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ABSTRACT

In this study, stability of thin electrically-
conductive viscoelastic fluid film flow along the side
of a rotating vertical cylinder with the effect of
magnetic field is discussed in this paper. This paper
applied long-wave perturbation method to solve
generalized nonlinear motion equation of thin film.
The criteria for linear thin film stability can be
obtained by normal mode method, then the multiple-
scales method is applied to confirm the nonlinear
stability. By the coefficient in Ginzburg-Landau
equation, different states of the thin film can be
determined. From this study, in order to enhance the
stability of the thin film, it can be achieved by either
increasing the effect of the magnetic field, decreasing
the viscoelastic effect or decreasing the rotational
velocity. Meanwhile, increasing radius under large
Rossby number can lead to losing stability easier, such
as the dimensionless radius is more than 50. It is worth
noting that this phenomenon is leaded by the radius,
and the influence is stronger than other parameters.

INTRODUCTION

The topic of flow stability had been studied over

the years and specific shapes, different types of fluid,
and more complex conditions had been considered in
order to obtain results that is closer to reality and have
better understanding of thin film fluid.
In recent year, many studies focused on thin film fluid
with the effect of magnetic field (Ahmad et al., 2021;
Dawar et al., 2022; Khan et al., 2017). The earliest
stability of the thin film effected by magnetic field
have been discussed in 1996. Study
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regards thin film stability can be divided into linear
stability and nonlinear stability. Traditional linear
theory lost its accuracy when the disturbance becomes
larger. Due to the effect of the higher order terms can
no longer be neglected, nonlinear theory need to be
applied in the analysis. There are many researches that
used Ginzburg-Landau Equation in analyzing thin film
stability (Chen et al., 2004; Chen and Lin, 2009;
Cheng, 2009). Models for non-Newtonian fluid
proposed by different researchers may varies due to
their point of view. Such as Ostwald-de Waele power
law model (1893), Maxwell fluid model (1867),
Bingham Herschel-Bilkly(1922), Carreau fluid model
(1972), Eyring-Powell model (1994). Viscoelastic
fluid is a kind of which is not only has the viscous
property of fluid on its normal and tangential direction,
but it also has the elastic property similar to solid.
These properties have been widely used in designing
bearing, gear and cam. Stability of the viscoelastic thin
film fluid had been studied in 2000 (Chen et al., 2000) ,
and some results with other conditions had been
obtained (Cheng and Lin, 2007; Lin, 2012).

In this paper, stability of thin electrically-conductive
viscoelastic fluid film flow along the side of a rotating
vertical cylinder with the effect of magnetic field is
discussed.

GENERALIZED KINEMATIC
EQUATIONS

Due to the existence of electromagnetic
inductance, electrically conductive magnetofluid films
cause an inductive response when they pass through a
magnetic field, and cause a change in the surrounding
magnetic field at the same time. The resulting
electromagnetic coupling effect is a relatively
complex problem. It is a combination of fluid
mechanics and electromagnetism. In magneto-fluid
mechanics, Maxwell's equations can be written in the
following forms.
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Where J* isthe current density and H*is the intensity
of the magnetic field. Furthermore, B*is the magnetic
flux, and glven by

B* = u:H* 4
where ujis the magnetic permeability and E*is the
intensity of the electric field. From Ohm’s law, the
total current flow is given by

J*=0*(E*+V*x B (5)
where V*is the velocity vector and & *is the electrical
conductivity. By combining Egs. (1) ~ (5) and
replacing H* by E*/y; , the following magnetic
induction equation can be obtained'

oB* % *
=T x B (6)

If no polarization voltage is applled (i.e., Er= 0), the
electromagnetic force F;, acting on the falling fluid
film is given by

F,=]"xB*=0"(V* x B*) x B* @)
Furthermore, the Navier-Stokes equation for the fluid
film can be expressed as

0 QL VTP = p'g + VE 0" (7 X B x
B* 8)
where T* is the Cauchy stress tensor.
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Fig. 1 Schematic of thin electrically-conductive

viscoelastic film flowing down outer surface of
rotating vertical cylinder in magnetic field

Figure 1 is a schematic diagram. There is a rotating
infinitely long cylinder in the middle with a thin film
of electrically-conductive viscoelastic fluid flowing
down its surface and a magnetic field perpendicular to
the cylinder surface. The whole system is
axisymmetric. Assuming the magnetic Reynolds
number (Re,, =o*usuyhy ) is small, so that the
induced magnetic field is negligible compared to the
applied magnetic field. Also, it is assumed that the
fluid properties do not change with time and that the
applied magnetic field is uniform. The continuity
equation and momentum equation of the system can
be written in the following form.

la(r*u*) ow* -0 (9)
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Where u* is the velocity of the r* direction, w*is
the velocity of the z*direction, p*is a constant
density of the fluid, t*is the time, and g*is the
gravitational acceleration, o¢* is the electrical
conductivity, and B is the magnetic flux density.
According to Ef = —a*Bg?w*, it can be concluded
that the downward flowing fluid is subjected to
electromagnetic forces in the opposite direction. Thus,
it can be assumed that the tangential velocity is
constant in the radial direction of the thin film flow,
i.e., v°=R"Q", where 2 is the angular velocity of
the rotating cylinder.

The individual stress components can be written as

a%u*
T*r*r* = _p + 2.“0 6 . 2kO [6t “ar+ +u’ 92 +
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oo P+ 2u5 o oG T T
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) (15)

Where pg being the limiting dynamic viscosity at
small rates of shear and k; is a viscoelastic
coefficient, and p* is the flow pressure.

The no-slip boundary conditions on the outer wall of
the cylinder at r* = R*are given as

uw=0 (16)
w =0 an
Meanwhile, the boundary conditions at the free surface
of the fluid film (i.e., r* = R*+ ") are given as
(Edwards etal., 1991)

an* A" 211, «

6z 9z *)2] 1(T rr = T z*z*) + [1 -

2)[1+ 2y My = 0 (18)
olvmg the balance equation in the direction normal

to the free surface, it can be shown that the resulting
normal stress condltlon is given by

. L

[1+(6 *)] 1[2 r*z* 62* Tr*r*_

. c02h" Oh* 94—
T z*z*(g) 1+ Gz1+ G732 -
Oh* 51— o

=1+ GV =p; (19)
Since the flow cannot travel across the free surface, it
follows that

an*  on® . _
e TV TwW =0 (20)
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Where 4" is the local film thickness, P; is the
atmospheric pressure, andS*is the surface tension of
the film fluid. Note that the superscripts “*” indicate
that the corresponding variables are dimensional
quantities. Introducing the stream function ¢*, the
dimension velocity components become

* — _l_a‘ﬁ* * — _{_a‘ﬁ* (2:1)
rtoz*’ r* ar* ] ) )
For convenience, the following dimensionless
guantities are defined:
r* az* augt* " [}
r=-—=% Z=—7 = * == = 2y
hy’ ny’ t hh h hh uhy?
_ P"-pa _uphy o _ 53 1/3
14 puaz ) Re = VB ) S = (22p*3v64g*) )
_2nhg _r 22
- A ] ] hg; ) ( )
where Re is the Reynolds number, R is the

dimensionless radius of the cylinder, 1* is the
perturbed wavelength, vg is the kinematic viscosity
of the fluid, a is the dimensionless wave number, S
is dimensionless surface tension, hg is the film
thickness of the local base flow, and wuyg is the
reference velocity, and is defined as

. *h*Z
to = ivf:;" (23)
where
I'=[2(1+R)? In(=5) — (1+ 2R)] ™ (24)

To find the effects of angular velocity, QF, the applied
magnetic field, Bg,and the viscoelastic coefficient kg
on the stability of the flow system, the dimensionless
Rossby number, g, the Hartmann number, m, and the
viscoelastic parameter, k are introduced
_ Q' _ 0'BPh 12 g ke
p="gm=E500) 12 k= (25)
Thus, the non-dimensional governing equations for the
fluid film system are obtained as

Pr = a[Re_l(T_l(»brrz - T_zd)rz)] + @ + O(QZ)
(26)
r (T ) )y — = ¢y = 4T + aRe[ — p, +

r_l(ptr + r_2¢z¢rr - r_3¢z¢r - r_2¢r¢rz +
k(37”_5¢)r¢)z - sr_4¢z¢rr - 3r_4¢r¢rz +
Zr_sd)rzd)rr - T_zd)rzd)rrr + r_zd)zd)rrrr +
r_2¢rr¢rrz - r_2¢r¢rrrz + T_3¢tr - r_zd)trr +

T )] + 0(a®) )
The corresponding boundary conditions are given as
follows:

At the cylinder surface (r = R)
p=¢,=¢,=0

At the free surface (r =R+ h)
(r_1¢r)r =a - Re k[(—ZT_4¢r2 + 4'T_3¢r¢rr -
27'_24)1?1”)]/’2 - r_4¢z¢r + 7ﬂ_:)’d)z(»brr + r_2¢z¢rrr +
3r_3¢r¢rz - r_2¢r¢rrz - ZT_2¢rr¢rz - r_2¢tr +

(28)

ey + 0(a?) (29)
p=-25-Re 5323 (a®h,, —r™1) +

af[-2 Re_l[ (r—2¢r - r_1¢rr)hz + T_2¢z -
]} + 0(a?) (30)
he =1~ ($rhy, + ¢,) =0 (31)

For nonlinear analysis of thin-film flows, the long-
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wavelength modes that provide the minimum wave
number, «a, are the most probable to cause instability
in the flow. Expanding the above equation with the
dimensionless stream function, ¢, and pressure, p,
by small wave number a will be shown below:

¢ = ¢o +ap; +0(a?) (32)
P =po +ap; +0(a?) (33)
Substituting Eq. (32) and (33) into Eq. (26) ~ (31), the
governing equations of the thin-film system can be
collected and solved on an order-by-order basis. In
practice, the non-dimensional surface tension, S, has
a large value, and thus the term a2S can be treated as
a zeroth-order quantity (Chen et al., 2004; 2005; Tsai
et al., 1996). Furthermore, for r — R < &, the film
thickness is very small, and hence power-series
approximation solutions can be obtained up to the
order of (r — R)® at the zeroth- and first-order of the
stream function. Then, the Zeroth-order solution can
be obtained:

¢o = (r — R)?I'{2hR*(h — 2R) — 2/3(r — R)R® +
1/6(r — R)?[4R? + 3h*(1 + mR?) — 2h(R +
mR3)] — 4/15(r — R)3(q + mhR?)}/0
where

@ =2R?*—4hR + 3+ mR>h*, q=R+h, 0=
2R? — 2hR + (2 + mR?)h? (35)
First-order solution:

¢1=C,(r—R)?*+ C3(r—R*+ C,(r —R)* +
Cs(r — R)®

where the C,~Cs are given in the Appendix A.
Substituting the solutions of the zeroth- and first-order
equations into the dimensionless free surface
kinematic equation given in Eg. (31), the following
generalized nonlinear kinematic equation can be
obtained:

he + A(W)hy, + B(h)hy, + C(h)hyy,, + D(W)h +
E(h)hzhyy, =0 (37)
where A(h), B(h),C(h),D(h) and E(h) aregivenin
Appendix B.

The Rossby number represents the rotation of the
cylinder, when the Rossby number is zero, it means
that the fluid film is flowing down the stationary
cylinder. The Hartmann number represents the
strength of the magnetic field, and when the Hartmann
number is O, it means that the fluid film is flowing
downward in the absence of the magnetic field. k is
related to the viscoelasticity of the fluid, and when k is
0, it means that only viscous effects are left in the fluid
film.

After zeroing these parameters, the results can be
compared with those of other authors under the
corresponding conditions.

(34)

(36)

STABILITY ANALYSIS

In this paper, the dimensionless film thickness in
the small perturbed state will be expressed as the
following equation:

h(t,z) =1+n(t,z),n =0(a) (38)



where 7 is the perturbation quantity of the stationary
film thickness. By substituting Eq. (38) into Eq. (37)
and collecting all the terms up to the order of 3, the »
can be obtained as

Nt + Anz + Br/zz + anzzz + Dnz + Er]zr]zzz =

—[(An+—n )nz+(Bn+—n Mzz + (C'n +

777 )nzzzz + (D +D’ U)Uz + (E +E' n)nznzzz] +
om*) (39)
Note that the values of A, B, C, D and E and their
corresponding derivatives are all evaluated at the
dimensionless height h=1 of the film flow.

Linear Stability Analysis

Neglecting the nonlinear terms in Eq. (39), the
following linearized equation can be obtained
Ne + Ang + B1zz + CMzzz, = 0 (40)
In order to analyze the linear stability characteristics of
the thin film using the normal mode method, an
assumption is made that
n=aexpli(z—dt)] +c.c. (41)
where a is the perturbation amplitude and c.c.
denotes its complex conjugate counterpart. The
complex wave celerity, d, is given as
d=d,+id;=A+i(B-0C) (42)
where d, is the linear wave speed and d; is the
linear growth rate of the wave amplitude. For d; > 0,
the flow is in an unstable linearly supercritical
condition. Conversely, for d; < 0, the flow is in a
stable linearly subcritical condition.

Nonlinear Stability Analysis

The nonlinear stability of the thin-film system is

analyzed by the multiple-scales method. The
associated notations are defined as

8,9 9, .20

ot ot + oty te at, (43)
) a a

P - Py + 86—21 (44)
n(e, 2,2y, t,ty, ;) = eny + €%, + €313 (45)

where & is a small perturbation parameter, t;, = «t,
t, = €%t and z; = ez. Substituting the expressions
above Eq. (43) ~ (45) into Eqg. (39) and then expanding
and rearranging yields the following equation:

(Lo + &Ly + €2Ly)(eny + €%y + £313) = —€?N, —

£3N, (46)
where
2 4
Ly=2+A—+B+C— 47)
_ 2% a
Ll——+Aa—Zl+ZB——+4C 3700 (48)
92

Ly =5+ B 7+ 6C-2 Sr7 o (49)
N2 - A NNz + B N1N1zz + C MN1zzzz + Dn%z +
Enlznlzzz (50)

N3 = A'(N1N2z + NNz + Milaz,) + B (1aN2z, +
annlzzl + 771zz772) +C (n17722222 + 4'77177122221 +
7712222772) + D(anzr]Zz + 2771277121) + E(nlzTIZZzz +
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1,0
377127712221 + N1zzzN2z + 77122277121) + EA 7]%7712 +

%B”n%nlzz + %C”n%nlzzzz + D'Thﬁfz + E,nlnlznlzzz

(51)

Eq. (46) can then be solved on an order-by-order basis.
Collecting all terms of order O(e) and solving the
resulting equation Lyn; = 0 gives

N1 = a(zy, ty, ty) expli(z — d,t)] + c.c. (52)
After collecting terms and solving the secular equation
of order 0(&?), it can be shown that 7, is given by

n, = ea’ exp[ 2i(z — d,t)] + c.c. (53)
Substituting n; and n, into the secular equation of
order 0(53) it can be shown that

D1 i £ 2d;a + (B, + iF)a’a=0 (54)

at,
where

e=e.+ieg=(B —C' +D—E)/(16C —4B) +
iA'/(4B — 16C) (55)
D, =B —6C (56)
E, = (—5B'+17C"+ 4D — 10E)e, — A'e; +
(—3B"/2+3C"/2+D —E) (57)
F, = (=5B' +17C + 4D — 10E)e; + A'e, + A"/2
(58)

Note that the overhead bar in Eq. (54) denotes the
complex conjugate of the corresponding variable. Eq.
(54) is generally referred to as the Ginzburg-Landau
equation (Ginzburg and Landau, 1950). In
investigating the weak nonlinear behavior of a fluid
film flow, a solution with an exponential form is
assumed, i.e.

a = ag exp[ — ib(t3)t,] (59)
Employing a filtered wave condition which gives no
spatial modulation, neglecting the diffusion term, and
substituting the assumed solution of Eg. (59) into Eq.
(54), it can be shown that

T8 = (e72d; ~ Erad)ag (60)

A[b(tx)t,]
% = F1 (61)

The second term on the right-hand side of Eq. (60) is
induced by the nonlinearity effect and causes the
exponential growth of the linear disturbance to either
decelerate or accelerate depending on the respective
signs of d; and E;. Clearly, if E; is zero, Eq. (60)
reduces to a simple linear equation. Meanwhile, Eq.
(61) describes the effect of infinitesimal disturbances
within the nonlinear system on the perturbed wave
speed. In the linearly unstable region (d; > 0), the
necessary condition for the existence of a supercritical
stable region is given as E; > 0. The corresponding
threshold amplitude, ea,, is defined as

a;
gao = E_1 (62)
while the nonlinear wave speed is given by
r=d,+*bh=d, +d( ) (63)

Conversely, in the linearly stable region (d; < 0), if
E; <0, the film flow exhibits subcritical instability
with a threshold amplitude of ea,. The necessary
condition for the existence of a subcritical stable region
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is given as E; > 0, while that for a neutral stability
curve is given by E; = 0. Based upon the discussions
above, various characteristic states of the Landau
equation can be identified, as summarized in Table 1.

Table 1. Characteristic states of Landau equation
car <@t | aso conditional
subcritical Ey ’ stability
linearly instability 0 subcritical
stable E; <0 ca>@)? | apl explosive
(subcritical state
region) subcritical
d; <0 (absolute)
Stability @ =0
E, >0
supercritical
linearly explosive ay T
unstable state
- E, <0
(supercritical P
region) supercritical gay — (=)
d; >0 stability B
E, >0 Ncr—>dr+dl-E—1
1

NUMERICAL EXAMPLES

Based on the Maxwell Equation, a calculable

mathematical model for thin film of electrically-
conductive viscoelastic fluid flowing along a rotating
cylinder with the effect of magnetic field can be built,
which contains a model for linear stability and
nonlinear stability. The mathematical model can then
be nondimensionalized. Hartmann number, Rossby
number, dimensionless viscoelastic parameter and
dimensionless cylinder radius are the parameters that
can affect the system. Let the following conditions for
the convenience of later computation and analysis:
(1) Reynolds number Re = 0~15, (2) Dimensionless
perturbation wave number «a =0~0.12 , (3)
Hartmann number m = 0, 0.1, and 0.2, (4) Rossby
number g =0, 0.1, 0.2, and 0.5, (5) Dimensionless
viscoelastic parameter k = 0, 0.1, and 0.2, and (6)
Dimensionless cylinder radius R = 10, 20, 50, and
1000. The dimensionless surface tension is assumed to
have a constant value of S =6173.5 (Tsai et al.,
1996).

Linear Stability Analysis

Neutral stability curve is important in
determining linear stability of the thin film. In Figure
2, the curve of d; = 0 is the neutral stability curve
and it can divide the graph into two regions. On the left
side of the curve (i.e., d; < 0), small disturbance
within the thin film will shrink and then disappear. The
flow remains in laminar flow and stable. On the right
side of the curve (i.e., d; > 0), small disturbance
within the thin film will grow stronger and then change
the flow state from laminar to turbulent. The flow
becomes turbulent flow and unstable. Figure 2 (a) ~ (d)
show the neutral stability curve of thin film flow
system under different Hartmann number, Rossby
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number, dimensionless viscoelastic parameter and
dimensionless cylinder radius, respectively. For the
convenience of comparison, the neutral stability curve
with no magnetic field, stationary cylinder and k =
0 is added to the graph.

0.12

—
0 3 6 Re O 12 15

Fig. 2(a) Linear neutral stability curves for three
different values of m. (R=20, k=0.2, and $=0.2)
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Fig. 2(b) Linear neutral stability curves for three different

values of . (R=50, m=0.2, and k=0.1)
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Fig. 2(c) Linear neutral stability curves for three different

values of k. (R=20, m=0.1, and £=0.1)
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Fig. 2(d) Linear neutral stability curves for four different Fig. 4(b) Neutral stability curves for m=0.2,
values of R. (m=0.1, k=0.1, and =0.2) k=0.2,=0.2, and R=20
0.124
Nonlinear Stability Analysis a

0.09

To analyze Figure 4(a) to 4(d) based on the
criteria in Table 1, the thin film system can be divided |
into 4 regions. In Fig. 4(a) and 4(b), with the 0.06-
increasing of Hartmann number, the linear neutral 1
stability curve shifts downward. Subcritical instability 1
region expands while subcritical stability region and 0.03
supercritical stability region shift downward, and 1
supercritical explosive state region shrinks. In Fig. 4(a)
and 4(c), with the increasing of Rossby number, the 0 o 53 6 o. 9 12 1

9 12 15
!inear _n_eutral s_:tability_ curve grows fast_e(. Subcrit_ic_:al Fig. 4(c) Neutral st:;ility curves for m=0.1,
instability region shrinks while subcritical stability k=0.2,3=0.5, and R=20
region and supercritical stability region shift upward, 0124 I
and supercritical explosive state region expands. In Fig. P |
4(a) and 4(d), with the decreasing of radius R, the | 2277 d, >0
linear neutral stability curve shifts upward 0099 E >0
significantly. Subcritical instability region shrinks 1 &-0 '

while subcritical stability region and supercritical

stability region shift upward, and supercritical 0087 q
explosive state region expands. | i >0
0.124
0.034 E, <0
a | |
0.09
o——m T V7T T T
0 3 6 Re 9 12 15
0,064 Fig. 4(d) Neutral stability curves for m=0.1,
k=0.2,8=0.2, and R=10
R E >0 d >O
0.03 : Figure 5 shows the variation of threshold amplitude in
E, <0 subcritical unstable region under different wave
number. Fig. 5(a) to 5(c) shows threshold amplitude
R S A ¥ ‘Re 9 12 15 under different Hartmann number, Rossby number and

dimensionless radius, respectively. The threshold
amplitude increases as Hartmann number increases,
but it decreases as Rossby number increases or
dimensionless radius increases.

Fig. 4(a) Neutral stability curves for m=0.1,
k=0.2,8=0.2, and R=20
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Fig. 5(a) Threshold amplitude in subcritical unstable
region for three different values of m. (Re=3, R=20,
k=0.1,and B =0.1)
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Fig. 5(b) Threshold amplitude in subcritical unstable
region for three different values of B. (Re=3, R=50,
k=0.1, and m=0.2)
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Fig. 5(c) Threshold amplitude in subcritical unstable regio
for three different values of R. (Re=6, m=0.2, = 0.2,
and k=0.1)

The stability of the thin film decreases if the threshold
amplitude decreases. The system of the thin film
remains conditionally stable when initial finite-
amplitude disturbance is smaller than threshold
amplitude. The system of the thin film becomes
explosive unstable when initial finite-amplitude
disturbance is greater than threshold amplitude.

Figure 6 analyze the change in threshold amplitude
regarding wave number in supercritical stable region.

Fig. 6(a) shows threshold amplitude under different
Hartmann number. With Fig. 4(a) and 4(b), wave
number and threshold amplitude decrease in
supercritical stable region. Fig. 6(b) and 6(c) show
threshold amplitude under different Rossby number
and viscoelastic parameter. With larger Rossby
number and viscoelastic parameter, threshold
amplitude increases, and wave number becomes larger
in supercritical stable region. Fig. 6(d) and 6(e) show
threshold amplitude changes according to radius. In
low Rossby number condition, threshold amplitude
decreases as radius R becomes larger. In high Rossby
number condition, wave number becomes larger and
threshold amplitude do not decrease like the others.
Higher threshold amplitude results in lower thin film
stability.
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Fig. 6(a) Threshold amplitude in supercritical stable
region for three different values of m. (Re=8, £=0.1,
k=0.1, and R=20)
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Fig. 6(b) Threshold amplitude in supercritical stable
region for three different values of 8. (Re=8, m=0.2,
k=01, and R=50)
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Fig. 6(c) Threshold amplitude in supercritical stable
region for three different values of k. (Re=8, m=0.1,
B=0.1, and R=20)
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Fig. 6(d) Threshold amplitude in supercritical stable
region for three different values of R. (Re=5, m=0.2,
B=0.1, and k=0.2)
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$=0.5, and k=0.2)

Figure 7 shows the relation between wave speed and
nonlinear wave speed. The nonlinear wave speed can
be obtained by Eq. (63). When the wave speed is
slower, the thin film has better stability. Fig. 7(a)
shows that both linear and nonlinear wave speed
decreases with increasing Hartmann number. Fig. 7(b)
and 7(c) show that higher Rossby number and
viscoelastic parameter do not affect linear wave speed,

but nonlinear wave speed has dramatic changes. In Fig.

7(d), linear wave speed does not change with radius
under larger Rossby number (i.e., B =0.5), but
nonlinear wave speed does. When radius is
respectively larger (i.e., R =50), nonlinear wave
speed has relatively higher maximum wave speed, and

the thin film system is less stable.
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Fig. 7 (a) Nonlinear wave speed in supercritical
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stable region for three different values of m.
(Re=8,8=0.2, k=0.1, and R=50)
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Fig. 7 (b) Nonlinear wave speed in supercritical
stable region for three different values of . (Re=8,
m=0.1, k=0.2, and R=20)
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Fig. 7 (c) Nonlinear wave speed in supercritical
stable region for three different values of k. (Re=8,
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Fig. 7 (d) Nonlinear wave speed in supercritical
stable region for three different values of R. (Re=5,
m=0.2, $=0.5, and k=0.2)

The results above show that the trend in smaller radius
is opposite to larger radius. When the radius is smaller,
higher Hartmann number, lower Rossby number and
lower viscoelastic parameter lead to a stable system.
The system is not stable under larger radius. By Eq.
(30), the streamwise surface tension term is
independent of the cylinder radius R. The lateral
surface tension term, on the contrary, varies inversely
with R. As the result, for the model that has larger
radius, the lateral surface tension becomes larger and
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leads to lower stability of the thin film.

The result from this paper matches the results from
other studies written by other authors. The result of
enhancing magnetic field, lower rotating velocity and
lower viscoelasticity can increase stability under
smaller radius matches the conclusion made by other
authors (Cheng, 2009). If the effect of magnetic field
is neglected, the results match the study done by other
researchers that did not consider magnetic field(Chen
et al., 2003).

CONCLUSIONS

This paper focused on thin electrically-
conductive viscoelastic fluid film flowing on the
surface of a rotating vertical cylinder in a magnetic
field and discussed the stability of this system. The
following results are obtained by using long-wave
perturbation method on linear stability and nonlinear
stability:

1. Enhancing magnetic field, lower rotating
velocity and lower viscoelasticity can increase
stability.

2. By enhancing magnetic field, lower rotating
velocity and lower viscoelasticity, the subcritical
instable region will expand, and supercritical instable
region will shrink.

3. Subcritical and supercritical stable regions
will be affected by magnetic field, rotating velocity
and viscoelasticity. The area of the regions does not
change very significantly, but the domain of Reynolds
number and wave number will shift.

4. When the dimensionless radius is smaller, the
stability of the thin film is dominated by Hartmann
number, Rossby number and dimensionless
viscoelastic parameter. When the dimensionless radius
is larger, such as the dimensionless radius R > 50 or
more, the lateral surface tension has greater influence
on the stability of the thin film, which leads to much
instable system.
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APPENDIX A
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