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ABSTRACT 

 
Computer numerical controlled (CNC) machine 

tools are comprised of numerous parts mainly 
connected by bolts. Accurate modeling of the contact 
stiffness of bolted joints is therefore a crucial element 
in predicting the dynamic performance of CNC 
machine tools. This paper presents a contact stiffness 
model of a bolted joint based on multi-scale theory. 
The model uses a series of stacked three-dimensional 
sine waves to describe the multi-scale roughness of 
the contact surface, and each frequency level is 
considered to be a single layer of asperities, which 
are stacked on top of each other. A relationship 
between the contact area ratio and frequency level 
can be deduced. Moreover, the contact stiffness at 
each frequency level can be represented within the 
model as a spring in series, therefore, the total 
stiffness is obtained by summing the contact stiffness 
at each frequency level. An experimental setup 
consisting of a box-shaped specimen was used to 
validate the numerical model of the bolted joint for 
the case of equal bolt pre-tightening forces and 
relative errors between the multi-scale natural 
frequencies and experimental frequencies were found 
to be less than 5.91%. This suggests the multi-scale 
model can be used to effectively predict the dynamic 
characteristics of CNC machine tools. 

 
INTRODUCTION 

 
The dynamic behavior of bolted joints has an  
 
 
 
 
 
 
 
 
 

important influence on the precision of computer 
numerical controlled (CNC) machine tools. Many 
factors affect the dynamic behavior including the 
surface roughness, pre-tightening forces on each bolt, 
and material properties (Mao et al., 2010). Since the 
surfaces of most engineering materials are 
characteristically rough, they can be considered 
multi-scale surfaces presenting multiple non-uniform 
asperities. Hence, an appropriate contact model is 
necessary to accurately predict the dynamic behavior 
of the joint surface. 
Over the past few years, a number of contact models 
have been presented to describe bolted joints. One of 
the earliest proposed models is that of Greenwood 
and Williamson (GW) (Greenwood et al., 1966). 
Some assumptions are necessary in the GW model, 
for instance, all asperities with the same curvature 
and Gaussian or exponential distributions are 
assumed to be evenly spaced, as well as any point of 
contact between neighboring asperities. The 
relationship between the total real contact area and 
nominal contact pressure can then be deduced using 
appropriate statistical methods. Shi et al. (2012) 
introduced a contact stiffness model based on a 
specific formula for determining the number of 
asperities, and obtained parameters describing the 
contact surface based on GW contact theory. Other 
extensions of the GW model consider the effects of 
both plastic and adhesion deformation (Kogut et al., 
2002; Zhao et al., 2000; Jackson et al., 2005). 
However, the statistical roughness parameters used in 
the GW model and related models depend on the 
length scale, therefore most models are limited by the 
instruments available to obtain these measurements. 
Furthermore, applying the GW model to realistic 
surfaces is often difficult due to the random 
topographies of various surfaces. 
Fractal theory has been widely adopted to study 
engineering surfaces and offers features such as 
independent measurements and self-affinity. 
Majumdar et al. (1990) presented the famous M-B 
fractal contact model and identified the relationship 
between the total real contact area and normal load 
using the W-M function and Hertz theory. A normal 
contact stiffness model based on fractal theory and 
Hertz contact theory, independent of scale, was 
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previously established by Zhang et al. (2000) for joint 
surfaces, modeled as a sphere and rigid plane. Jiang et 
al. (2010) determined the contact stiffness of bolted 
joints under different contact loads using three 
different machining methods. Moreover, 
Komvopoulos et al. (2002) performed a 
comprehensive finite element method (FEM) analysis 
of elastic-plastic contact to model real surfaces 
exhibiting fractal behavior. Furthermore, Zhao et al. 
(2016) established a contact stiffness and damping 
model based on the nonlinear virtual material method 
and uneven surface contact pressure distribution 
method. A number of additional studies have 
investigated fractal-based contact models 
(Borri-Brunetto et al., 2001; Komvopoulos et al., 
2001; Willner et al., 2006; Wang, 2011). However, 
the fractal contact model is only effective when 
contact surfaces are under light load conditions. 
Recently, multi-scale theory has been used to study 
the contact mechanism of bolted joints in order to 
address the multi-scale characteristics of rough 
machined surfaces. The so-called “protuberance upon 
protuberance” multi-layer rough surface model was 
presented by Archard (1957) and simulates 
multi-scale surface roughness as numerous 
small-scale spherical asperities superimposed on 
large-scale spherical asperities. Wilson et al. (2010) 
proposed a multi-scale model based on 
superimposing the sine function. Compared to the 
existing statistics-based contact models, the 
multi-scale model was shown to be closer to the 
actual situation and unaffected by the resolution of 
measurement systems. Furthermore, Ciavarella et al. 
(2000) applied Archaed's protuberance upon 
protuberance multi-layer rough surface model to 
solve contact problems between a two-dimensional 
fractal surface and rigid rough surface based on the 
W-M function and obtained a formula for contact 
resistance.  
The Fourier series was used by Jackson and Streator 
(2006) to represent different scales of rough surface 
asperities and a multi-scale normal contact model, 
also non-statistical, was proposed. Based on the 
model, it was concluded that real contact areas vary 
linearly with load regardless of whether the contact is 
elastic or elasto-plastic. The sinusoidal contact model 
was further studied by Krithivasan and Jackson 
(2007), who investigated the effects of plasticity on 
individual asperities. Instead of using previous 
asymptotic methods, Johnson, Greenwood, and 
Higginson (JGH) (1985) used exact solutions based 
on Hertz contact theory to propose a more realistic 
rough surface contact model. Fewer stiffness models 
of the contact surface based on multi-scale theory 
have been presented. Therefore, the main objective of 
this paper is to describe the contact stiffness of a 
bolted joint based on a multi-scale model and to 
deduce the relationship between the contact area ratio 
and frequency level.  

The MATRIX27 element was introduced into the 
finite element model of the bolted assembly in order 
to define the normal and tangential contact stiffness 
of the joint surface. In addition, two box-shaped 
specimens connected by bolts were set up to validate 
the model. Numerical and experimental mode shapes 
and natural frequency values were compared, and 
relative errors between the multi-scale natural 
frequencies and experimental frequencies were found 
to be less than 5.91%. This suggests the proposed 
multi-scale model could be used to accurately predict 
the dynamic characteristics of bolted assemblies in 
CNC machine tools.  

 
MULTI-SCALE MODEL OF JOINT 

SURFACE 
 

The contact stiffness of bolted joints can have a 
significant influence on the dynamic performance of 
CNC precision machining, therefore an accurate 
model of contact stiffness is required to successfully 
predict the dynamic performance of CNC machine 
tools. The proposed multi-scale model uses a series 
of stacked three-dimensional (3D) sine waves to 
describe the multi-scale roughness of the contact 
surface, as shown in Figure 1. The multi-scale 
parameters of the contact surface topography can be 
obtained by applying the fast Fourier transform (FFT) 
to the rough surface profile, however, a few 
simplifying assumptions are necessary (Jackson et al., 
2006; Goedecke et al., 2013), as follows:  

(1) Asperities of different frequency levels are 
assumed to be stacked on top of each other.  

(2) Each frequency level supports the same total 
load, moreover, all asperities share the load equally 
since they are assumed to have the same height at a 
given frequency level. 

(3) At a given frequency level, Hertz contact 
theory or an appropriate elastic-plastic contact model 
is applied to determine the deformation of each 
asperity, while all other asperities are assumed to 
have negligible influence. 

(4) The real contact area at a given frequency 
level cannot be larger than the contact area of the 
frequency level below it. 

 

 
Fig. 1. Representative multi-scale model of a rough 

surface. 
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This paper adopts the multi-scale model proposed 
by Jackson and Streator (2006). The contact surface 
is considered to be the summation of a series of sine 
waves. The real contact area is denoted by rA  and 
the nominal contact area is nA , therefore, the 
equations of the multi-scale contact model can be 
expressed as 

max

1

( )
i

r i i n
i

A A Aη
=

= ∏
                     (1) 

1i i iF F Aη −=                               (2) 
where F is the total contact force and 

iA  denotes the 
contact area, 

iF  denotes the contact force, and iη  is 
the areal asperity density at a given frequency level i, 
and maxi  is the maximum frequency level. The areal 
asperity density and asperity radius of curvature can 
be calculated by applying FFT to the rough surface 
profile at each frequency level, expressed as  

22i ifη =                                  (3) 

2 2

1

4
i

ii

R
fπ β

=

                           (4) 
where 

i
β  and 

i
f  are the amplitude and frequency, 

respectively, at frequency level i and nA  is the 
nominal contact area when i is zero. 

 
STIFFNESS MODEL OF BOLTED 
JOINT BASED ON MULTI-SCALE 

THEORY 
 
Normal stiffness model of bolted joint 

The multi-scale geometry model is one of the 
best-known models for describing mechanical 
surfaces. The multi-scale model uses a series of 
stacked sine waves to describe the multi-scale 
roughness of the joint surface. When two rough 
surfaces are held in contact by high strength bolts 
under different pre-tightening forces, elastic-plastic 
deformation of the asperities occurs. Based on the 
definition of contact stiffness, elastic-plastic 
deformation can be related to simple elastic 
deformation. When asperities only undergo plastic 
deformation, the contact stiffness is zero. Hertz 
contact theory can be applied to a perfectly elastic 
contact between two rough surfaces. According to the 
JGH model, at a given frequency level i and for a 
small load, *

i iF F<< , the contact area of a single 
asperity can be given by 

2
3

1 2 *

3( )
2 8

i
i

i i

FA
f F
π

π
 

=  
 

                     (5) 

where *
iF is the average pressure required at 

frequency level i for complete contact between the 
surfaces. However, as the load is increased, complete 

contact is almost realized as 
iF  approaches *

iF , 
such that the contact area of a single asperity can be 
given by 

2 2 *

1 3( ) 1 1
2

i
i

i i

FA
f Fπ

  
= − −     

                     (6) 

where *
iF  is defined as 

* 2i i iF E fπ β′=                        (7) 
Jackson and Streator (2006) defined a linking 

equation for determining the asymptote solutions of 
Eqs. (5) and (6) based on the experimental and 
numerical data of the JGH model, which can be 
expressed as follows: 

For * 0.8
i

F
F < , 

1.51 1.04

1 2* *( ) 1 ( )i i
i i i

i i

F FA A A
F F

    
 = − +        

          (8) 

And for 
* 0.8

i

F
F ≥ , 

2( )i iA A=                                 (9) 
The pressure acting on the individual asperities 

increases as the total load increases, eventually 
causing the asperity material to yield at the bolted 
joint. Then, many asperities at different frequency 
levels undergo plastic deformation. Therefore, an 
elasto-plastic sinusoidal contact model that considers 
this effect, such as the one presented in this paper, is 
required. At a given frequency level, the critical 
interference ( )c iω  at the initial point of yielding can 
be derived based on the von Mises yield criterion, as 
demonstrated by Jackson and Green, is expressed as 

2

( )
2

y
c i i

CS
R

E
π

ω
 

=  ′ 
                       (10) 

where 
yS  is the yield strength of the material, C  

is the critical yield stress coefficient, and E′  is the 
equivalent elastic modulus, which are given by  

1.295exp(0.736 )C ν=                    (11)  
2 2
1 2

1 2

1 11 v
E E E

ν− −
= +
′

                       (12) 

where ν  refers to the Poisson’s ratio of the material 
that yields first, 1ν  and 2ν  are the Poisson’s ratios 
of the two surfaces, and 1E  and 2E  are the 
corresponding elastic moduli. 

The critical force ( )c iF at a given frequency 
level calculated at the critical interference can be 
written as 

324( )
3 2

yi
c i

C SRF
E

π  =   ′   
                    (13) 

Similarly, the critical contact area ( )c iA  at 
frequency level i can be expressed as 

2
3( )

2
y i

c i

CS R
A

E
π

 
=  ′ 

                          (14) 
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As previously stated, when *
i iF F  at a given 

frequency level i, asperities in contact exhibit perfect 
elastic behavior. However, as the load increases to a 
critical value, plastic deformation will occur. To 
evaluate the plastic deformation of an asperity at a 
given frequency level i, Eq. (5) can be replaced by 
another equation (Wilson et al., 2000) to obtain 

( )
1 1

1
2

3( ) 2 ( )
4

q
q

iq
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y i

FA A
CS f

+
+
 

=   
                   (15) 
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y

Eq f
S

β
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                       (16) 

Then, the contact area at frequency level i 
becomes 

1.51 1.04

2* *( ) 1 ( )i i
i i p i

iP iP

F FA A A
F F

    
 = − +        

            (1 7) 

Furthermore, the pressure required to achieve 
complete contact during elastic-plastic deformation 
can be written as 

3
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*

11
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F
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=  ∆ + 

                    (18) 
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                       (19) 

where β∆  is the critical amplitude at a given 
frequency level i, below which the sine wave will 
always undergo elastic deformation and adding more 
pressure will cause plastic deformation. The critical 
amplitude can be determined when the maximum von 
Mises stress is equal to the yield strength. 

For the case of elastic deformation of an 
asperity, contact force 

iF  and contact area ia  of a 
single asperity at a given frequency level i can be 
determined using Hertz contact theory, and are 
expressed as 

1 3
2 24

3i i iF E R ω′=                            (20) 

2
i i i ia r Rπ π ω= =                          (21) 

where iω  is the interference between the surfaces 
and ir  is the contact radius of a single asperity.  

According to Eqs. (20) and (21), ir  can be 
expressed as 

1
33

4
i i

i
F Rr
E

 
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                           (22) 

By definition, the normal contact stiffness 
( )n ik  of each elastic asperity at a given frequency 
level i can be expressed as 

1 1
2 2( ) =2 =2i

n i i i i
i

dFk E R E r
d

ω
ω

′ ′=             (23) 

According to Eqs. (23), (4), and (22), the 

contact stiffness ( )n ik  of a single asperity at a 
given frequency level can be written as 

1
3

2

3( ) 2
8

i
n i

i i

Fk E
Eπ βη

 
′=  ′ 

                  (24) 

The number of asperities can be defined as iN  
at a given frequency level i. Then, according to the 
definition we obtain 

i
i

FF N= and i
i

i

AA N= . Thus, 

the total stiffness ( )n iK  at frequency level i can be 
written as 

1( ) ( ) ( )n i i n i i i n iK = N k A kη −=              (25) 
Substituting Eq. (24) into Eq. (25), the solution 

becomes 
1 1

23 3
133 3( ) 2 2
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′ ′=   ′   

 ( 2 6 ) 

Elastic deformation occurs when ( )i c iA A<  at 
a given frequency level i. The contact area and 
critical frequency level ci  for elastic deformation 
to occur can be calculated at frequency level i. At 
frequency level 1i + , plastic deformation will occur. 
Then, ci can be defined as the critical frequency 
level and the critical contact area ( )c iA  can be 
expressed as 

22
3

2

1( ) =
2 8

y i y
c i

i i

CS R CS
A

E E f
π

π β
  

=   ′ ′   
          ( 2 7 ) 

Jackson and Streator (2006) represented an 
iterative relationship for determining the real contact 
area between a given frequency level and the 
frequency level just below, as follows: 

2 2 1
1 3 3 3

131 9 1( )
4 2

i i

n n i i n

A AF
A E A f Aπ β

−     
=      ′     

   ( 2 8 ) 

The multi-scale parameters f  and β  at 
different frequency levels can be computed using the 
following equation: 

1
i

if

γ

β α
 

=  
                          (29) 

where both α  and γ  are constants derived from 
the Fourier series of the surface data. 

According to Eqs. (26), (28), and (29), the 
contact stiffness at a given frequency level i can be 
obtained when the frequency level is less than the 
critical frequency level ci , and the model can be 
regarded as a model consisting of springs in series. 
Therefore, total stiffness nK  can be expressed as  

1 1
( )

ci

i=1n n i

=
K K∑                           (30) 
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Tangential stiffness model of bolted joint 

Asperities will deform in the shear direction 
when a tangential force acts on the contact surface 
under a normal load. According to reference (Kogut 
et al., 2002), the tangential deformation of a single 
asperity at a given frequency level can be written as 

2
33 1 1

16
i

i i
ii

Qt eF
eFGr

 
  = − −  
   

                 (31) 

where e  refers to the static friction coefficient, G  
and E  are the shear modulus and elastic modulus 
of the material, respectively, G  denotes the 
equivalent shear modulus of the two contact surface, 

1G  and 2G  are the shear modulus of the two 
respective contact surfaces, iQ is the tangential load 
acting on a single asperity at given frequency level. 
The static friction coefficient can be defined as 

1
2Ge

E
 =  
 

                                (32) 

Moreover, the shear modulus can be expressed as 
1

1 2

1 2

2 2G
G G
ν ν

−
 − −

= + 
 

                         (33) 

By definition, the tangential contact stiffness 
( )t ik  for each asperity at a given frequency level i 
can be expressed as 

( )
1
216( ) 8 1

3
i i i

t i i i
i i

dQ t Grk Gr t
dt eF

 
= = − 

 
            (34) 

Substituting Eq. (31) into Eq. (34), we obtain 
1
3

( ) 8 1 i
t i i

i

Qk Gr
eF

 
= − 

 
                       (35) 

For a single asperity, the relationship between 
the shear force and normal force can be expressed as 

i

i

Q

F

Q
F

=                               (36) 

where Q  refers to the tangential force of the contact 
surface, defined as = rQ Aτ , and τ refers to the 
shear strength of the softer of the two materials in 
contact. Then, the tangential contact stiffness of a 
single asperity corresponding to a given frequency 
level can be expressed as 

1
3

( ) 8 1t i i
Qk Gr
eF

 = − 
 

                      (37) 

The total stiffness ( )t iK  at a given frequency 
level i can be written as 

11
2 2 33

1
2

3( ) ( ) 8 1
4

i i
t i t i i

i

FA fQK k N G
eF Eπ β
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   (38) 

Similar to the normal stiffness model, the total 
tangential stiffness tK  is given by 

max

1

1 1
( )

i

it t iK K=

= ∑                              (39) 

 
EXPERIMENTAL VALIDATION OF 

MULTI-SCALE MODEL  
 

A box-shaped specimen was used to 
experimentally validate the accuracy of the proposed 
multi-scale model. The in-plane dimensions of the 
specimen are shown in Figure 2. The material is 
nodular cast iron (QT600-3, China) and its properties 
are presented in Table 1. Specimens were machined 
by grinding to a roughness of Ra = 1.6 μm. A 
flowchart of the model validation process is 
illustrated in Figure 3. 

 
Table 1. Material properties of bolted joint 

Material parameter Parameter value 
Elastic modulus, E  1.5x1011 Pa 

Density, ρ  7800 Kg/m3 
Poisson’s ratio 0.28 

 

 
Fig. 2. Plane dimensions of box-shaped specimen  

 

 
Fig.3. Flowchart of model validation process 

 
Two identical specimens were used in contact 

tests of the bolted joint connected using eight M16 
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bolts, as depicted in Figure 4. The assembly was 
suspended by a rope to simulate the free degree of 
freedom (DOF) state to eliminate the effects of 
external forces. Two groups of piezoelectric 
acceleration sensors (330B30, PCB Piezotronics) 
were placed on the specimens with a total of nine 
sensors on each surface of the assembly. An impact 
hammer was used to provide the excitation signal at 
the end of one of the specimens. To reduce random 
error, eliminate the influence of noise, and improve 
the signal-to-noise ratio, average values were 
calculated based on three separate experiments. The 
excitation and sensor signals were collected by LMS 
modal analyzers and further analyzed on a desktop 
computer. The LMS modal analyzers can be adopted 
to offer a complete, integrated solution for test-based 
engineering that combines high speed 32-channel 
data acquisition with a full suite of integrated testing, 
analysis, and reporting tools. 

 

 
Fig. 4. Contact model tests of bolted joint 

 
Modal analysis of the assembly was performed 

in ANSYS and a finite element model was 
established to verify the effectiveness of the 
multi-scale model of the bolted joint, as illustrated in 
Figure 5(a). The numbers 1 to 8 represent different 
positions of the bolts and each bolt was loaded with 
the same pre-tightening force. A grid model with 
1019 nodes was used as the contact interface, and two 
surfaces have identical meshes so that the nodes are 
in one-to-one correspondence on two surfaces, which 
makes it possible to add the self-defined element 
between two nodes, as shown in Figure 5(b). The 
surface-to-surface contact element “CONTAC174” is 
used to define the contact surfaces of bolted joint. 
The pre-tightening force of each bolt is implemented 
in the finite element model. All nodes of the contact 
interface were selected, and the corresponding 
contact pressure of each node was determined by 
performing a static analysis. Finally, the contact 
stiffness of each node was calculated in MATLAB 
based on the corresponding contact pressure. Here, 
the MATRIX27 element was adopted to establish the 
node-node stiffness matrix of the joint surface. One 
node pair of the MATRIX27 stiffness element is 
given by 

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

x x

y y

z z

x x

y y

z z

K K
K K

K K

K K
K K

K K

− 
 − 
 −
 
 
 
 
 
 −
 

− 
 − 
 
 
 
  

 

where xK  and 
yK  refer to tangential stiffness of 

the X and Y axes, respectively, and zK  denotes the 
normal stiffness of the joint surface. 

 

 
(a) Grid model of bolted joint   (b) Grid model of 

interface  
Fig. 5. Grid models of the bolted joint and interface 

 
A stylus profilometer was used to measure the 

surface profile, which was then used to obtain the 
parameters used in the multi-scale model, as shown 
in Figure 6(a). The surface profile consisted of 19 
600 data points. The power spectral density of the 
surface profile generated by FFT is shown in Figure 
6(b). The computed power spectral density is 
sufficiently small, suggesting the physical meaning is 
lost at higher frequencies.  

 

 
Fig. 6. (a) Surface profile for Ra=1.6 μm  (b) Power 

spectral density of the surface 
 

The power spectrum density method, based on 
Eq. (29), was used to obtain the constants =0.026α  
and =1.42γ . For F = 18 kN, the relationship 
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between the contact area ratio and frequency level is 
shown in Figure 7. It can clearly be seen that a few of 
the lower frequency values play a significant role in 
changing the contact area ratio, whereas the higher 
frequency values seem to have little influence. As the 
frequency level increases, the real contact area 

decreases, and at frequency levels greater than 50, 
changes in the contact area ratio are so small that the 
influence of frequency is negligible. The results agree 
with the previous predictions of Ciavarella et al. 
(2000) and suggest that as the frequency level 
increases, the real contact area tends toward zero. 

 
Table 2. Comparison of the simulated and experimental mode shapes 

Simulated Experimental Simulated Experimental  

 

   

1st order 2nd order 

    

3rd order 4th order 

 
   

5th order  6th order 

 
Table 3. Natural frequencies of the bolted joint obtained using the multi-scale model (Hz) 

 
 1 2 3 4 5 6 

9 kN 

Experiment 533.56 666.09 864.07 869.58 1334.41 1421.03 
Simulation (proposed model) 536.54 627.30 841.73 885.95 1290.70 1383.10 

Error (%) 0.56 -5.82 -2.59 1.89 -3.28 -2.67 
Simulation (ignoring the influence of 

bolted joints) 556.74 612.60 825.13 830.55 1260.90 1473.10 

Error (%) 4.34 -8.03 -4.51 -4.49 -5.51 3.66 

12 kN 

Experiment 548.50 665.10 875.30 899.30 1384.00 1416.00 
Simulation (proposed model) 544.56 625.80 861.60 893.10 1317.20 1410.00 

Error (%) -0.72 -5.91 -1.57 -0.69 -4.83 -0.42 
Simulation (ignoring the influence of 

bolted joints) 561.06 615.80 821.60 863.10 1282.20 1449.00 

Error (%) 2.29 -7.41 -6.14 -4.03 -7.36 2.33 

15 kN 

Experiment 552.84 668.28 883.37 900.25 1387.80 1438.90 
Simulation (proposed model) 556.45 635.92 871.88 894.73 1353.30 1434.50 

Error (%) 0.65 -4.84 -1.30 -0.61 -2.49 -0.31 
Simulation (ignoring the influence of 

bolted joints) 565.26 620.92 821.88 854.73 1283.30 1474.50 

Error (%) 2.25 -7.09 -6.97 -5.06 -7.53 2.47 

18 kN 

Experiment 562.84 668.57 884.17 900.81 1390.95 1451.00 
Simulation (proposed model) 559.23 686.02 898.12 915.95 1359.90 1456.70 

Error (%) -0.64 2.61 1.58 1.68 -2.23 0.39 
Simulation (ignoring the influence of 

bolted joints) 551.96 646.02 822.12 855.95 1302.71 1477.90 

Error (%) -1.93 -3.37 -7.02 -4.98 -6.34 1.85 
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The first to 6th order mode shapes of the 
assembly, measured by hammer impact testing, were 
compared with the corresponding numerical modal 
shapes, presented in Table 2. Each bolt was subjected 
to the same pre-tightening force during the 
experiments. The finite difference method (Wang et 
al., 2013) was used to verify the results of the 
simulation, and mode shapes predicted using the 
multi-scale method are shown to be similar to the 
experimental mode shapes (Table 2). 

 

 
Fig.7. Contact area ratio versus frequency level  

 
The first to 6th order natural frequencies of the 

assembly obtained using the multi-scale model under 
different pre-tightening loads are presented in Table 3. 
To ensure the error of the pre-tightening force of each 
bolt was than 0.1 kN, experiments were performed 
three times. For the multi-scale model, relative errors 
between the natural frequencies obtained using the 
multi-scale model and experimental frequencies were 
less than 5.91%. The maximum error was 5.91% for 
the 2nd order natural frequency with a pre-tightening 
force of 12 kN. The minimum error was 0.31% for 
the 6th order natural frequency with a 15 kN 
pre-tightening force on each bolt. These results were 
also compared with the model that does not consider 
the influence of joint surfaces, and the error of the 
proposed model was found to be smaller. Therefore, 
the multi-scale theoretical model can effectively 
predict the dynamic behavior of bolted joints. 

 
Fig. 8. First order natural frequency versus 

pre-tightening force 

The relationship between the first order natural 
frequency and pre-tightening force is shown in Figure 
8. As the pre-tightening force increases, the first 
order natural frequency also increases, however, once 
the pre-tightening force exceeds 24 kN, very little 
change in the natural frequency is observed. The 
fundamental reason is that incremental changes in the 
contact pressure of the bolted assembly occur close to 
the bolts, whereas further away from the bolts, the 
contact pressure remains relatively constant. The 
results suggest the multi-scale method may be useful 
in optimizing the number of bolts in bolted 
assemblies and for determining appropriate 
pre-tightening forces. 

 
CONCLUSIONS 

 
In this paper, a multi-scale model was presented 

for determining the normal and tangential stiffness of 
the contact surface of a bolted joint. The iterative 
multi-scale framework was used to model the contact 
between two rough surfaces. The results clearly show 
that a few of the lower frequency values have an 
important influence on the contact area ratio, 
however, higher frequencies seem to have little 
influence on contact area. At frequency levels greater 
than 50, changes in the contact area ratio are so small 
that the influence of frequency can be neglected.  

Using the proposed multi-scale model, 
relationships between the stiffness of the bolted joint, 
multi-scale parameters, and contact area were 
deduced. Relative errors between the numerical 
natural frequencies and experimental values were less 
than 5.91%, thus demonstrating that the multi-scale 
model can accurately predict the dynamic behavior of 
bolted joints in CNC machine tools. These results 
provide a theoretical basis for the optimized design 
and manufacture of heavy machine tools systems that 
are affected by the coupling effects of bolted joints.  
 

ACKNOWLEDGMENT 
 
This research was financially supported by National 
Natural Science Foundation of China (No. 51375025), 
National Science and Technology Major Project of 
China (No. 2015ZX04014-021). 
 

REFERENCES 
 
Mao, K., Li B., Wu, J., “Stiffness Influential 

Factors-based Dynamic Modeling and Its 
Parameter Identification Method of Fixed 
Joints in Machine Tools,” International 
Journal of Machine Tools & Manufacture, 
Vol. 50, pp. 156-164 (2010). 

Greenwood, J.A., and Williamson, J.B.P., “Contact of 
Nominally Flat Surfaces,” Proceedings of the 
Royal Society A Mathematical Physical & 



 
C. Yang et al.: Stiffness Model of Bolted Joint of Machine Tool Based on Multi-scale Theory. 

 -167- 

Engineering Sciences, Vol. 295, pp. 300-319 
(1966). 

Shi, J.P., Ma, K., and Liu,Z.Q., “Normal Contact 
Stiffness on Unit Area of A Mechanical Joint 
Surface Considering Perfectly Elastic 
Elliptical Asperities,” Journal of Tribology, 
Vol. 134, pp. 1-6 (2012).  

Kogut, L., and Etsion, I., “Elastic-plastic Contact 
Analysis of A Sphere and A Rigid Flat,” 
Journal of Applied Mechanics, Vol. 69, pp. 
657-662 (2002). 

Zhao, Y., Maietta, D.M., and Chang L., “An Asperity 
Microcontact Model Incorporating the 
Transition from Elastic Deformation to Fully 
Plastic Flow,” Journal of Tribology, Vol. 122, 
pp. 86-93 (2000).  

Jackson, R.L., and Green I., “A Finite Element Study 
of Elastic-plastic Hemi-spherical Contact,” 
Journal of Tribology, Vol. 127, pp. 343-354 
(2005). 

Majumdar, A., and Bhushan, B., “Role of Fractal 
Geometry in Roughness Characterization and 
Contact Mechanics of Surfaces,” Journal of 
Tribology, Vol. 112, pp. 205-216 (1990). 

Zhang, X.L., Huang, Y.M., and Han, Y., “Fractal 
Model of the Normal Contact Stiffness of 
Machine Joint Surfaces Based on the Fractal 
Contact Theory,” China Mechanical 
Engineering, Vol. 11, pp. 727-729 (2000).  

Jiang, S., Zheng, Y., and Zhu, H., “A Contact 
Stiffness Model of Machined Plane Joint 
Based on Fractal Theory,” Journal of 
Tribology, Vol. 132, (2010). 

Komvopoulos, K., and Ye, N., “Elastic–plastic Finite 
Element Analysis for the Head-disk Interface 
with Fractal Topography Description,” 
Journal of Tribology, Vol. 124, pp. 775–784 
(2002). 

Zhao, Y., Yang, C., and Cai, L.G., “Surface Contact 
Stress-based Nonlinear Virtual Material 
Method for Dynamic Analysis of Bolted Joint 
of Machine Tool,” Precision Engineering, Vol. 
43, pp. 230-240 (2016). 

Borri-Brunetto, M., Chiaia, B., and Ciavarella M., 
“Incipient Sliding of Rough Surfaces in 
Contact: A Multiscale Numerical Analysis,” 
Computer Methods in Applied Mechanics & 
Engineering, Vol. 190, pp. 6053-6073 (2001). 

Komvopoulos, K., and Ye N., “Three-dimensional 
Contact Analysis of Elastic-plastic Layered 
Media with Fractal Surface Topographies,” 
Journal of Tribology, Vol. 123, pp. 632-640 
(2001). 

Willner, K., “Elasto-plastic Contact of Fractal 
Surfaces Using Half-space Theory,” Journal 
of Tribology, Vol. 27, pp. 305-312 (2006). 

Wang, S., “Interfacial Stiffness Characteristic 
Modeling of Mechanical Fixed Joints,” 
Journal of Huazhong University of Science & 

Technology, Vol. 39, pp. 1-5 (2011). 
Archard, J.F., “Elastic Deformation and the Laws of 

Friction,” Proceedings of the Royal Society A 
Mathematical Physical & Engineering 
Sciences, Vol. 243, pp. 190-205 (1957). 

 Wilson, W.E., Angadi, S.V., and Jackson, R.L., 
“Surface Separation and Contact Resistance 
Considering Sinusoidal Elastic–plastic 
Multi-scale Rough Surface Contact,” Wear, 
Vol.268, No.1, pp.190-201 (2010). 

Ciavarella, M., “Linear Elastic Contact of the 
Weierstrass Profile,” Proceedings of the 
Royal Society A, Vol. 456, pp.387-405 (2000). 

Jackson, R.L., and Streator J L. “A Multi-scale 
Model for Contact Between Rough Surfaces,” 
Wear, Vol. 261, pp. 1337-1347 (2006). 

Krithivasan V., and Jackson, R.L., “An Analysis of 
Three-dimensional Elasto-plastic Sinusoidal 
Contact,” Tribology Letters, Vol. 27, pp. 
31-43 (2007). 

Johnson, K.L., Greenwood, J.A., and Higginson, J.G., 
“The Contact of Elastic Regular Wavy 
Surfaces,” International Journal of 
Mechanical Sciences, Vol. 27, pp. 383-396 
(1985). 

Goedecke, A., Jackson, R.L., and Mock, R., “A 
Fractal Expansion of A Three Dimensional 
Elastic–plastic Multi-scale Rough Surface 
Contact Model,” Tribology International, Vol. 
59, pp. 230-239 (2013). 

Wilson, W.E., Angadi, S.V., and Jackson R L., 
“Surface Separation and Contact Resistance 
Considering Sinusoidal Elastic–plastic 
Multi-scale Rough Surface Contact,” Wear, 
Vol. 268, pp. 190-201 (2007). 

Wang, C.C., and Yau, H.T., “Bifurcation Analysis of 
Bearing Number in Ultra Short Gas Bearing 
System,” Smart Science, pp.18-24 (2013). 

 
NOMENCLATURE 

 
Ar  the real contact area 
 
An  the nominal contact area 
 

iA  the contact area at a given frequency level 
 

iF  the contact force at a given frequency level 
 

iη  the areal asperity density 
 
i,  ic  frequency level and critical frequency level 
 
imax highest frequency level 
 
F  the total contact force 
 
fi 

i
β  the frequency and amplitude at a given 
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frequency level i 
 

*
iF  the average pressure for complete contact 

 
iω , the interference  

 

( )c iω  the critical interference 
 
Sy  the yield strength of the material 
 
C  the critical yield stress coefficient 
 
E′  the equivalent elastic modulus 
 
ν  Poisson’s ratio of the first material to yield 
 

1ν , 2ν  Poisson’s ratios of the surfaces 
 
E1 , E2  the elastic moduli of the surfaces 
 

( )c iF   the critical force at a given frequency level 
 
( )i pA  the contact area during plastic deformation 
 
β∆  the critical amplitude at a given frequency level i 

 
ai  the contact area of a single asperity 
 
ri  the contact radius of a single asperity 
 
( )n ik , ( )t ik  the normal contact stiffness and 
tangential contact stiffness for each asperity 
 
Ni  number of asperities at a given frequency level i 
 
( )n iK , ( )t iK  the total normal stiffness and total 
stiffness at a given frequency level i 
 
α , γ  the constants derived from the Fourier series 
 
Kn,  Kt  the total normal and tangential stiffness 
 
ti  the tangential deformation of a single asperity 
 
e  the static friction coefficient 
 
G, E  the shear modulus and elastic modulus of the 
material 
 
G  the equivalent shear modulus of two surfaces 
 
G1, G2 the shear modulus of the two contact surfaces 
 

iQ  the tangential load acting on a single asperity 
 

Q  the Tangential force of the contact surface 
 
τ  the shear strength of the softer material 
 
( )c iA  the critical contact area 
 
 

基于多尺度理論數控機床
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摘 要 

數控機床有不同部件通過栓接的形式組合而

成，精確的栓接結合部剛度模型對數控機床的動態

特性有重要影響。本文提出了一種基于多尺度理論

的栓接結合部剛度模型，此模型使用一系列疊加的

三維正弦波來表征粗糙接觸表面多尺度特性，每個

正弦波被認爲是一層頻率級，推導出了接觸面積比

與頻率級的函數關系，則整體剛度可以看作不同頻

率級串聯的彈簧模型，接觸總剛度爲各頻率級剛度

之和。最後，設計框型試驗件驗證模型的准確性，

結果表明多尺度理論模型與試驗結果之間的最大

誤差 5.91%，證明多尺度剛度模型能夠有效地預測

數控機床的動態特性。 


