
中國機械工程學刊第四十三卷第五期第 411~420 頁(民國一百一十一年) 
Journal of the Chinese Society of Mechanical Engineers, Vol.43, No.5, pp.411~420 (2022) 

 -411- 

Stability Analysis of Thin Electrically-
Conductive Viscoelastic Fluid Film Flow Along 

a Rotating Cylinder in a Magnetic Field 
 
 
 

Wu-Man Liu*and Cha’o-Kuang Chen** 
 
 
 
Keywords ： Hydromagnetic stability analysis, 

Hartmann number, Rossby number 
 

ABSTRACT 
 

In this study, stability of thin electrically-
conductive viscoelastic fluid film flow along the side 
of a rotating vertical cylinder with the effect of 
magnetic field is discussed in this paper. This paper 
applied long-wave perturbation method to solve 
generalized nonlinear motion equation of thin film. 
The criteria for linear thin film stability can be 
obtained by normal mode method, then the multiple-
scales method is applied to confirm the nonlinear 
stability. By the coefficient in Ginzburg-Landau 
equation, different states of the thin film can be 
determined. From this study, in order to enhance the 
stability of the thin film, it can be achieved by either 
increasing the effect of the magnetic field, decreasing 
the viscoelastic effect or decreasing the rotational 
velocity. Meanwhile, increasing radius under large 
Rossby number can lead to losing stability easier, such 
as the dimensionless radius is more than 50. It is worth 
noting that this phenomenon is leaded by the radius, 
and the influence is stronger than other parameters. 
 

INTRODUCTION 
 

The topic of flow stability had been studied over 
the years and specific shapes, different types of fluid, 
and more complex conditions had been considered in 
order to obtain results that is closer to reality and have 
better understanding of thin film fluid.  
In recent year, many studies focused on thin film fluid 
with the effect of magnetic field (Ahmad et al., 2021; 
Dawar et al., 2022; Khan et al., 2017). The earliest 
stability of the thin film effected by magnetic field 
have been discussed in 1996. Study 
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regards thin film stability can be divided into linear 
stability and nonlinear stability. Traditional linear 
theory lost its accuracy when the disturbance becomes 
larger. Due to the effect of the higher order terms can 
no longer be neglected, nonlinear theory need to be 
applied in the analysis. There are many researches that 
used Ginzburg-Landau Equation in analyzing thin film 
stability (Chen et al., 2004; Chen and Lin, 2009; 
Cheng, 2009). Models for non-Newtonian fluid 
proposed by different researchers may varies due to 
their point of view. Such as Ostwald-de Waele power 
law model (1893), Maxwell fluid model (1867), 
Bingham Herschel-Bilkly(1922), Carreau fluid model 
(1972), Eyring-Powell model (1994). Viscoelastic 
fluid is a kind of which is not only has the viscous 
property of fluid on its normal and tangential direction, 
but it also has the elastic property similar to solid. 
These properties have been widely used in designing 
bearing, gear and cam. Stability of the viscoelastic thin 
film fluid had been studied in 2000 (Chen et al., 2000) , 
and some results with other conditions had been 
obtained (Cheng and Lin, 2007; Lin, 2012).  
In this paper, stability of thin electrically-conductive 
viscoelastic fluid film flow along the side of a rotating 
vertical cylinder with the effect of magnetic field is 
discussed. 
 

GENERALIZED KINEMATIC 
EQUATIONS 

 
Due to the existence of electromagnetic 

inductance, electrically conductive magnetofluid films 
cause an inductive response when they pass through a 
magnetic field, and cause a change in the surrounding 
magnetic field at the same time. The resulting 
electromagnetic coupling effect is a relatively 
complex problem. It is a combination of fluid 
mechanics and electromagnetism. In magneto-fluid 
mechanics, Maxwell's equations can be written in the 
following forms. 
𝛻𝛻 ⋅ 𝐵𝐵�⃑ ∗ = 0  (1) 
𝛻𝛻 × 𝐻𝐻��⃑ ∗ = 𝐽𝐽∗  (2) 

𝛻𝛻 × 𝐸𝐸�⃑ ∗ = −𝜕𝜕𝐵𝐵�⃑ ∗

𝜕𝜕𝑡𝑡∗
  (3) 
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Where 𝐽𝐽∗ is the current density and 𝐻𝐻��⃑ ∗is the intensity 
of the magnetic field. Furthermore, 𝐵𝐵�⃑ ∗is the magnetic 
flux, and given by  
𝐵𝐵�⃑ ∗ = 𝜇𝜇𝑒𝑒∗𝐻𝐻��⃑ ∗  (4) 
where 𝜇𝜇𝑒𝑒∗ is the magnetic permeability and 𝐸𝐸�⃑ ∗is the 
intensity of the electric field. From Ohm’s law, the 
total current flow is given by  
𝐽𝐽∗ = 𝜎𝜎∗(𝐸𝐸�⃑ ∗ + 𝑉𝑉�⃑ ∗ × 𝐵𝐵�⃑ ∗)  (5) 
where 𝑉𝑉�⃑ ∗is the velocity vector and �⃑�𝜎∗is the electrical 
conductivity. By combining Eqs. (1) ~ (5) and 
replacing 𝐻𝐻��⃑ ∗ by 𝐵𝐵�⃑ ∗/𝜇𝜇𝑒𝑒∗ , the following magnetic 
induction equation can be obtained: 
𝜕𝜕𝐵𝐵�⃑ ∗

𝜕𝜕𝑡𝑡∗
= 𝛻𝛻 × (𝑉𝑉�⃑ ∗ × 𝐵𝐵�⃑ ∗) + 1

𝜎𝜎∗𝜇𝜇𝑒𝑒∗
𝛻𝛻2𝐵𝐵�⃑ ∗  (6) 

If no polarization voltage is applied (i.e., 𝐸𝐸�⃑ ∗ = 0), the 
electromagnetic force 𝐹𝐹𝑚𝑚∗  acting on the falling fluid 
film is given by 
𝐹𝐹𝑚𝑚∗ = 𝐽𝐽∗ × 𝐵𝐵�⃑ ∗ = 𝜎𝜎∗(𝑉𝑉�⃑ ∗ × 𝐵𝐵�⃑ ∗) × 𝐵𝐵�⃑ ∗  (7) 
Furthermore, the Navier-Stokes equation for the fluid 
film can be expressed as 
𝜌𝜌∗(𝜕𝜕𝑉𝑉

��⃑ ∗

𝜕𝜕𝑡𝑡∗
+ 𝑉𝑉�⃑ ∗ ⋅ 𝛻𝛻𝑉𝑉�⃑ ∗) = 𝜌𝜌∗�⃑�𝑔∗ + 𝛻𝛻𝜏𝜏∗ + 𝜎𝜎∗(𝑉𝑉�⃑ ∗ × 𝐵𝐵�⃑ ∗) ×

𝐵𝐵�⃑ ∗  (8) 
where 𝜏𝜏∗ is the Cauchy stress tensor. 
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Fig. 1 Schematic of thin electrically-conductive 

viscoelastic film flowing down outer surface of 
rotating vertical cylinder in magnetic field 

 
Figure 1 is a schematic diagram. There is a rotating 
infinitely long cylinder in the middle with a thin film 
of electrically-conductive viscoelastic fluid flowing 
down its surface and a magnetic field perpendicular to 
the cylinder surface. The whole system is 
axisymmetric. Assuming the magnetic Reynolds 
number ( 𝑅𝑅𝑅𝑅𝑚𝑚 =𝜎𝜎∗𝜇𝜇𝑒𝑒∗𝑢𝑢0∗ℎ0

∗ ) is small, so that the 
induced magnetic field is negligible compared to the 
applied magnetic field. Also, it is assumed that the 
fluid properties do not change with time and that the 
applied magnetic field is uniform. The continuity 
equation and momentum equation of the system can 
be written in the following form. 
1
𝑟𝑟∗

𝜕𝜕(𝑟𝑟∗𝑢𝑢∗)
𝜕𝜕𝑟𝑟∗

+ 𝜕𝜕𝑤𝑤∗

𝜕𝜕𝑧𝑧∗
= 0  (9) 

𝜌𝜌∗(𝜕𝜕𝑢𝑢
∗

𝜕𝜕𝑡𝑡∗
+ 𝑢𝑢∗ 𝜕𝜕𝑢𝑢

∗

𝜕𝜕𝑟𝑟∗
+ 𝑤𝑤∗ 𝜕𝜕𝑢𝑢

∗

𝜕𝜕𝑧𝑧∗
− 𝑣𝑣∗2

𝑟𝑟∗
) = 1

𝑟𝑟∗
𝜕𝜕(𝑟𝑟∗𝜏𝜏∗𝑟𝑟∗𝑟𝑟∗)

𝜕𝜕𝑟𝑟∗
+

𝜕𝜕𝜏𝜏∗𝑧𝑧∗𝑟𝑟∗
𝜕𝜕𝑧𝑧∗

− 1
𝑟𝑟∗
𝜏𝜏∗𝜃𝜃∗𝜃𝜃∗   (10) 

𝜌𝜌∗ �𝜕𝜕𝑤𝑤
∗

𝜕𝜕𝑡𝑡∗
+ 𝑢𝑢∗ 𝜕𝜕𝑤𝑤

∗

𝜕𝜕𝑟𝑟∗
+ 𝑤𝑤∗ 𝜕𝜕𝑤𝑤

∗

𝜕𝜕𝑧𝑧∗
� = 1

𝑟𝑟∗
𝜕𝜕�𝑟𝑟∗𝜏𝜏∗𝑟𝑟∗𝑧𝑧∗�

𝜕𝜕𝑟𝑟∗
+

𝜕𝜕𝜏𝜏∗𝑧𝑧∗𝑧𝑧∗
𝜕𝜕𝑧𝑧∗

+ 𝜌𝜌∗𝑔𝑔∗ − 𝜎𝜎∗𝐵𝐵0∗2𝑤𝑤∗  (11) 
Where 𝑢𝑢∗ is the velocity of the 𝑟𝑟∗ direction, 𝑤𝑤∗is 
the velocity of the 𝑧𝑧∗ direction, 𝜌𝜌∗ is a constant 
density of the fluid, 𝑡𝑡∗ is the time, and 𝑔𝑔∗ is the 
gravitational acceleration, 𝜎𝜎∗ is the electrical 
conductivity, and 𝐵𝐵0∗ is the magnetic flux density. 
According to 𝐹𝐹𝑧𝑧∗ = −𝜎𝜎∗𝐵𝐵0∗2𝑤𝑤∗ , it can be concluded 
that the downward flowing fluid is subjected to 
electromagnetic forces in the opposite direction. Thus, 
it can be assumed that the tangential velocity is 
constant in the radial direction of the thin film flow, 
i.e., 𝑣𝑣∗ = 𝑅𝑅∗𝛺𝛺∗, where 𝛺𝛺∗ is the angular velocity of 
the rotating cylinder. 
The individual stress components can be written as 
𝜏𝜏∗𝑟𝑟∗𝑟𝑟∗ = −𝑝𝑝∗ + 2𝜇𝜇0∗

𝜕𝜕𝑢𝑢∗

𝜕𝜕𝑟𝑟∗
− 2𝑘𝑘0∗[ 𝜕𝜕2𝑢𝑢∗

𝜕𝜕𝑡𝑡∗𝜕𝜕𝑟𝑟∗
+ 𝑢𝑢∗ 𝜕𝜕

2𝑢𝑢∗

𝜕𝜕𝑟𝑟∗2
+

𝑤𝑤∗ 𝜕𝜕2𝑢𝑢∗

𝜕𝜕𝑟𝑟∗𝜕𝜕𝑧𝑧∗
− 2(𝜕𝜕𝑢𝑢

∗

𝜕𝜕𝑟𝑟∗
)2 − 𝜕𝜕𝑢𝑢∗

𝜕𝜕𝑧𝑧∗
(𝜕𝜕𝑢𝑢

∗

𝜕𝜕𝑧𝑧∗
+ 𝜕𝜕𝑤𝑤∗

𝜕𝜕𝑟𝑟∗
)]  (12) 

𝜏𝜏∗𝑧𝑧∗𝑧𝑧∗ = −𝑝𝑝∗ + 2𝜇𝜇0∗
𝜕𝜕𝑤𝑤∗

𝜕𝜕𝑧𝑧∗
− 2𝑘𝑘0∗[ 𝜕𝜕2𝑤𝑤∗

𝜕𝜕𝑡𝑡∗𝜕𝜕𝑧𝑧∗
+ 𝑢𝑢∗ 𝜕𝜕2𝑤𝑤∗

𝜕𝜕𝑟𝑟∗𝜕𝜕𝑧𝑧∗
+

𝑤𝑤∗ 𝜕𝜕
2𝑤𝑤∗

𝜕𝜕𝑧𝑧∗2
− 2(𝜕𝜕𝑤𝑤

∗

𝜕𝜕𝑧𝑧∗
)2 − 𝜕𝜕𝑤𝑤∗

𝜕𝜕𝑟𝑟∗
(𝜕𝜕𝑤𝑤

∗

𝜕𝜕𝑟𝑟∗
+ 𝜕𝜕𝑢𝑢∗

𝜕𝜕𝑧𝑧∗
)]  (13) 

𝜏𝜏∗𝑟𝑟∗𝑧𝑧∗ = 𝜏𝜏∗𝑧𝑧∗𝑟𝑟∗ = 𝜇𝜇0∗(𝜕𝜕𝑢𝑢
∗

𝜕𝜕𝑧𝑧∗
+ 𝜕𝜕𝑤𝑤∗

𝜕𝜕𝑟𝑟∗
) − 𝑘𝑘0∗[ 𝜕𝜕2𝑢𝑢∗

𝜕𝜕𝑡𝑡∗𝜕𝜕𝑧𝑧∗
+

𝜕𝜕2𝑤𝑤∗

𝜕𝜕𝑡𝑡∗𝜕𝜕𝑟𝑟∗
+ 𝑢𝑢∗(𝜕𝜕

2𝑤𝑤∗

𝜕𝜕𝑟𝑟∗2
+ 𝜕𝜕2𝑢𝑢∗

𝜕𝜕𝑟𝑟∗𝜕𝜕𝑧𝑧∗
) + 𝑤𝑤∗( 𝜕𝜕2𝑤𝑤∗

𝜕𝜕𝑟𝑟∗𝜕𝜕𝑧𝑧∗
+ 𝜕𝜕2𝑢𝑢∗

𝜕𝜕𝑧𝑧∗2
) −

2 𝜕𝜕𝑢𝑢∗

𝜕𝜕𝑧𝑧∗
𝜕𝜕𝑤𝑤
𝜕𝜕𝑧𝑧∗

∗
− 2 𝜕𝜕𝑤𝑤∗

𝜕𝜕𝑟𝑟∗
𝜕𝜕𝑢𝑢∗

𝜕𝜕𝑟𝑟∗
− (𝜕𝜕𝑢𝑢

∗

𝜕𝜕𝑟𝑟∗
+ 𝜕𝜕𝑤𝑤∗

𝜕𝜕𝑧𝑧∗
)(𝜕𝜕𝑤𝑤

∗

𝜕𝜕𝑟𝑟∗
+ 𝜕𝜕𝑢𝑢∗

𝜕𝜕𝑧𝑧∗
)]  (14) 

𝜏𝜏∗𝜃𝜃∗𝜃𝜃∗ = −𝑝𝑝∗ + 2𝜇𝜇0∗
𝑢𝑢∗

𝑟𝑟∗
− 2𝑘𝑘0∗( 1

𝑟𝑟∗
𝜕𝜕𝑢𝑢∗

𝜕𝜕𝑡𝑡∗
+ 𝑢𝑢∗

𝑟𝑟∗
𝜕𝜕𝑢𝑢∗

𝜕𝜕𝑟𝑟∗
− 𝑢𝑢∗2

𝑟𝑟∗2
+

𝑤𝑤∗

𝑟𝑟∗
𝜕𝜕𝑢𝑢∗

𝜕𝜕𝑧𝑧∗
)  (15) 

Where 𝜇𝜇0∗   being the limiting dynamic viscosity at 
small rates of shear and 𝑘𝑘0∗  is a viscoelastic 
coefficient, and 𝑝𝑝∗ is the flow pressure.  
The no-slip boundary conditions on the outer wall of 
the cylinder at 𝑟𝑟∗ = 𝑅𝑅∗are given as 
𝑢𝑢∗ = 0  (16) 
𝑤𝑤∗ = 0  (17) 
Meanwhile, the boundary conditions at the free surface 
of the fluid film (i.e., 𝑟𝑟∗ = 𝑅𝑅∗ + ℎ∗ ) are given as 
(Edwards et al., 1991) 
𝜕𝜕ℎ∗

𝜕𝜕𝑧𝑧∗
[1 + (𝜕𝜕ℎ

∗

𝜕𝜕𝑧𝑧∗
)2]−1(𝜏𝜏∗𝑟𝑟∗𝑟𝑟∗ − 𝜏𝜏∗𝑧𝑧∗𝑧𝑧∗) + [1 −

(𝜕𝜕ℎ
∗

𝜕𝜕𝑧𝑧∗
)2][1 + (𝜕𝜕ℎ

∗

𝜕𝜕𝑧𝑧∗
)2]−1𝜏𝜏∗𝑟𝑟∗𝑧𝑧∗ = 0  (18) 

Solving the balance equation in the direction normal 
to the free surface, it can be shown that the resulting 
normal stress condition is given by  

[1 + (𝜕𝜕ℎ
∗

𝜕𝜕𝑧𝑧∗
)2]−1[2𝜏𝜏∗𝑟𝑟∗𝑧𝑧∗

𝜕𝜕ℎ∗

𝜕𝜕𝑧𝑧∗
− 𝜏𝜏∗𝑟𝑟∗𝑟𝑟∗ −

𝜏𝜏∗𝑧𝑧∗𝑧𝑧∗(
𝜕𝜕ℎ∗

𝜕𝜕𝑧𝑧∗
)2] + 𝑆𝑆∗{𝜕𝜕

2ℎ∗

𝜕𝜕𝑧𝑧∗2
[1 + (𝜕𝜕ℎ

∗

𝜕𝜕𝑧𝑧∗
)2]−3/2 −

1
𝑟𝑟∗

[1 + (𝜕𝜕ℎ
∗

𝜕𝜕𝑧𝑧∗
)2]−1/2} = 𝑝𝑝𝑎𝑎∗   (19) 

Since the flow cannot travel across the free surface, it 
follows that  
𝜕𝜕ℎ∗

𝜕𝜕𝑡𝑡∗
+ 𝜕𝜕ℎ∗

𝜕𝜕𝑧𝑧∗
𝑤𝑤∗ − 𝑢𝑢∗ = 0  (20) 
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Where ℎ∗ is the local film thickness, 𝑃𝑃𝑎𝑎∗  is the 
atmospheric pressure, and𝑆𝑆∗is the surface tension of 
the film fluid. Note that the superscripts “*” indicate 
that the corresponding variables are dimensional 
quantities. Introducing the stream function 𝜙𝜙∗ , the 
dimension velocity components become  
𝑢𝑢∗ = 1

𝑟𝑟∗
𝜕𝜕𝜙𝜙∗

𝜕𝜕𝑧𝑧∗
,  𝑤𝑤∗ = − 1

𝑟𝑟∗
𝜕𝜕𝜙𝜙∗

𝜕𝜕𝑟𝑟∗
  (21) 

For convenience, the following dimensionless 
quantities are defined: 
𝑟𝑟 = 𝑟𝑟∗

ℎ0
∗ , 𝑧𝑧 = 𝛼𝛼𝑧𝑧∗

ℎ0
∗ , 𝑡𝑡 = 𝛼𝛼𝑢𝑢0∗𝑡𝑡∗

ℎ0
∗ , ℎ = ℎ∗

ℎ0
∗ , 𝜙𝜙 = 𝜙𝜙∗

𝑢𝑢0∗ℎ0
∗2, 

𝑝𝑝 = 𝑝𝑝∗−𝑝𝑝𝑎𝑎∗

𝜌𝜌𝑢𝑢0∗2
, 𝑅𝑅𝑅𝑅 = 𝑢𝑢0∗ℎ0

∗

𝜈𝜈0∗
, 𝑆𝑆 = ( 𝑆𝑆∗3

22𝜌𝜌∗3𝜈𝜈0∗
4𝑔𝑔∗

)1/3, 

𝛼𝛼 = 2𝜋𝜋ℎ0
∗

𝜆𝜆∗
, 𝑅𝑅 = 𝑅𝑅∗

ℎ0
∗ ,  (22) 

where 𝑅𝑅𝑅𝑅  is the Reynolds number, R is the 
dimensionless radius of the cylinder, 𝜆𝜆∗  is the 
perturbed wavelength, 𝜈𝜈0∗ is the kinematic viscosity 
of the fluid, 𝛼𝛼 is the dimensionless wave number, S 
is dimensionless surface tension, ℎ0

∗ is the film 
thickness of the local base flow, and 𝑢𝑢0∗ is the 
reference velocity, and is defined as  
𝑢𝑢0∗ = 𝑔𝑔∗ℎ0

∗2

4𝜈𝜈0∗𝛤𝛤
  (23) 

where   
𝛤𝛤 = [2(1 + 𝑅𝑅)2 𝑙𝑙𝑙𝑙( 1+𝑅𝑅

𝑅𝑅
) − (1 + 2𝑅𝑅)]−1   (24) 

To find the effects of angular velocity, Ω∗, the applied 
magnetic field, 𝐵𝐵0∗, and the viscoelastic coefficient 𝑘𝑘0∗ 
on the stability of the flow system, the dimensionless 
Rossby number, 𝛽𝛽, the Hartmann number, 𝑚𝑚, and the 
viscoelastic parameter, 𝑘𝑘 are introduced 
𝛽𝛽 = 𝛺𝛺∗ℎ0

∗

𝑢𝑢0∗
, 𝑚𝑚 = (𝜎𝜎

∗𝐵𝐵0∗2ℎ0
∗2

𝜌𝜌∗𝜈𝜈0∗
)1/2, 𝑘𝑘 = 𝑘𝑘0∗

𝜌𝜌∗ℎ0
∗2.  (25) 

Thus, the non-dimensional governing equations for the 
fluid film system are obtained as 
𝑝𝑝𝑟𝑟 = 𝛼𝛼[𝑅𝑅𝑅𝑅−1( 𝑟𝑟−1𝜙𝜙𝑟𝑟𝑟𝑟𝑧𝑧 − 𝑟𝑟−2𝜙𝜙𝑟𝑟𝑧𝑧)] + (𝑅𝑅𝑅𝑅)2

𝑟𝑟
+ 𝑂𝑂(𝛼𝛼2)  

(26) 
𝑟𝑟−1(𝑟𝑟(𝑟𝑟−1𝜙𝜙𝑟𝑟)𝑟𝑟)𝑟𝑟 −

𝑚𝑚
𝑟𝑟
𝜙𝜙𝑟𝑟 = 4𝛤𝛤 + 𝛼𝛼 𝑅𝑅𝑅𝑅[ − 𝑝𝑝𝑧𝑧 +

𝑟𝑟−1𝜙𝜙𝑡𝑡𝑟𝑟 + 𝑟𝑟−2𝜙𝜙𝑧𝑧𝜙𝜙𝑟𝑟𝑟𝑟 − 𝑟𝑟−3𝜙𝜙𝑧𝑧𝜙𝜙𝑟𝑟 − 𝑟𝑟−2𝜙𝜙𝑟𝑟𝜙𝜙𝑟𝑟𝑧𝑧 +
𝑘𝑘(3𝑟𝑟−5𝜙𝜙𝑟𝑟𝜙𝜙𝑧𝑧 − 3𝑟𝑟−4𝜙𝜙𝑧𝑧𝜙𝜙𝑟𝑟𝑟𝑟 − 3𝑟𝑟−4𝜙𝜙𝑟𝑟𝜙𝜙𝑟𝑟𝑧𝑧 +
2𝑟𝑟−3𝜙𝜙𝑟𝑟𝑧𝑧𝜙𝜙𝑟𝑟𝑟𝑟 − 𝑟𝑟−2𝜙𝜙𝑟𝑟𝑧𝑧𝜙𝜙𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑟𝑟−2𝜙𝜙𝑧𝑧𝜙𝜙𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 +
𝑟𝑟−2𝜙𝜙𝑟𝑟𝑟𝑟𝜙𝜙𝑟𝑟𝑟𝑟𝑧𝑧 − 𝑟𝑟−2𝜙𝜙𝑟𝑟𝜙𝜙𝑟𝑟𝑟𝑟𝑟𝑟𝑧𝑧 + 𝑟𝑟−3𝜙𝜙𝑡𝑡𝑟𝑟 − 𝑟𝑟−2𝜙𝜙𝑡𝑡𝑟𝑟𝑟𝑟 +
𝑟𝑟−1𝜙𝜙𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟)] + 𝑂𝑂(𝛼𝛼2)  (27) 
The corresponding boundary conditions are given as 
follows: 
At the cylinder surface (𝑟𝑟 = 𝑅𝑅)  
𝜙𝜙 = 𝜙𝜙𝑟𝑟 = 𝜙𝜙𝑧𝑧 = 0  (28) 
At the free surface (𝑟𝑟 = 𝑅𝑅 + ℎ)  
(𝑟𝑟−1𝜙𝜙𝑟𝑟)𝑟𝑟 = 𝛼𝛼 ⋅ 𝑅𝑅𝑅𝑅⋅ 𝑘𝑘[(−2𝑟𝑟−4𝜙𝜙𝑟𝑟2 + 4𝑟𝑟−3𝜙𝜙𝑟𝑟𝜙𝜙𝑟𝑟𝑟𝑟 −
2𝑟𝑟−2𝜙𝜙𝑟𝑟𝑟𝑟2 )ℎ𝑧𝑧 − 𝑟𝑟−4𝜙𝜙𝑧𝑧𝜙𝜙𝑟𝑟 + 𝑟𝑟−3𝜙𝜙𝑧𝑧𝜙𝜙𝑟𝑟𝑟𝑟 + 𝑟𝑟−2𝜙𝜙𝑧𝑧𝜙𝜙𝑟𝑟𝑟𝑟𝑟𝑟 +
3𝑟𝑟−3𝜙𝜙𝑟𝑟𝜙𝜙𝑟𝑟𝑧𝑧 − 𝑟𝑟−2𝜙𝜙𝑟𝑟𝜙𝜙𝑟𝑟𝑟𝑟𝑧𝑧 − 2𝑟𝑟−2𝜙𝜙𝑟𝑟𝑟𝑟𝜙𝜙𝑟𝑟𝑧𝑧 − 𝑟𝑟−2𝜙𝜙𝑡𝑡𝑟𝑟 +
𝑟𝑟−1𝜙𝜙𝑡𝑡𝑟𝑟𝑟𝑟] + 𝑂𝑂(𝛼𝛼2)  (29) 
𝑝𝑝 = −2𝑆𝑆 ⋅ 𝑅𝑅𝑅𝑅−5/3( 2𝛤𝛤)1/3(𝛼𝛼2ℎ𝑧𝑧𝑧𝑧 − 𝑟𝑟−1) +
𝛼𝛼{[−2𝑅𝑅𝑅𝑅−1[ (𝑟𝑟−2𝜙𝜙𝑟𝑟 − 𝑟𝑟−1𝜙𝜙𝑟𝑟𝑟𝑟)ℎ𝑧𝑧 + 𝑟𝑟−2𝜙𝜙𝑧𝑧 −
𝑟𝑟−1𝜙𝜙𝑟𝑟𝑧𝑧]} + 𝑂𝑂(𝛼𝛼2)  (30) 
ℎ𝑡𝑡 − 𝑟𝑟−1(𝜙𝜙𝑟𝑟ℎ𝑧𝑧 + 𝜙𝜙𝑧𝑧) = 0  (31) 
For nonlinear analysis of thin-film flows, the long-

wavelength modes that provide the minimum wave 
number, 𝛼𝛼, are the most probable to cause instability 
in the flow. Expanding the above equation with the 
dimensionless stream function, 𝜙𝜙 , and pressure, 𝑝𝑝, 
by small wave number 𝛼𝛼 will be shown below: 
𝜙𝜙 = 𝜙𝜙0 + 𝛼𝛼𝜙𝜙1 + 𝑂𝑂(𝛼𝛼2)  (32) 
𝑝𝑝 = 𝑝𝑝0 + 𝛼𝛼𝑝𝑝1 + 𝑂𝑂(𝛼𝛼2)  (33) 
Substituting Eq. (32) and (33) into Eq. (26) ~ (31), the 
governing equations of the thin-film system can be 
collected and solved on an order-by-order basis. In 
practice, the non-dimensional surface tension, 𝑆𝑆, has 
a large value, and thus the term 𝛼𝛼2𝑆𝑆 can be treated as 
a zeroth-order quantity (Chen et al., 2004; 2005; Tsai 
et al., 1996). Furthermore, for 𝑟𝑟 − 𝑅𝑅 ≤ ℎ , the film 
thickness is very small, and hence power-series 
approximation solutions can be obtained up to the 
order of (𝑟𝑟 − 𝑅𝑅)5 at the zeroth- and first-order of the 
stream function. Then, the Zeroth-order solution can 
be obtained: 
𝜙𝜙0 = (𝑟𝑟 − 𝑅𝑅)2𝛤𝛤{2ℎ𝑅𝑅2(ℎ− 2𝑅𝑅) − 2/3(𝑟𝑟 − 𝑅𝑅)𝑅𝑅𝑅𝑅 +
1/6(𝑟𝑟 − 𝑅𝑅)2[4𝑅𝑅2 + 3ℎ2(1 + 𝑚𝑚𝑅𝑅2) − 2ℎ(𝑅𝑅 +
𝑚𝑚𝑅𝑅3)] − 4/15(𝑟𝑟 − 𝑅𝑅)3(𝑞𝑞 + 𝑚𝑚ℎ𝑅𝑅2)}/𝛺𝛺  (34) 
where 
𝑅𝑅 = 2𝑅𝑅2 − 4ℎ𝑅𝑅 + (3 + 𝑚𝑚𝑅𝑅2)ℎ2 , 𝑞𝑞 = 𝑅𝑅 + ℎ , 𝛺𝛺 =
2𝑅𝑅2 − 2ℎ𝑅𝑅 + (2 + 𝑚𝑚𝑅𝑅2)ℎ2  (35) 
First-order solution: 
𝜙𝜙1 = 𝐶𝐶2(𝑟𝑟 − 𝑅𝑅)2 + 𝐶𝐶3(𝑟𝑟 − 𝑅𝑅)3 + 𝐶𝐶4(𝑟𝑟 − 𝑅𝑅)4 +
𝐶𝐶5(𝑟𝑟 − 𝑅𝑅)5  (36) 
where the 𝐶𝐶2~𝐶𝐶5 are given in the Appendix A. 
Substituting the solutions of the zeroth- and first-order 
equations into the dimensionless free surface 
kinematic equation given in Eq. (31), the following 
generalized nonlinear kinematic equation can be 
obtained: 
ℎ𝑡𝑡 + 𝐴𝐴(ℎ)ℎ𝑧𝑧 + 𝐵𝐵(ℎ)ℎ𝑧𝑧𝑧𝑧 + 𝐶𝐶(ℎ)ℎ𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 + 𝐷𝐷(ℎ)ℎ𝑧𝑧

2 +
𝐸𝐸(ℎ)ℎ𝑧𝑧ℎ𝑧𝑧𝑧𝑧𝑧𝑧 = 0  (37) 
where 𝐴𝐴(ℎ),𝐵𝐵(ℎ),𝐶𝐶(ℎ),𝐷𝐷(ℎ) and 𝐸𝐸(ℎ) are given in 
Appendix B. 
The Rossby number represents the rotation of the 
cylinder, when the Rossby number is zero, it means 
that the fluid film is flowing down the stationary 
cylinder. The Hartmann number represents the 
strength of the magnetic field, and when the Hartmann 
number is 0, it means that the fluid film is flowing 
downward in the absence of the magnetic field. k is 
related to the viscoelasticity of the fluid, and when k is 
0, it means that only viscous effects are left in the fluid 
film. 
After zeroing these parameters, the results can be 
compared with those of other authors under the 
corresponding conditions. 
 

STABILITY ANALYSIS 
 

In this paper, the dimensionless film thickness in 
the small perturbed state will be expressed as the 
following equation: 
ℎ(𝑡𝑡, 𝑧𝑧) = 1 + 𝜂𝜂(𝑡𝑡, 𝑧𝑧), 𝜂𝜂 = 𝑂𝑂(𝛼𝛼)  (38) 
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where η is the perturbation quantity of the stationary 
film thickness. By substituting Eq. (38) into Eq. (37) 
and collecting all the terms up to the order of 3, the η 
can be obtained as 
𝜂𝜂𝑡𝑡 + 𝐴𝐴𝜂𝜂𝑧𝑧 + 𝐵𝐵𝜂𝜂𝑧𝑧𝑧𝑧 + 𝐶𝐶𝜂𝜂𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 + 𝐷𝐷𝜂𝜂𝑧𝑧2 + 𝐸𝐸𝜂𝜂𝑧𝑧𝜂𝜂𝑧𝑧𝑧𝑧𝑧𝑧 =
−[(𝐴𝐴′𝜂𝜂 + 𝐴𝐴′′

2
𝜂𝜂2)𝜂𝜂𝑧𝑧 + (𝐵𝐵′𝜂𝜂 + 𝐵𝐵′′

2
𝜂𝜂2)𝜂𝜂𝑧𝑧𝑧𝑧 + (𝐶𝐶′𝜂𝜂 +

𝐶𝐶′′

2
𝜂𝜂2)𝜂𝜂𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 + (𝐷𝐷 + 𝐷𝐷′𝜂𝜂)𝜂𝜂𝑧𝑧2 + (𝐸𝐸 + 𝐸𝐸′𝜂𝜂)𝜂𝜂𝑧𝑧𝜂𝜂𝑧𝑧𝑧𝑧𝑧𝑧] +

𝑂𝑂(𝜂𝜂4)  (39) 
Note that the values of A, B, C, D and E and their 
corresponding derivatives are all evaluated at the 
dimensionless height h=1 of the film flow. 
 
Linear Stability Analysis 
 

Neglecting the nonlinear terms in Eq. (39), the 
following linearized equation can be obtained 
𝜂𝜂𝑡𝑡 + 𝐴𝐴𝜂𝜂𝑧𝑧 + 𝐵𝐵𝜂𝜂𝑧𝑧𝑧𝑧 + 𝐶𝐶𝜂𝜂𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 = 0  (40) 
In order to analyze the linear stability characteristics of 
the thin film using the normal mode method, an 
assumption is made that 
𝜂𝜂 = 𝑎𝑎 𝑅𝑅𝑒𝑒𝑝𝑝[ 𝑖𝑖(𝑧𝑧 − 𝑑𝑑𝑡𝑡)] + 𝑐𝑐. 𝑐𝑐.  (41) 
where 𝑎𝑎  is the perturbation amplitude and c.c. 
denotes its complex conjugate counterpart. The 
complex wave celerity, d, is given as 
𝑑𝑑 = 𝑑𝑑𝑟𝑟 + 𝑖𝑖𝑑𝑑𝑖𝑖 = 𝐴𝐴 + 𝑖𝑖(𝐵𝐵 − 𝐶𝐶)  (42) 
where 𝑑𝑑𝑟𝑟  is the linear wave speed and 𝑑𝑑𝑖𝑖  is the 
linear growth rate of the wave amplitude. For 𝑑𝑑𝑖𝑖 > 0, 
the flow is in an unstable linearly supercritical 
condition. Conversely, for 𝑑𝑑𝑖𝑖 < 0 , the flow is in a 
stable linearly subcritical condition. 
 
Nonlinear Stability Analysis 
 

The nonlinear stability of the thin-film system is 
analyzed by the multiple-scales method. The 
associated notations are defined as 
𝜕𝜕
𝜕𝜕𝑡𝑡
→ 𝜕𝜕

𝜕𝜕𝑡𝑡
+ 𝜀𝜀 𝜕𝜕

𝜕𝜕𝑡𝑡1
+ 𝜀𝜀2 𝜕𝜕

𝜕𝜕𝑡𝑡2
  (43) 

𝜕𝜕
𝜕𝜕𝑧𝑧
→ 𝜕𝜕

𝜕𝜕𝑧𝑧
+ 𝜀𝜀 𝜕𝜕

𝜕𝜕𝑧𝑧1
  (44) 

𝜂𝜂(𝜀𝜀, 𝑧𝑧, 𝑧𝑧1, 𝑡𝑡, 𝑡𝑡1, 𝑡𝑡2) = 𝜀𝜀𝜂𝜂1 + 𝜀𝜀2𝜂𝜂2 + 𝜀𝜀3𝜂𝜂3  (45) 
where 𝜀𝜀  is a small perturbation parameter, 𝑡𝑡1 = 𝜀𝜀𝑡𝑡 , 
𝑡𝑡2 = 𝜀𝜀2𝑡𝑡  and 𝑧𝑧1 = 𝜀𝜀𝑧𝑧 . Substituting the expressions 
above Eq. (43) ~ (45) into Eq. (39) and then expanding 
and rearranging yields the following equation: 
(𝐿𝐿0 + 𝜀𝜀𝐿𝐿1 + 𝜀𝜀2𝐿𝐿2)(𝜀𝜀𝜂𝜂1 + 𝜀𝜀2𝜂𝜂2 + 𝜀𝜀3𝜂𝜂3) = −𝜀𝜀2𝑁𝑁2 −
𝜀𝜀3𝑁𝑁3  (46) 
where 
𝐿𝐿0 = 𝜕𝜕

𝜕𝜕𝑡𝑡
+ 𝐴𝐴 𝜕𝜕

𝜕𝜕𝑧𝑧
+ 𝐵𝐵 𝜕𝜕2

𝜕𝜕𝑧𝑧2
+ 𝐶𝐶 𝜕𝜕4

𝜕𝜕𝑧𝑧4
  (47) 

𝐿𝐿1 = 𝜕𝜕
𝜕𝜕𝑡𝑡1

+ 𝐴𝐴 𝜕𝜕
𝜕𝜕𝑧𝑧1

+ 2𝐵𝐵 𝜕𝜕
𝜕𝜕𝑧𝑧

𝜕𝜕
𝜕𝜕𝑧𝑧1

+ 4𝐶𝐶 𝜕𝜕3

𝜕𝜕𝑧𝑧3
𝜕𝜕
𝜕𝜕𝑧𝑧1

  (48) 

𝐿𝐿2 = 𝜕𝜕
𝜕𝜕𝑡𝑡2

+ 𝐵𝐵 𝜕𝜕2

𝜕𝜕𝑧𝑧12
+ 6𝐶𝐶 𝜕𝜕2

𝜕𝜕𝑧𝑧2
𝜕𝜕2

𝜕𝜕𝑧𝑧12
  (49) 

𝑁𝑁2 = 𝐴𝐴′𝜂𝜂1𝜂𝜂1𝑧𝑧 + 𝐵𝐵′𝜂𝜂1𝜂𝜂1𝑧𝑧𝑧𝑧 + 𝐶𝐶 ′𝜂𝜂1𝜂𝜂1𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 + 𝐷𝐷𝜂𝜂1𝑧𝑧2 +
𝐸𝐸𝜂𝜂1𝑧𝑧𝜂𝜂1𝑧𝑧𝑧𝑧𝑧𝑧  (50) 
𝑁𝑁3 = 𝐴𝐴′(𝜂𝜂1𝜂𝜂2𝑧𝑧 + 𝜂𝜂1𝑧𝑧𝜂𝜂2 + 𝜂𝜂1𝜂𝜂1𝑧𝑧1) + 𝐵𝐵′(𝜂𝜂1𝜂𝜂2𝑧𝑧𝑧𝑧 +
2𝜂𝜂1𝜂𝜂1𝑧𝑧𝑧𝑧1 + 𝜂𝜂1𝑧𝑧𝑧𝑧𝜂𝜂2) + 𝐶𝐶 ′(𝜂𝜂1𝜂𝜂2𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 + 4𝜂𝜂1𝜂𝜂1𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧1 +
𝜂𝜂1𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝜂𝜂2) + 𝐷𝐷(2𝜂𝜂1𝑧𝑧𝜂𝜂2𝑧𝑧 + 2𝜂𝜂1𝑧𝑧𝜂𝜂1𝑧𝑧1) + 𝐸𝐸(𝜂𝜂1𝑧𝑧𝜂𝜂2𝑧𝑧𝑧𝑧𝑧𝑧 +

3𝜂𝜂1𝑧𝑧𝜂𝜂1𝑧𝑧𝑧𝑧𝑧𝑧1 + 𝜂𝜂1𝑧𝑧𝑧𝑧𝑧𝑧𝜂𝜂2𝑧𝑧 + 𝜂𝜂1𝑧𝑧𝑧𝑧𝑧𝑧𝜂𝜂1𝑧𝑧1) + 1
2
𝐴𝐴′′𝜂𝜂12𝜂𝜂1𝑧𝑧 +

1
2
𝐵𝐵′′𝜂𝜂12𝜂𝜂1𝑧𝑧𝑧𝑧 + 1

2
𝐶𝐶 ′′𝜂𝜂12𝜂𝜂1𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 + 𝐷𝐷′𝜂𝜂1𝜂𝜂1𝑧𝑧2 + 𝐸𝐸′𝜂𝜂1𝜂𝜂1𝑧𝑧𝜂𝜂1𝑧𝑧𝑧𝑧𝑧𝑧  

(51) 
Eq. (46) can then be solved on an order-by-order basis. 
Collecting all terms of order 𝑂𝑂(𝜀𝜀)  and solving the 
resulting equation 𝐿𝐿0𝜂𝜂1 = 0 gives 
𝜂𝜂1 = 𝑎𝑎(𝑧𝑧1, 𝑡𝑡1, 𝑡𝑡2) 𝑅𝑅𝑒𝑒𝑝𝑝[ 𝑖𝑖(𝑧𝑧 − 𝑑𝑑𝑟𝑟𝑡𝑡)] + 𝑐𝑐. 𝑐𝑐.  (52) 
After collecting terms and solving the secular equation 
of order 𝑂𝑂(𝜀𝜀2), it can be shown that 𝜂𝜂2 is given by 
𝜂𝜂2 = 𝑅𝑅𝑎𝑎2 𝑅𝑅𝑒𝑒𝑝𝑝[ 2𝑖𝑖(𝑧𝑧 − 𝑑𝑑𝑟𝑟𝑡𝑡)] + 𝑐𝑐. 𝑐𝑐.  (53) 
Substituting 𝜂𝜂1  and 𝜂𝜂2  into the secular equation of 
order 𝑂𝑂(𝜀𝜀3), it can be shown that 
𝜕𝜕𝑎𝑎
𝜕𝜕𝑡𝑡2

+ 𝐷𝐷1
𝜕𝜕2𝑎𝑎
𝜕𝜕𝑧𝑧12

− 𝜀𝜀−2𝑑𝑑𝑖𝑖𝑎𝑎 + (𝐸𝐸1 + 𝑖𝑖𝐹𝐹1)𝑎𝑎2𝑎𝑎 = 0  (54) 
where  
𝑅𝑅 = 𝑅𝑅𝑟𝑟 + 𝑖𝑖𝑅𝑅𝑖𝑖 = (𝐵𝐵′ − 𝐶𝐶 ′ + 𝐷𝐷 − 𝐸𝐸)/(16𝐶𝐶 − 4𝐵𝐵) +
𝑖𝑖𝐴𝐴′/(4𝐵𝐵 − 16𝐶𝐶)  (55) 
𝐷𝐷1 = 𝐵𝐵 − 6𝐶𝐶  (56) 
𝐸𝐸1 = (−5𝐵𝐵′ + 17𝐶𝐶 ′ + 4𝐷𝐷 − 10𝐸𝐸)𝑅𝑅𝑟𝑟 − 𝐴𝐴′𝑅𝑅𝑖𝑖 +
(−3𝐵𝐵′′/2 + 3𝐶𝐶 ′′/2 + 𝐷𝐷′ − 𝐸𝐸′)  (57) 
𝐹𝐹1 = (−5𝐵𝐵′ + 17𝐶𝐶 ′ + 4𝐷𝐷 − 10𝐸𝐸)𝑅𝑅𝑖𝑖 + 𝐴𝐴′𝑅𝑅𝑟𝑟 + 𝐴𝐴′′/2  
(58) 
Note that the overhead bar in Eq. (54) denotes the 
complex conjugate of the corresponding variable. Eq. 
(54) is generally referred to as the Ginzburg-Landau 
equation (Ginzburg and Landau, 1950). In 
investigating the weak nonlinear behavior of a fluid 
film flow, a solution with an exponential form is 
assumed, i.e. 
𝑎𝑎 = 𝑎𝑎0 𝑅𝑅𝑒𝑒𝑝𝑝[ − 𝑖𝑖𝑖𝑖(𝑡𝑡2)𝑡𝑡2]  (59) 
Employing a filtered wave condition which gives no 
spatial modulation, neglecting the diffusion term, and 
substituting the assumed solution of Eq. (59) into Eq. 
(54), it can be shown that 
𝜕𝜕𝑎𝑎0
𝜕𝜕𝑡𝑡2

= (𝜀𝜀−2𝑑𝑑𝑖𝑖 − 𝐸𝐸1𝑎𝑎02)𝑎𝑎0  (60) 
𝜕𝜕[𝑏𝑏(𝑡𝑡2)𝑡𝑡2]

𝜕𝜕𝑡𝑡2
= 𝐹𝐹1𝑎𝑎02  (61) 

The second term on the right-hand side of Eq. (60) is 
induced by the nonlinearity effect and causes the 
exponential growth of the linear disturbance to either 
decelerate or accelerate depending on the respective 
signs of 𝑑𝑑𝑖𝑖  and 𝐸𝐸1 . Clearly, if 𝐸𝐸1  is zero, Eq. (60) 
reduces to a simple linear equation. Meanwhile, Eq. 
(61) describes the effect of infinitesimal disturbances 
within the nonlinear system on the perturbed wave 
speed. In the linearly unstable region (𝑑𝑑𝑖𝑖 > 0 ), the 
necessary condition for the existence of a supercritical 
stable region is given as 𝐸𝐸1 > 0 . The corresponding 
threshold amplitude, 𝜀𝜀𝑎𝑎0, is defined as  

𝜀𝜀𝑎𝑎0 = �𝑑𝑑𝑖𝑖
𝐸𝐸1

  (62) 

while the nonlinear wave speed is given by 
𝑁𝑁𝑐𝑐𝑟𝑟 = 𝑑𝑑𝑟𝑟 + 𝜀𝜀2𝑖𝑖 = 𝑑𝑑𝑟𝑟 + 𝑑𝑑𝑖𝑖(

𝐹𝐹1
𝐸𝐸1

)  (63) 
Conversely, in the linearly stable region (𝑑𝑑𝑖𝑖 < 0 ), if 
𝐸𝐸1 < 0 , the film flow exhibits subcritical instability 
with a threshold amplitude of 𝜀𝜀𝑎𝑎0 . The necessary 
condition for the existence of a subcritical stable region 
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is given as 𝐸𝐸1 > 0 , while that for a neutral stability 
curve is given by 𝐸𝐸1 = 0. Based upon the discussions 
above, various characteristic states of the Landau 
equation can be identified, as summarized in Table 1. 
 
Table 1. Characteristic states of Landau equation 

linearly 
stable 

(subcritical 
region) 
𝑑𝑑𝑖𝑖 < 0 

subcritical 
instability 
𝐸𝐸1 < 0 

𝜀𝜀𝑎𝑎0 < (
𝑑𝑑𝑖𝑖
𝐸𝐸1

)
1
2 𝑎𝑎0 → 0 conditional 

stability 

𝜀𝜀𝑎𝑎0 > (
𝑑𝑑𝑖𝑖
𝐸𝐸1

)
1
2 𝑎𝑎0 ↑ 

subcritical 
explosive 

state 
subcritical 
(absolute) 
Stability 
𝐸𝐸1 > 0 

𝑎𝑎0 → 0  

linearly 
unstable 

(supercritical 
region) 
𝑑𝑑𝑖𝑖 > 0 

supercritical 
explosive 

state 
𝐸𝐸1 < 0 

𝑎𝑎0 ↑  

supercritical 
stability 
𝐸𝐸1 > 0 

𝜀𝜀𝑎𝑎0 → (
𝑑𝑑𝑖𝑖
𝐸𝐸1

)
1
2 

𝑁𝑁𝑐𝑐𝑟𝑟 → 𝑑𝑑𝑟𝑟 + 𝑑𝑑𝑖𝑖
𝐹𝐹1
𝐸𝐸1

 
 

 
NUMERICAL EXAMPLES 

 
Based on the Maxwell Equation, a calculable 

mathematical model for thin film of electrically-
conductive viscoelastic fluid flowing along a rotating 
cylinder with the effect of magnetic field can be built, 
which contains a model for linear stability and 
nonlinear stability. The mathematical model can then 
be nondimensionalized. Hartmann number, Rossby 
number, dimensionless viscoelastic parameter and 
dimensionless cylinder radius are the parameters that 
can affect the system. Let the following conditions for 
the convenience of later computation and analysis: 
(1) Reynolds number 𝑅𝑅𝑅𝑅 = 0~15, (2) Dimensionless 
perturbation wave number 𝛼𝛼 = 0~0.12 , (3) 
Hartmann number 𝑚𝑚 = 0, 0.1, and 0.2, (4) Rossby 
number 𝛽𝛽 = 0, 0.1, 0.2, and 0.5, (5) Dimensionless 
viscoelastic parameter 𝑘𝑘 = 0, 0.1, and 0.2, and (6) 
Dimensionless cylinder radius 𝑅𝑅 = 10, 20, 50, and 
1000. The dimensionless surface tension is assumed to 
have a constant value of 𝑆𝑆 = 6173.5  (Tsai et al., 
1996). 
 
Linear Stability Analysis 
 

Neutral stability curve is important in 
determining linear stability of the thin film. In Figure 
2, the curve of 𝑑𝑑𝑖𝑖 = 0 is the neutral stability curve 
and it can divide the graph into two regions. On the left 
side of the curve (i.e., 𝑑𝑑𝑖𝑖 < 0 ), small disturbance 
within the thin film will shrink and then disappear. The 
flow remains in laminar flow and stable. On the right 
side of the curve (i.e., 𝑑𝑑𝑖𝑖 > 0 ), small disturbance 
within the thin film will grow stronger and then change 
the flow state from laminar to turbulent. The flow 
becomes turbulent flow and unstable. Figure 2 (a) ~ (d) 
show the neutral stability curve of thin film flow 
system under different Hartmann number, Rossby 

number, dimensionless viscoelastic parameter and 
dimensionless cylinder radius, respectively. For the 
convenience of comparison, the neutral stability curve 
with no magnetic field, stationary cylinder and 𝑘𝑘 =
 0 is added to the graph. 
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Fig. 2(a) Linear neutral stability curves for three 
different values of m. (R=20, k=0.2, and 𝛽𝛽=0.2) 
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Fig. 2(b) Linear neutral stability curves for three different 

values of 𝛽𝛽. (R=50, m=0.2, and k=0.1) 
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Fig. 2(c) Linear neutral stability curves for three different 

values of k. (R=20, m=0.1, and 𝛽𝛽=0.1) 
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Fig. 2(d) Linear neutral stability curves for four different 

values of R. (m=0.1, k=0.1, and 𝛽𝛽=0.2) 
 
Nonlinear Stability Analysis 
 

To analyze Figure 4(a) to 4(d) based on the 
criteria in Table 1, the thin film system can be divided 
into 4 regions. In Fig. 4(a) and 4(b), with the 
increasing of Hartmann number, the linear neutral 
stability curve shifts downward. Subcritical instability 
region expands while subcritical stability region and 
supercritical stability region shift downward, and 
supercritical explosive state region shrinks. In Fig. 4(a) 
and 4(c), with the increasing of Rossby number, the 
linear neutral stability curve grows faster. Subcritical 
instability region shrinks while subcritical stability 
region and supercritical stability region shift upward, 
and supercritical explosive state region expands. In Fig. 
4(a) and 4(d), with the decreasing of radius R, the 
linear neutral stability curve shifts upward 
significantly. Subcritical instability region shrinks 
while subcritical stability region and supercritical 
stability region shift upward, and supercritical 
explosive state region expands. 
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Fig. 4(a) Neutral stability curves for m=0.1, 

k=0.2,𝛽𝛽=0.2, and R=20 

0 3 6 9 12 15
0

0.03

0.06

0.09

0.12

0
0

1 <
>

E
di

0
0

1 >
>

E
di

0
0

1 >
<

E
di

0
0

1 <
<

E
di

Re

α

 
Fig. 4(b) Neutral stability curves for m=0.2, 

k=0.2,𝛽𝛽=0.2, and R=20 
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Fig. 4(c) Neutral stability curves for m=0.1, 

k=0.2,𝛽𝛽=0.5, and R=20 
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Fig. 4(d) Neutral stability curves for m=0.1, 

k=0.2,𝛽𝛽=0.2, and R=10 
 
Figure 5 shows the variation of threshold amplitude in 
subcritical unstable region under different wave 
number. Fig. 5(a) to 5(c) shows threshold amplitude 
under different Hartmann number, Rossby number and 
dimensionless radius, respectively. The threshold 
amplitude increases as Hartmann number increases, 
but it decreases as Rossby number increases or 
dimensionless radius increases. 
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Fig. 5(a) Threshold amplitude in subcritical unstable 
region for three different values of m. (𝑹𝑹𝑹𝑹=3, R=20, 

k=0.1, and 𝜷𝜷 = 𝟎𝟎.𝟏𝟏) 
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Fig. 5(b) Threshold amplitude in subcritical unstable 
region for three different values of 𝜷𝜷. (𝑹𝑹𝑹𝑹=3, R=50, 

k=0.1, and m=0.2) 
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Fig. 5(c) Threshold amplitude in subcritical unstable region 

for three different values of R. (𝑹𝑹𝑹𝑹=6, m=0.2, 𝜷𝜷 = 𝟎𝟎.𝟐𝟐, 
and k=0.1) 

 
The stability of the thin film decreases if the threshold 
amplitude decreases. The system of the thin film 
remains conditionally stable when initial finite-
amplitude disturbance is smaller than threshold 
amplitude. The system of the thin film becomes 
explosive unstable when initial finite-amplitude 
disturbance is greater than threshold amplitude. 
 
Figure 6 analyze the change in threshold amplitude 
regarding wave number in supercritical stable region. 

Fig. 6(a) shows threshold amplitude under different 
Hartmann number. With Fig. 4(a) and 4(b), wave 
number and threshold amplitude decrease in 
supercritical stable region. Fig. 6(b) and 6(c) show 
threshold amplitude under different Rossby number 
and viscoelastic parameter. With larger Rossby 
number and viscoelastic parameter, threshold 
amplitude increases, and wave number becomes larger 
in supercritical stable region. Fig. 6(d) and 6(e) show 
threshold amplitude changes according to radius. In 
low Rossby number condition, threshold amplitude 
decreases as radius 𝑅𝑅 becomes larger. In high Rossby 
number condition, wave number becomes larger and 
threshold amplitude do not decrease like the others. 
Higher threshold amplitude results in lower thin film 
stability. 
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Fig. 6(a) Threshold amplitude in supercritical stable 

region for three different values of m. (𝑅𝑅𝑅𝑅=8, 𝛽𝛽=0.1, 
k=0.1, and R=20) 
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Fig. 6(b) Threshold amplitude in supercritical stable 
region for three different values of 𝛽𝛽. (𝑅𝑅𝑅𝑅=8, m=0.2, 

k=01, and R=50) 
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Fig. 6(c) Threshold amplitude in supercritical stable 
region for three different values of k. (𝑅𝑅𝑅𝑅=8, m=0.1, 

𝛽𝛽=0.1, and R=20) 
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Fig. 6(d) Threshold amplitude in supercritical stable 
region for three different values of R. (𝑅𝑅𝑅𝑅=5, m=0.2, 

𝛽𝛽=0.1, and k=0.2) 
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Fig. 6(e) Threshold amplitude in supercritical stable 
region for three different values of R. (𝑅𝑅𝑅𝑅=5, m=0.2, 

𝛽𝛽=0.5, and k=0.2) 
 
Figure 7 shows the relation between wave speed and 
nonlinear wave speed. The nonlinear wave speed can 
be obtained by Eq. (63). When the wave speed is 
slower, the thin film has better stability. Fig. 7(a) 
shows that both linear and nonlinear wave speed 
decreases with increasing Hartmann number. Fig. 7(b) 
and 7(c) show that higher Rossby number and 
viscoelastic parameter do not affect linear wave speed, 
but nonlinear wave speed has dramatic changes. In Fig. 
7(d), linear wave speed does not change with radius 
under larger Rossby number (i.e., 𝛽𝛽 = 0.5 ), but 
nonlinear wave speed does. When radius is 
respectively larger (i.e., 𝑅𝑅 = 50 ), nonlinear wave 
speed has relatively higher maximum wave speed, and 
the thin film system is less stable. 
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Fig. 7 (a) Nonlinear wave speed in supercritical 

stable region for three different values of m. 
(𝑅𝑅𝑅𝑅=8,𝛽𝛽=0.2, k=0.1, and R=50) 
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Fig. 7 (b) Nonlinear wave speed in supercritical 

stable region for three different values of 𝛽𝛽. (𝑅𝑅𝑅𝑅=8, 
m=0.1, k=0.2, and R=20) 
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Fig. 7 (c) Nonlinear wave speed in supercritical 
stable region for three different values of k. (𝑅𝑅𝑅𝑅=8, 

m=0.2, 𝛽𝛽=0.2, and R=20) 

0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

 

  R
10
20
50

Linear

Nonlinear

)50,20,10( =R

α

rNc

 
Fig. 7 (d) Nonlinear wave speed in supercritical 

stable region for three different values of R. (𝑅𝑅𝑅𝑅=5, 
m=0.2, 𝛽𝛽=0.5, and k=0.2) 

 
The results above show that the trend in smaller radius 
is opposite to larger radius. When the radius is smaller, 
higher Hartmann number, lower Rossby number and 
lower viscoelastic parameter lead to a stable system. 
The system is not stable under larger radius. By Eq. 
(30), the streamwise surface tension term is 
independent of the cylinder radius 𝑅𝑅 . The lateral 
surface tension term, on the contrary, varies inversely 
with 𝑅𝑅. As the result, for the model that has larger 
radius, the lateral surface tension becomes larger and 
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leads to lower stability of the thin film. 
The result from this paper matches the results from 
other studies written by other authors. The result of 
enhancing magnetic field, lower rotating velocity and 
lower viscoelasticity can increase stability under 
smaller radius matches the conclusion made by other 
authors (Cheng, 2009). If the effect of magnetic field 
is neglected, the results match the study done by other 
researchers that did not consider magnetic field(Chen 
et al., 2003). 

 
CONCLUSIONS 

 
This paper focused on thin electrically-

conductive viscoelastic fluid film flowing on the 
surface of a rotating vertical cylinder in a magnetic 
field and discussed the stability of this system. The 
following results are obtained by using long-wave 
perturbation method on linear stability and nonlinear 
stability: 

1. Enhancing magnetic field, lower rotating 
velocity and lower viscoelasticity can increase 
stability.  

2. By enhancing magnetic field, lower rotating 
velocity and lower viscoelasticity, the subcritical 
instable region will expand, and supercritical instable 
region will shrink.  

3. Subcritical and supercritical stable regions 
will be affected by magnetic field, rotating velocity 
and viscoelasticity. The area of the regions does not 
change very significantly, but the domain of Reynolds 
number and wave number will shift.  

4. When the dimensionless radius is smaller, the 
stability of the thin film is dominated by Hartmann 
number, Rossby number and dimensionless 
viscoelastic parameter. When the dimensionless radius 
is larger, such as the dimensionless radius 𝑅𝑅 > 50 or 
more, the lateral surface tension has greater influence 
on the stability of the thin film, which leads to much 
instable system. 
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摘 要 

本文介紹了在磁場影響下的導電粘彈性流體

薄膜沿旋轉垂直圓柱外側流下的流體穩定性研究。

本文使用長波微擾法推導了液膜的廣義非線性運

動方程。線性的薄膜穩定性條件會應用正模分析法

來確定。最後使用多重尺度法來檢驗非線性穩定性。

通過 Landau 方程式的不同係數判斷不同的流體薄

膜狀態。由此可以得出，增加磁場強度，降低粘彈

性效應，或者降低圓柱體旋轉速度可以增強流體薄

膜的穩定性。與此同時，隨著圓柱半徑在大羅斯貝

數(Rossby number)下的增加，如大於 50，流體薄膜

會更容易失去穩定性，從而主導流體薄膜的狀態，

導致其他參數對穩定性的影響降低。 
 
 
 


