vibration signal. As shown in Table 3, the
extracted features were primarily spindle rotation
frequency features and bearing vibration features. For
the spindle rotation frequency features, we used the
spindle’s rotational frequency as the fundamental
frequency (fz = 166.67 Hz). Using fast Fourier
transform (FFT), we extracted four features
representing the spectral amplitudes of the
fundamental frequency and its harmonic frequencies.
These features effectively reflected the dynamic
balance state of the spindle.

For the bearing vibration features, we conducted
an envelope spectrum (enveloped-FFT spectrum)
analysis, particularly because low contact stability
between bearing components under spindle imbalance
conditions can induce abnormal vibration, which

typically has intermittent or amplitude modulation
characteristics (Rodet and Philippe, 1992). Envelope
spectrum analyses demodulate and remove high-
frequency carrier signals, highlighting low-frequency
modulation signals and thereby making bearing-
related characteristic frequencies more identifiable.
Using this analysis, we extracted four key features
from the envelope spectrum: the ball pass frequency
outer (BPFO) amplitude, ball pass frequency inner
(BPFI) amplitude, ball spin frequency (BSF)
amplitude, and fundamental training frequency (FTF)
amplitude.

In summary, we established a feature set
containing eight frequency-domain features. These
features were the key frequency components of both
spindle rotation and bearing operation, thereby
effectively characterizing the dynamic operational
state of the spindle.

Table 3. Feature extraction methods and mathematical

-603-



expressions for spindle vibration analysis.

Feature Expression Description

Amplitudes corresponding
to the harmonic frequencies
of n x f;in an FFT spectrum

PnX S(Tled),
n=1234

Pisr Amplitude corresponding to a BSF of 1,876 Hzin an
enveloped-FFT spectrum

Prrr Amplitude corresponding to an FTF of 76 Hzin an
enveloped-FFT spectrum

Prrr1 Amplitude corresponding to a BPFI of 2,532 Hzin
an enveloped-FFT spectrum

Psrro Amplitude corresponding to a BPFO of 2,135 Hzin
an enveloped-FFT spectrum

*Note: xi = (x1, x2, ..., x) is the sequence of the time-
domain signal; s(k) is the amplitude corresponding to a
frequency of k& Hz in the FFT spectra of x:.

Feature Data Set Refinement Based on PCA

After features are extracted, refining the feature
data set is essential for establishing a robust and
efficient diagnostic model. Major collinearity may
exist between the extracted features, and this
interdependence among features not only increases
computational complexity but also may lead to model
redundancy, leading to poor diagnostic performance
(Shekar et al., 2017). To address this problem, we
conducted PCA (Wold et al., 1987) to achieve feature
dimensionality reduction. This approach can
effectively eliminate the collinearity between features
while preserving the main information in the data,
thereby ensuring linear independence between the
features used to establish the diagnostic model.

Data preprocessing is essential before PCA is
performed for dimensionality reduction. Different
features may be recorded using differing units of
measurement, and these scale differences may cause
certain features to have a disproportionate influence
during analysis (Geladi and Kowalski, 1986). To
eliminate this possibility, we adopted z-score
standardization, which involves subtracting the mean
from each feature’s original data and dividing by the
standard deviation (Patro and Sahu, 2015). This
standardization approach not only makes different
features comparable but also enhances the accuracy
and reliability of subsequent PCA. In accordance with
the PCA principles, the z-score standardized feature
data set X € R (where m represents the number of
samples and n represents the number of features) can
be expressed as

X = tPT (1)

In this equation, P consists of a series of principal
component loading vectors (PCLVs) and can be
expressed as P = [pi, ..., pi, ..., Pn], Where p;
represents the ith PCLV, which is the ith eigenvector
of the autocorrelation matrix of X, with A; being its
corresponding eigenvalue. The magnitude of
eigenvalues directly reflects the importance of
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corresponding PCLVs in explaining the original data
variance, with small eigenvalues indicating that
variation in a specific direction primarily originates
from noise and can therefore be ignored during
dimensionality reduction. Meanwhile, t consists of all
principal component score vectors corresponding to
the principal components and can be expressed as t =
[ti, ..., t;, ..., t,]. To quantify the contribution of each
PCLV to the original data variance, we calculated the
contribution rate f; of each PCLV, which is the ratio of
the eigenvalue of that principal component to the sum
of all eigenvalues:

A )
fj-=—,]=1,2,...,n 2)

n
i=1/1i

We selected the most appropriate degree of
dimensionality reduction given the cumulative
contribution rate. The typical approach is to sort the
contribution rates f; from highest to lowest and to
select the first » PCLVs whose cumulative
contribution rate is above a predetermined threshold.
This approach enables the original n-dimensional
feature space to be reduced to » dimensions:

t, = Xp,, (€))

where P, = [p1, ..., p-] consists of the selected » PCLV's
and t, is the new dimensionality-reduced feature data
set.

Development of a Detection Model Based on SOM

In this study, an SOM (Huang et al., 2007) was
used as an unsupervised learning technique to detect
spindle state anomalies. The SOM was selected
because of its unique competitive learning mechanism,
which can effectively project high-dimensional
training samples onto a two-dimensional neuron grid
while preserving topological relationships. This
dimensionality-reduction mapping approach not only
retains the key clustering characteristics of the training
data but also yields intuitive and easily interpretable
visualizations, thereby facilitating understanding and
analysis of complex high-dimensional data
relationships. Figure 3 illustrates the key steps in the
SOM training process. During the learning process of
an SOM, a key feature is its preservation of input
space topological properties through neighborhood
functions. This mechanism ensures that similar input
patterns are mapped to adjacent neurons during
training, thereby enabling the formation of meaningful
local structures in the two-dimensional grid space.
This topology-preserving characteristic makes SOMs
particularly suitable for anomaly detection tasks,
particularly because they can effectively capture
nonlinear relationships and potential anomalous
patterns in data.

In a trained SOM network, the network structure
clearly depicts the relationships between neighboring
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neurons. Because adjacent neurons have similar
feature representations in the original input space,
SOMs effectively reflect the inherent relationships
and patterns in the input data. Each SOM neuron
represents a weight vector, which after training
essentially becomes a representative center point of
input data clusters, providing key reference
benchmarks for subsequent anomaly detection.

| Normalize the training data ‘

:

| Determine the map size ‘

v

| Initialize the neurons ‘

:

| Pick one data point from the training data ‘

.

| Find the best matching unit ‘

.

| Update the neurons ‘

.

Are all weight vectors grouped?

| SOM is trained ‘

Fig. 3. Training process diagram for SOM.
RESULTS AND DISCUSSION

To evaluate the effectiveness of the proposed
method, we conducted a data analysis and validation
experiment. We divided the collected data, which
consisted of 51,750 normal spindle operation samples
and 1,800 unbalanced spindle operation samples, into
four feature subsets (A, B, C, and D) on the basis of
their temporal characteristics (Table 4). Feature
subsets A and B consisted of normal spindle operation
data collected from April 8 to April 24 (randomly
distributed at a ratio of 7:3), feature subset C consisted
of normal spindle operation data collected from April
25 to May 9, and feature subset D consisted of
unbalanced spindle operation data collected on April
16.

Figure 4 illustrates the overall training and
testing process. In the model training phase, we used
feature subset A to train the PCA model.
Comprehensive analysis of the PCLV cumulative
contribution rates revealed that the first five principal
components achieved a cumulative contribution rate
of 82% (Figure 5), which is widely accepted as a
suitable threshold in engineering applications (Jolliffe,
1982). The sixth principal component would only
contribute an additional 5% to the explained variance,
while the remaining components collectively account

for less than 15% of the total variance. Given that this
marginal increase in information retention does not
justify the corresponding increase in computational
complexity, these remaining components were
reasonably regarded as influences on secondary
variations. Therefore, we chose to retain the first five
principal components for subsequent feature
dimensionality reduction.

Testing process

Training process

Feature dataset

Feature set C,
#4/25~5/9. 4/16
(normal and unbalance spindle)

#4/8~4/24
(normal spindle)

Employ,
trained,
PCA|
model i

{ Employ

Hitees

! trained

IPCA
model

Dimension reduction

Obtain MQFs by
trained SOM

Obtain MQFs by
trained SOM

Train SOM model  |i
T H

Employ trained SOM

Establish MCL

H
H
H
Verify the performance of | __ .
MCTL. H
H
H
Lmploy MCL

Fig. 4. Training and testing with feature subsets A, B,
C, and D.

o o
>» 3

o
=

Cumulative Percentage

02

1 2 3 4 5 6 7 8
PCLV

Fig. 5. PCLV selection.

After determining the optimal number of
principal components, we selected feature subset A for
PCA model dimensionality reduction, and we
subsequently used this subset to train the SOM model.
This SOM network structure design followed the
empirical formula M = 5,/ L (Tian et al., 2014), where
M represents the number of neurons and L represents
the training data volume. For this study, we adopted a
40 x 40 map size configuration with a total of 1,600
neurons and 400 training iterations. To establish
reliable anomaly detection criteria, we proposed a
monitoring control limit (MCL) method based on a
minimum quantification error (MQE) (Huang et al.,
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2007). We used the following equation to determine
the MQE required for establishing the MCL:

MQE = [|d — wl|, (4)

where d represents the data obtained from feature
subset B after PCA model dimensionality reduction
and w is the weight vector of the best matching unit in
the SOM for feature subset B. Using the MQEs of
feature subset B, we precisely quantified the
difference between the input data and the training
model. This quantification approach provided a
reliable indicator of spindle state anomaly detection,
enabling the system to identify potential spindle
imbalance states in a timely manner. Overall, the MCL
revealed two judgment thresholds, with differing
levels of strictness, through the MQE distribution
characteristics of feature subset B. These two
thresholds were MCL3 and MCLs, corresponding to
the mean MQE plus three and six standard deviations,
respectively:

MCL; = p + 30, (52)
MCLg = u + 60, (5b)

where ¢ and p represent the standard deviation and
mean, respectively, of the MQEs of feature subset B.
Because the data in feature subset B all pertained to
normal spindle operation, the MCL established with
these data served as a threshold for distinguishing
between healthy and unbalanced spindle states.
Comparison of new samples with the established MCL
led to these samples being classified as normal or
unbalanced spindle states. According to our
experimental results (Table 5), when MCLs was used
as the judgment threshold, the correct identification
rate for feature subset C (normal spindle state) was
99.7%, and the correct identification rate for feature
subset D (unbalanced spindle state) was 100%. These
values represent a major improvement over the
accuracy of 96.53% achieved when MCL; was used,
indicating that a more permissive threshold setting
may be more suitable for practical applications.

To further confirm the effectiveness of the
proposed method, we compared it with other
traditional ~ supervised  learning  techniques.
Specifically, we selected a support vector machine
(SVM) (Liua et al., 2019; Shuo et al., 2022) as our
benchmark method, with a radial basis function as the
kernel function to construct a classifier. Subsequently,
we randomly divided feature subset D into D1 and D2
at a ratio of 1:1, with feature subsets A and D1 used
for SVM model training and feature subsets C and D2
used for performance validation. The results indicated
that although the SVM approach achieved high
accuracy of 99.8% and 100% in identifying normal
and unbalanced spindles, respectively, this supervised
learning technique required training data from both
normal and unbalanced states, which is often difficult
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to achieve in practical applications. Notably, the
computation time for establishing a diagnostic model
was evaluated using an AMD Ryzen 9-5900HS (3.30
GHz, 32GB RAM) system. The model training time
for SIDM and SVM methods were 13.4s and 4.5s,
respectively, indicating that the SVM method reduces
training time by 66%. By contrast, although the
proposed method exhibited slightly lower accuracy in
normal spindle judgment compared with the SVM
approach (96.53% with MCL3 and 99.7% with MCLg),
it enabled establishment of the diagnostic model and
MCL judgment threshold on the basis of only
vibration signals from normal spindle operation; data
from unbalanced spindles were not required. This
ability makes the proposed method more practical and
universally applicable in industrial applications,
particularly in scenarios in which fault data are
difficult to obtain or undesirable to generate.

Table 4. Details of the four feature subsets.

Subset Number of data points Experiment date  Spindle status

A 13,860 April 8 to April 24 Normal
B 5,940 April 8 to April 24 Normal
C 31,950 April 25 to May 9 Normal
D 1,800 April 16 Unbalanced

Table 5. Detection results of the proposed method.

MCL MCL; MCLs
Subset C D C D
Actual
? ua Normal Unbalanced Normal Unbalanced

spindle state
Classified as

30,841 0 31,855 0
normal
Classified as

1,109 1,800 95 1,800
unbalanced
Accuracy 96.53% 100% 99.7% 100%

In this study, we developed and validated an
SIDM to address the challenge of health monitoring
for CNC machine tool spindles. Our main
contributions and findings are summarized as follows:

(1). The proposed feature extraction technique
combines spindle rotation and bearing
characteristic frequencies to effectively
capture the dynamic characteristics of
spindle operation. In addition, the
integration of PCA for feature refinement
successfully reduces data dimensionality
while retaining 82% of the original
information in the first five principal
components.
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(2). The adoption of an SOM combined with an
innovative MCL approach was found to
result in high performance in distinguishing
normal from unbalanced spindle states. In
the case of MCLs, the proposed method
achieves accuracy of 99.7% in normal state
identification and 100% in imbalance
detection, confirming the method’s
reliability in practical applications.

(3). The proposed method performs similarly to
traditional supervised learning techniques,
such as SVMs, but it eliminates the need for
fault data during model training. This ability
makes the proposed method particularly
valuable in industrial environments in which
fault data are difficult to obtain or generate.

Overall, the proposed SIDM represents a major
advancement in automated spindle health monitoring,
providing a practical solution for improving
maintenance efficiency and reducing machine
downtime in modern manufacturing facilities.
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