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ABSTRACT 
 

This paper describes a composite method of 
calculating multi-tooth root stress and evaluating 
fatigue life of flexspline (FS) in harmonic drive (HD). 
In order to accurately describe the stress state of the 
flexible gear root, a mathematical method combined 
with simulation method is applied. FS is divided into 
two parts, the cup part and the teeth part, according to 
the type of stress. On the cup part, the stress is caused 
by the support of the wave generator (WG). The 
bending stress is analyzed using differential equations 
and appropriately set boundary conditions. The 
theoretical analysis of meshing teeth in a harmonic 
drive is brought into the finite element model of FS 
that is deformed by the outer contour of the wave 
generator. The simulation is conducted under the 
action of torque and the meshing generated stress is 
obtained. Finally, the stress spectrum of the tooth root 
is acquired according to the flexural and torsion stress, 
while the maximum radial, the circumferential and 
shear stress are obtained. After applying the fourth 
strength theory to calculate the Von-Mises stress, the 
safety factors of several materials are compared 
according to the S-N curve and fatigue limit formula. 
 

INTRODUCTION 
 

 
 
 
 
 
 
 
 
 

  
 

 

Due to the increasing demand for high ratio, 
improved transmission accuracy and bearing capacity 
of speed reducers in the modern industry, the 
harmonic reducer is widely used in robotics, space 
technology, energy, bionic and marine engineering 
(Musser,1959,1996). Since it was first introduced, the 
harmonic speed reducer has attracted the attention of 
scholars all over the world, for its distinctive driving 
characteristics. Although extensive research work in 
the design, dynamics and experimental aspects has 
been carried out (Vassileva et al., 2011; Liu 2006), 
offering a series of useful results, there are still many 
issues to be explored (Zou et al., 2013; Zu et al., 
2016).  

The structure of the cup-type harmonic speed 
reducer is relatively simple, as shown in Figure 1. It 
mainly consists of five parts: (a) Wave generator 
(WG): a mandrel with an elliptic outer profile, rotates 
a flexspline (FS) along an elliptical path, thereby 
realizing a relative rotation. (b) Flexible bearing (FB): 
arranged on the outer side of the wave generator to 
reduce friction, improving transmission efficiency. (c) 
Flexspline (FS): a cup shaped short tube with outer 
teeth, being the core component, determining the 
performance of the harmonic drive. (d) Circular 
spline (CS): assigned to realize the relative rotation of 
FS in general. (e) Cross roller bearing (CRB): the 
output of the harmonic drive. 

 

 
Fig. 1. Typical structure of a cup-type harmonic drive 
 

In order to study the characteristics of the HD, 
researchers have tried to systematically analyze the 
harmonic reducers in various ways. Tuttle (1992) 
studied the stiffness, friction and motion error of the 
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harmonic drive, and described their nonlinear 
behaviors. Jeong (1995) improved the torsional 
rigidity of FS by using composite material in view of 
the characteristics. The test results showed that the 
composite material had remarkable effect on 
improving the radial flexibility. Gandhi (2001) 
studied the characteristics of harmonic drive and 
proposed a nonlinear control algorithm to improve the 
transmitting performance. Preissner (2012) treated the 
harmonic drive as a black box to discuss four key 
aspects: nonlinear viscous friction, nonlinear stiffness, 
hysteresis, kinematic error. He combined nonlinear 
friction and a kinematic error model to obtain an 
accurate description. Ma (2016) used computer vision 
technology to identify the meshing process of FS with 
circular spline and its corresponding frictional 
behavior in harmonic drive. Chao (2015) established 
an accelerated experimental model and a genetic 
algorithm, where the fatigue failure process is 
described by using the Manson fatigue failure rule. 
Gravagno (2016) observed the relationship between 
the outer ring curve of wave generator and FS, 
deriving an analytic expression of the relative 
rotation. 

Zhang (2014) presented a new model of 
torsional compliance and hysteretic characteristics of 
harmonic drive system based on the behavior of FS. 
The soundness of the model was verified by 
numerical simulations and experiments. Chen (2014) 
studied the influence of double circular arc profile on 
the gear engagement of harmonic drive. His results 
showed that this method can effectively improve the 
transmission performance. Tjahjowidodo (2013) 
offered a new model for torsional compliance, using 
the Maxwell-slips model, and verified the its validity 
for different torque values. Han (2016) modeled the 
nonlinear friction behavior of the harmonic drive by 
the DGCMG (double-gimbal control momentum gyro) 
method, where the feedforward compensation 
controller based on the improved model was designed 
to compensate the friction force. Gao (2004) 
presented a new method for measuring the errors of 
FS, by using double laser probes, achieving accuracy 
up to ±2μm. Shi (2017) proposed a joint torque 
calculation model based on a harmonic drive model, 
compared it with the other two existing methods, and 
proved its validity. Routh (2014) focused on 
lubrication, producing the analytical expressions for 
lubricant film separation and other lubrication 
conditions under general boundary conditions. 

Ostapski (2007, 2011) established a model by 
using the analytical description of the harmonic drive, 
producing a more adequate three-dimensional model, 
using the finite element method (FEM). Kikuchi 
(2003) carried out the stress analysis of FS based on 
the beam element and verified, by simulation, the 
feasibility of the theoretical calculations. Han (1999) 
studied the stress and vibration of composite and 
alloy steel material, where the damping, natural 

frequency and stiffness of the composite versus the 
alloy steel were compared. Kayabasi (2007) set the 
stress and fatigue safety factor as the goal, optimizing 
the parameters of the flexible gear teeth based on an 
algorithm, and obtained higher safety factor, based on 
Ansys. Folega (2013) carried out the stress analysis 
using the boundary element method and studied the 
effect of design parameters on the stress of the root, 
producing an effective method to reduce the stress. 
Xiang (2014) calculated the geometrical 
characteristics and mechanical properties of FS based 
on the thin shell model. The stress equations of the 
inner and outer surfaces of FS are obtained by 
introducing the temperature factor. Finally, the FEM 
is used to verify the stress equation. Sahoo (2015) 
studied the equivalent stress of different positions of 
FS cup based on the FEM and verified it 
experimentally. 

To summarize, theoretical calculation and 
simulation are two main methods for analyzing the 
tooth root stress. Due to the complex structure of FS, 
it is difficult to calculate using only theoretical 
approach. The solution of tooth root stress is mostly 
realized by FEM that leads to an inaccurate result. 
We need to find an effective and accurate method that 
distinguishes between different stress forms of FS and 
then calculates them separately. On the cup body part, 
the bending stress is analyzed using the thin-walled 
cylinder theory; on the teeth part, FEM is used to 
calculate the meshing stress. Von-Mises stress is 
obtained combining these two kinds of stress. Finally, 
fatigue life evaluation can be carried out based on 
Geber and Goodman fatigue limit formulas. 

In this paper, a quasi-steady state model of 
fluid bulk within the tank is established and 
integrated with the multiple steering yaw/roll model 
to investigate the directional response at constant 
forward speed with steady steer input. The influences 
of the additional steering wheel on the yaw/roll 
motions, filling variation and liquid load shift on the 
steering response of the tank vehicle are studied and 
compared to that of traditional vehicle with single 
steering to demonstrate that the multiple steering 
increases the maneuverability and decreases the 
destabilizing effects of liquid load shift. 

 
MOEDLING OF BENDING AND 

MESHING STRESS 
 

The calculation of alternating stress is the basis 
of the performance of FS, however, the research on 
this aspect is less than exhausting. The solution of 
tooth root stress is mostly realized by FEM, but the 
results cannot accurately enough describe the 
complex multi-tooth meshing stress state. Fig.2 
presents the structure flow of this article. First, a 
composite method of stress extraction is carried out 
by studying two different types of stress: the bending 
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stress and the meshing stress. The stress spectrum is 
obtained by coupling the two previous results, and 
finally, fatigue life evaluation is carried out. 
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Fig. 2. The flow chat of stress extraction and fatigue 

life evaluation of FS 
 

Theoretical solution model of bending stress 
The deformation of FS, as shown in Fig. 3, 

produces elastic deformation under the support of the 
wave generator. The force in the meshing region (CD 
and EF), especially on the long axis (AA’) reaches its 
maximum value, while on the short axis displays 
zero. 

Due to the low thickness of FS, and to the 
diameter-thickness ratio being much higher than 20, 
FS model is simplified as a thin shell, ignoring the 
influence of the tooth. 
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The geometric equations (Xu, 2016) of FS 

shells can be written as: 
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Where, εα is strain in the direction of α; εϕ is 

strain in the direction of ϕ, εαϕ is shear strain on the 
middle surface of FS; u is displacement in the α 
direction; v is displacement in the ϕ direction; w is 
displacement in the γ direction; χα, χϕ, χαϕ are twist 

rate of each point respectively. 
The physical equations (Ren, 2012) of FS shells 

can be drawn as: 
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Where, E is modulus of elasticity; µ is 

Poisson's ratio; N1, N2 are tension and pressure force; 
S12 is normal force; M1, M2 are bending moments; M12 
is torque. 

According to the linear assumption of the 
center line of FS, the boundary condition is: 
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An orthogonal coordinate system is set up on 

the curved surface of FS, in which α and ϕ means the 
principal curvature lines on the middle surface, and γ 
is the normal axis perpendicular to the middle surface. 
The range of γ is [-h/2, h/2].  

The stresses of FS can be expressed as: 
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Where D is column stiffness, 3 212(1 )D Eh µ= − . 
It is known that σ1, σ2 and τ12 are three 

dimensional functions on α, ϕ, γ. When given certain 
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values, the stress distribution of FS can be obtained. 
Meshing stress calculation of FS by FEM 

Since the complexity and unpredictability of 
gear engagement in work, it’s effective and practical 
to acquire the meshing stress of FS by using FEM. 
Fig. 5 gives a detailed description of the FEM model 
applied to meshing stress calculation. The meshing 
process between FS and CS is divided into three 
stages: disengaged, half engagement and full 
engagement. The changes of these stages are caused 
by the tooth Mesh in and out. As the wave number of 
WG is two, the teeth at the two regions are under the 
same meshing conditions, so it is enough to discuss 
one meshing region. Considering the uncertainty of 
meshing teeth number, the number of engaging teeth 
is theoretically calculated in the next section. 

 
Calculation of theoretical engaging teeth number 

The arc length of a harmonic gear drive refers 
to the length of the arc along which the pair of teeth 
begin to mesh until the end of the engagement. We 
think that the coordinates of the top of FS gear should 
be the same as those of CS gear in {XOY} coordinate 
system at the moment of approaching action or 
recessing action. From Fig. 4, the polar radius of the 
two states exhibits equally in the coordinate system. 

 
2 2 2 2
a a b b a bx y x y r r+ = + = =                 (5) 

 
  

  

    

  
     

  
 

 
  

 

 

 

  

 
Fig. 4. Coordinate transformation in CS coordinate 

system 
 
The assumption that the CS is fixed, and FS 

tooth profile curve is expressed in coordinates 
{X1O1Y1}, forces the transformation into the fixed 
coordinate system {XOY}. The angle between the 
two coordinate systems is: ψ= ϕf +µ. Within the 
rotating wave generator, the addendum coordinates of 
FS can be obtained at any position of the top. Given 
that the wave generator turns around in an angle ϕH, 
the rotation angle ϕf of FS can be given as: 
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Where U is wave number of Wave generator; z 

is the number of FS teeth; ϕH is rotation angle of the 
wave generator; v is tangential displacement of FS; rm 

is radius of center line of FS before deformation. 
When FS is deformed, under the condition that 

the center line is not elongated, the symmetry axis of 
FS teeth rotates at an angle µf from the radius, in 
addition to radial and tangential displacements. The 
relationship between µf and polar radius ρ of FS can 
be displayed in Eq. (7). 
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Therefore, according to the transformation 

relation from coordinates system {X1O1Y1} to 
coordinates system {XOY}, the coordinates of FS 
tooth curve are demonstrated by Eq. (8). 
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On the basis of Eq. (5) ~ Eq. (8), Eq. (9) for 

solving the coordinates at the moment of approaching 
action or recessing action can be obtained: 

 
2 2 2
1 1 1 1

2

2 sin

2 ( sin cos ) 0
f

1 f 1 a

x y x y

x y r

ρ µ

ρ µ µ

+ + −

− − − =
           (9) 

 
Where ra is addendum radius of CS, {x1, y1} are 

the coordinates of the top of FS gear tooth 
in{X1O1Y1}.Since ϕf can be calculated by the upper 
formula, the logarithmic teeth number N can be next 
obtained to be used in the simulation analysis. 

 
Procedures of a developmental FEM method 
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Fig. 5. The process of the developmental FEM for 

extracting meshing stress 
 

In this paper, a developmental FEM method is 
innovatively applied to extracting meshing stress. The 
primary advantage of this method lies in the 
simulation of deformed FS model, which avoids the 
influence of bending stress on meshing stress. Fig. 5 
shows the teeth of FS in the meshing tooth area. In 
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order to characterize the different meshing position in 
relation to the stress conditions, these teeth are 
numbered starting from 1 to N. 

Step 1: Establish a model with deformable FS 
according to FS deformation function. The model 
consists of the gear part alone and does not contain 
the cup part. Assemble it with the CS model. 

Step 2: Define materials and geometry 
parameters. Determine material parameters such as 
density, modulus of elasticity and Poisson's ratio of 
FS and CS. Establishing a cylindrical coordinate 
system with the geometric center of FS as the origin.  

Step 3: Define the contact surface of FS and CS. 
The teeth surface of FS is the contact surface, while 
the teeth surface of CS is the target surface. In order 
to set the real contact surface conditions, according to 
Eq.16, the quantity of contact surfaces is N, each 
interval has N FS and CS teeth. In order to 
characterize the different meshing position in relation 
to the stress conditions, these teeth are numbered 
starting from 1 to N.  

Step 4: Define contact conditions of FS and CS. 
The type of contact conditions is frictional, friction 
coefficient is 0.15, the formulation is ‘Augment 
Lagrange’, normal stiffness factor is 0.02 and the 
interface set ‘adjust to touch’. 

Step 5: Mesh generation. Mesh generation of 
FS and CS is accomplished by sweep, and the mesh 
of teeth surface need to be refined.  

Step 6: Set load and constraints. Define CS as 
fixed support. Applying torque to FS, torque values 
range from 0 to the limit torque, increasing at a step 
of 10 Nm. 

Step 7: Extraction of meshing stress. Derive the 
maximum radial, circumferential and shear stress of 
the teeth root in the cylindrical coordinates system 
established in step 2. In this step, in order to extract 
the stress in the whole meshing process, it is 
necessary to extract the root stress from numbered 1 
to N, which was set in step 3. 

Step 8: End of the analysis. 
 

Validation of FEM model 
Hertz contact theory is well known for 

analyzing the local strain and stress distribution of 
two objects under compressive contact. The theory is 
based on three assumptions: (1) A small deformation 
occurs in the contact area; (2) The contact surface is 
elliptical; (3) the objects in contact can be regarded as 
an elastic half space, and the contact surface refers 
only to the distributed vertical pressure. The tooth 
surface of the involute gear of the harmonic reducer is 
a special curved surface with complex shape, where 
the width of the contact area is less than the curvature 
radius of the tooth surface within the contact area. 
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The maximum contact stress of involute gear 
σH(Fu, 2007) can be presented by Eq. (10).  

Where, Ft is tangential force, αt is pitch circle 
pressure angle, α′t is meshing angle, T is load torque, 
K is the load factor, 12 (cos cos )t t tF KT d α α′= , β 
is helix angle, b is Tooth width, µ1 and µ2 is Poisson's 
ratio, E1 and E2 is modulus of elasticity, ui is 
transmission ratio, d1 is indexing circle diameter. 

The meshing simulation modeling process of 
WG-FS involute tooth profile of harmonic drive can 
be summarized as follows. (1) The involute tooth 
profile of WG is deduced from the equation of the 
involute tooth profile of FS, according to the meshing 
principle and then the three-dimensional model of the 
WG-FS is established. (2) In the setting of the 
simulation model, the material properties are 
introduced in Tab. 1. The meshing part is line contact, 
and the mesh of the contact tooth pair is refined; the 
mesh of the unrelated part is set thicker, and finally 
fixed by the inner wall of FS; the CS applies torque to 
simulate the contact condition of the tooth pair. (3) In 
the simulation process, the torque exerted by CS 
ranges from 5 Nm, increasing at a 5 Nm step and 
reaching the upper limit of torque at 50 Nm. 

Tab. 1. Material properties of FS and CS 

Materials 
Modulus of 
elasticity 
(×105MPa) 

Poisson's 
ratio 

Density  
(g/cm3) 

FS 2.09 0.295 7.87 

CS 2.11 0.277 7.87 
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Fig.6 (b) reveals the maximum contact stress 
under FEM simulation and Hertz theory within a 
certain range of torque load. The maximum deviation 
between simulation results and theoretical results is 
less than 10%, verifying the reliability of the 
simulation model. Therefore, it can be said that the 
proposed simulation model is suitable for the 
description of the involute CS and FS in harmonic 
drive. 

 
EXAMPLE ANALYSIS OF HARMONIC 

DRIVE CSG20-50 
Let us take the case of CSG20-50 as an 

example for the implementation of the proposed 
process. Firstly, the bending stress and torsional stress 
of the harmonic drive are solved separately, and then 
coupled together to calculate the compound stress of 
multi-tooth.  

 
Bending stress solution 

The relating structural parameters of CSG20-50 
are listed in Tab.2. 

Tab. 2. Structural parameters of CSG20-50 
Parameters values 

Transmission ratio 50 

Tooth number of FS 100 

Length of FS 25 

Thickness of FS 0.3 

Pitch radius of FS (ra) 25.4 

Deformation coefficient (ω0) 0.396 
 

There are many kind of materials for making 
FS. In this paper, four typical FS materials are 
selected: 12Cr2Ni4, 20CrMnSi, 30CrMoA and 
40CrNiMoA. Their density, modulus of elasticity and 
Poisson's ratio are shown in Tab. 3. 

 
Tab. 3. Physical properties of four typical FS 

materials 

Materials Density 
 (g/cm3) 

Modulus of 
elasticity 
(×105MPa) 

Poisson's ratio 

12Cr2Ni4 7.84 2.07 0.298 

20CrMnSi 7.80 2.10 0.276 

30CrMoA 7.85 2.11 0.279 

40CrNiMoA  7.87 2.09 0.295 

 
The FS deformation function cos 2o lω ω α ϕ= . 

Where ω0 is deformation coefficient, a is the distance 
to the bottom of FS, l is the length of FS. The bending 
stress can be obtained when bringing the parameters 
of Tab. 2 and Tab. 3 into Eq. (4). Taking the material 
40CrNiMoA as an example, after a series of 
calculation by computer, the distribution of the 
bending stress of this material can be presented in 
Fig.7. 
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(c) Circumferential stress distribution a=25 
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Fig. 7. Distribution of the bending stress 
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From Fig. 7, it can be seen that there is a strong 
periodicity in the distribution of bending stress. In 
terms of amplitude, the circumferential stress 
amplitude is the largest and the shear stress is the 
smallest. Radial stress and circumferential stress have 
the same periodicity and variation rule, which means 
the maximum value appears at 0 and 180 degrees 
while the minimum value is exist at 90 and 270 
degrees. The stress value increases with the increase 
of thickness. In addition, the extreme and average 
values of the shear stress increase with the adding of 
the torque, but the amplitude stays the same. 

 
Meshing stress analysis 

The meshing stress of tooth surface is much 
more complicated. After numbering each meshing 
pair, the root stress of FS is derived according to the 
simulation process in last chapter. By calculating with 
the geometric parameters of CSG20-50, the meshing 
teeth number N is 16 and the calculated meshing 
stress is displayed in Fig.8. 
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In the zone of engaging-in, meshing stress 
value increases as the meshing depth increases, while 
the maximum stress point is located at the 9th teeth 
pair. The pairs 10th-16th consist the zone of engaging 
-out, where meshing stress value decreases as the 
rotation angle increases. Overall, the average stress in 
the zone of engaging-in is higher than that in the zone 
of engaging-out as a result of the impact of engaging. 

 
Compound stress of FS 

The stress of FS is composed of bending and 
meshing stress. The bending stress can be obtained by 
theoretical calculation approach, while the torsion 
stress can be acquired by FEM. The coupling effect 
between bending and meshing stress is not taken into 
account. In the cases of radial and circumferential 
stress, the tensile component of stress is positive (+) 
and the compressive component is negative (-). In the 
case of shear stress, clockwise is considered as 
positive (+) and counterclockwise is the negative (-). 
The root of the teeth is the weakest point in the whole 
FS, as far as fatigue life is concerned. In order to 
acquire the compound stress, the calculated radial, 
circumferential and shear stress are added with those 

stress by simulating respectively in last section. Tab. 
4 demonstrates the compound stress of four typical 
FS materials. 

 
Tab. 4. The values of compound stress derived of four 

typical FS materials 

Materials 
Radial  Circumferential Shear 

Min Max Min Max Min Max 

12Cr2Ni4 -147.8 158.1 -40.6 58.5 14.5 59.5 

20CrMnSi -147.5 157.9 -40.7 61.1 14.0 60.1 

30CrMoA -148.5 159.2 -41.4 62.2 13.9 60.1 
40CrNiM
oA -148.6 158.9 -43.8 63.4 14.1 59.6 

 
Fatigue life extraction 

On a single tooth of FS, the stress follows along 
a pulse cycle. Whether the tooth root material can 
produce fatigue failure can be judged by the Haigh 
Diagram (Fatigue limit diagram). The fatigue limit 
diagram is different fatigue limit stress of different 
stress ratios was plotted on one diagram in the 
specified destruction cycle life. 

At present, the fatigue life calculation is mainly 
based on Gerber and Goodman fatigue theories, as 
illustrated in Tab. 5. 

 
Tab. 5. Fatigue formulas and safety factor 

Fatigue theories Fatigue formulas Safety factor (S) 

Gerber 2
1[1 ( ) ]m

a
b

σσ σ
σ−= −  2

1

+( ) 1a m

b

S Sσ σ
σ σ−

=  

Goodman 1(1 )m
a

b

σσ σ
σ−= −  

1

1+a m

b S
σ σ
σ σ−

=  

 
As seen from Tab.5, the fatigue life safety 

factor of FS is represented by S; σ-1 is ultimate fatigue 
stress under symmetrical cyclic loading, as derived by 
the S-N curve (Stress-life curve) of the material; σb is 
strength limit of materials; σm is the mean stress and 
σa is stress amplitude, all derived from Eq. (11): 

 
max min( )

=
2m

σ σ
σ

+ max min( )
=

2a
σ σ

σ
−

          (11)  

 
The S-N curve of fatigue life of materials is 

continuously declining, which can be described by 
Basquin equation (Starke et al., 2010): 

 
(2 )b

a f fNσ σ ′′=                      (12) 
 

Where, σ′f is fatigue strength factor, Nf is 
number of fatigue failure cycles, b′ is Basquin index. 
The high-cycle S-N curves of 12Cr2Ni4, 20CrMnSi, 
30CrMoA and 40CrNiMoA are presented in Fig. 9. 

The cup-type FS is a thin walled cylindrical 
specimen under regular plastic deformation. 
Additionally, the composite stress fatigue strength 
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criterion is suitable for the fatigue strength calculation 
of bending and torsion of composite circular shafts. 
Therefore, the deviator strain energy theory (the 4th 
strength theory) can be used to predict the fatigue life 
of FS. 
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Fig. 9. High-cycle S-N curves of four typical FS 

materials 
 

According to the Von-Mises criterion, 
equivalent stress σm and σa are calculated by the 
following formula (Li, 2016): 

 
2 2

2 2 2 2

( ) ( )1
2 ( ) 6( )

x y y z
e

z x xy yz zx

σ σ σ σ
σ

σ σ τ τ τ

− + −
=

+ − + + +
     (13) 

 
Tab. 6. Equivalent stress of four typical FS materials 

Materials Mean stress (σm) Stress amplitude (σa) 

12Cr2Ni4 64.57 140.71 

20CrMnSi 64.69 140.60 

30CrMoA 64.73 141.35 

40CrNiMoA 64.39 140.76 

 
Given the equivalent stress σm and σa, the 

ultimate fatigue stress σ-1, and stress limit σb, Gerber 
and Goodman fatigue limit formulas are plotted in 
Fig. 10. 
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(a) Fatigue limit formula of 12Cr2Ni4 
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(b) Fatigue limit formula of 20CrMnSi 

0 200 400 600 800 10000

50

100

150

200

250

300

350

 

 

Gerber fatigue formula
Goodman fatigue formula
Amplitude and average value

mσ        

a
σ

  
 

   
   

 
(c) Fatigue limit formula of 30CrMoA 
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(d) Fatigue limit formula of 40CrNiMoA 

Fig.10. Fatigue limit formulas of four typical FS 
materials 

 

 
Fig. 11. Safety factor of four typical FS materials 

under 109 cycles 
 

The transverse coordinate is the strength limit 
σb of the material, and the longitudinal coordinate is 
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the ultimate fatigue stress σ-1 under fixed cycle times. 
In Fig. 9, it is evident that the stress value of 109 
cycles is the ultimate fatigue stress σ-1. Based on this 
graph, safety factor of FS of material 12Cr2Ni4, 
20CrMnSi, 30CrMoA and 40CrNiMoA can be 
accurately calculated. The safety coefficient of 
different materials is compared in Fig. 11. 

 
CONCLUSIONS 

In this article, we have determined the weakest 
area in the fatigue life of FS through the analysis of 
the working condition. The differential equation of 
thin-walled cylinder and a developmental FEM 
approach have been combined to study two different 
types of stress: bending stress, caused by the support 
of the wave generator, and meshing stress, related to 
the load torque. The maximum radial, circumferential 
and shear stress of bending and meshing stress are 
extracted and synthesized separately, and the stress 
spectrum of FS tooth root in three directions is 
formed. At last, the fatigue life of four typical FS 
materials is compared. Some conclusions are 
summarized as follows: 

(1) The solutions to the bending stress were 
derived by building the differential equations of 
thin-walled cylinder. The normal stressσ1, σ2 and 
shear stress τ12 of FS at different α, ϕ are calculated 
by importing boundary condition and deformation 
function. The distribution of bending stress has a 
strong periodicity. In terms of amplitude, the 
circumferential stress amplitude is the largest and the 
shear stress amplitude is the smallest. 

(2) A developmental FEM method was adopted 
to extract the multi-tooth meshing stress after 
calculating the theoretical meshing tooth number of 
the involute tooth profile. The average stress in the 
zone of engaging-in is higher than that in the zone of 
engaging-out, which is due to the impact of engaging. 

(3) The fatigue life evaluation is carried out 
based on Goodman and Gerber fatigue theories. The 
results indicated that the safety coefficient of fatigue 
life of material 40CrNiMoA is at least 12.95% higher 
than the other three materials. This provides a useful 
reference guide for us to evaluate fatigue life and 
choose appropriate material. 
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彎扭作用下諧波減速器杯

型柔輪應力分析與壽命評

價 

蔡力鋼  胡秋實  劉誌峰  楊聰彬  張濤 
北京工業大學先進制造技術北京市重點實驗室 

摘 要 

本文旨在研究杯型柔輪多齒嚙合的復合應力計算

和壽命評價方法。為了準確描述柔輪齒根的應力狀

態，將數學方法和仿真方法相結合，根據應力的類

型，將柔輪分為兩部分：杯體部分和齒輪部分。對

於杯體部分，利用微分方程和邊界條件計算彎曲應

力。對於齒輪部分，建立齒部模型，在扭轉作用下

進行了仿真分析，得到齒輪嚙合應力。最終根據彎

曲和扭轉應力，復合得到徑向應力、周向應力和剪

切應力的應力譜。在應用第四強度理論計算馮•米

塞斯應力後，根據應力-壽命曲線和疲勞極限公

式，進行了不同材料疲勞壽命安全系數的對比分

析。 




