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Abstract 
 

In this study, a method is proposed for detecting 
the structural damage position and extent by 
combining the measurement point layout and model 
updating method. Initially, the finite element analysis 
(FEA) model of the structure is applied to evaluate the 
appropriate measurement point layout for the modal 
test. The method proposed in this study is based on the 
functional complementarity of the integrated modal 
kinetic energy (MKE) and Hemez methods. The 
method includes the MKE cumulative value for the 
number of measurement points and the Hemez method 
for reasonable positions. Model variables, such as the 
cross-sectional area and quadratic moment of inertia, 
are used to represent the geometrical or material 
properties of the structure. Further, the model updating 
method takes advantage of the eigensensitivity matrix, 
and the model variables of the FEA model are updated 
by iterative calculation. The results demonstrate that 
the analysis results of the updated model variables of 
the FEA model can approach the pre-simulated 
damage positions and extent of the reference model. 
The measurement and model updating methods 
developed in this study can be applied for the 
monitoring and early warning of structural damage.  
 

Introduction 
 

The detection of the structural damage positions 
and extent using measurement data under limited 
funding and instrument availability is a crucial 
consideration for structural health monitoring. Before 

modal testing, the finite element analysis (FEA) model 
can be used to plan the setting of the measurement 
points. The measurement point layout is closely 
related to the degree of freedom (DOF) of the structure. 
The dynamic behavior of structures (e.g., motion and 
deformation) is often described with a few 
representative DOF. These selected DOF must 
completely exhibit the dynamic characteristics (modal 
parameters: natural frequencies and mode shapes) of 
the structure, else important dynamic response 
information will be lost. The number of points that can 
be measured by modal tests is limited; however, the 
FEA model can provide more points to present 
information on the characteristics of the structural 
dynamic behavior of unmeasured points. An example 
eigensensitivity algorithm for the finite element model 
(FEM) updating procedure has been presented (Lin 
RM et al., 1995; Taylan K et al., 2012). 

The measurement point layout of the modal test 
should exhibit the dynamic characteristics of the 
modes of interest. Therefore, several researchers have 
proposed measurement point layout methods for 
obtaining the dynamic characteristics of the structure. 
Lim (1991) proposed the measurement point layout 
method for exploring the identification and control of 
the dynamic characteristics of the structure. Kammer 
(1991) proposed the effective independence (EFI) 
method for selecting the measurement positions in 
which the shapes of the modes of interest are rendered 
as linearly as possible. An iterative process was used 
for removing measurement DOF with a low linear 
independent contribution to the mode shape for 
obtaining the final measurement point position.  

To obtain a good estimate of the dynamic 
characteristics, the determinant value or norm of the 
fisher information matrix (FIM) should be maximized. 
Yao et al. (1993) developed a gene algorithm program 
based on the concept of maximizing the FIM. However, 
they found that the results obtained by the algorithm 
for the EFI Method were limited. Hemez and Farhat 
(1994) configured the measurement position based on 
the contribution of the structural strain energy, which 
is also an application of the EFI Method. Udwadia 
(1994) discussed the placement of finite-point 
measuring points which maximize and apply the FIM 
to linear as well as nonlinear structural systems. 
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Furthermore, Park and Kim (1996) proposed an 
iterative process for removing certain DOF to 
maximize the FIM; the DOF that were not removed 
was the measurement point location. Schedlinski and 
Link (1996) applied the eigenvector decomposition 
method for the measurement point layout scheme. 
Cobb and Liebst (1997) proposed the eigenvector 
sensitivity method, which uses the first-order 
derivative function of the model parameters to model 
variables for measurement point layout planning. 
Based on this method, Shi et al. (2000) proposed the 
selection of appropriate measurement point positions, 
based on the ability to locate damage. Xia (2002) 
improved this method, considering the influence of 
noise measurement when selecting the measurement 
point position.  

The connection between the EFI and modal 
kinetic energy (MKE) methods for sensor placement is 
of primary concern for damage detection in structural 
health monitoring. The MKE method is an iterated 
version of the EFI method, and the reduced mode 
shapes are orthonormalized repeatedly during 
iterations of the MKE method (Yi TH et al., 2012). 
Wang et al. (2007) applied the MKE method which 
provides a measure of the dynamic contribution of 
each FEA model DOF to each of the target mode 
shapes and an idea on where the maximum dynamic 
responses can be measured. The same MKE 
cumulative value under different modes will 
correspond to a different number of measurement 
points and their positions. The increasing number of 
measurement points should result in a high MKE 
cumulative value for each target mode. Moreover, 
measurement point layouts that provide the largest 
cumulative value of the corresponding MKE should be 
selected. However, research on the determination of 
the required MKE cumulative value for each target 
mode within the candidate measurement points has 
been limited. A value as less as 40–50% could be 
sufficient (Kammer DC, 1991). 

Structural damage detection using modal test 
data is crucial in structural health monitoring. 
However, given that modal testing is limited by cost 
and instrument availability, existing research pays less 
attention to the relationship between the measurement 
point number and its positional configuration. The 
measurement points need to show as much linear 
independence of the mode shapes of interest as 
possible. The more important the measurement points, 
the more linearly independent the mode shapes of 
interest. The Hemez method ranks the importance of 
candidate measurement points. Although only a 
limited number of measuring instruments can be 
arranged according to the importance of the 
measurement points, the appropriate number of 
measurement points requires the maximum 
nondiagonal element change curve of the MAC matrix 
for evaluation. However, the Hemez method and the 
MKE method are functionally complementary. As the 

number of measurement points gradually increases, 
the increase of the MKE cumulative value will tend to 
converge. This means that the MKE method can 
replace the MAC curve as an evaluation method for 
the number of measurement points. However, the 
order of the increase in the number of measurement 
points is not important for the degree of the linear 
independent contribution. This means that the limited 
number of measuring instruments cannot be deployed 
according to the importance of the position of the 
measuring points. In this study, considering the portal 
beam structure as an example, the FEA model is used 
for modal test planning to set the measurement points; 
this, combined with the Hemez method for the 
reasonable determination of positions and the MKE 
cumulative value for the determination of the 
measurement point number, enables the complete 
comprehension of the dynamic characteristics of the 
structure. The method first evaluates the importance of 
the measurement point positions and then evaluates 
the optimal number of measurement points.  

Model variables, such as the cross-sectional area 
and quadratic moment of inertia, are used to represent 
the geometrical or material properties of the structure. 
Furthermore, it is verified that the FEA model 
updating procedure, which takes advantage of the 
eigensensitivity matrix, can detect the damage position 
and extent in the structure. 
 

Theoretical background 
 
Measurement Point Layout  

In this study, the FEA model is used for 
evaluating the measurement point number and 
position for the modal test. The measurement data of 
the modal test finite-positions is used as the modified 
reference target of the FEA model. As the basis for 
modifying the FEA model, the measurement point 
number and position should be capable of exhibiting 
the natural frequencies and mode shapes of the modes 
of interest.  
 
Method for assessing the number of measurement 
points 

In this study, the MKE of the FEA model is used 
for evaluating the appropriate number of measurement 
points for the modal test. The MKE is defined as 
follows (Cheng L et al., 2009): 
 
𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 = 𝜙𝜙𝑖𝑖𝑖𝑖 ∑ 𝑀𝑀𝑖𝑖𝑖𝑖𝜙𝜙𝑖𝑖𝑖𝑖,

𝑢𝑢
𝑖𝑖                      (1) 

where 𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖  is the MKE of the i-th DOF of the FEA 
model in the j-th mode, 𝜙𝜙𝑖𝑖𝑖𝑖  is the i-th DOF of the 
FEA model in the j-th mode shape , 𝜙𝜙𝑖𝑖𝑖𝑖  is the t-th 
DOF value in the j-th mode shape, and  𝑀𝑀𝑖𝑖𝑖𝑖  is the 
value of the modal mass matrix in the i-th column and 
t-th row. The measurement points are set within the t−u 
DOF range. If the j-th mode shape 𝜙𝜙𝑖𝑖𝑖𝑖 of (1) includes 
all the DOF of the FEA model, and the mass matrix is 
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orthogonally normalized, the cumulative total value of 
𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖  is unity.  
 
Method for assessing the measurement point position  

The appropriate layout positions for the modal 
test are evaluated using the eigensensitivity matrix of 
the FEA Model. An FEA model with the deviation 
ratio of the cross-sectional area and quadratic moment 
of inertia of the correct structure is assumed. This 
model is regarded as the reference, and the analysis 
results are considered the modal test results. The FEA 
model of the correct structure is used as the initial 
analysis model, and it needs to be updated with the 
target modal test results. When the update procedure is 
complete, the updated model variables are evaluated 
for accurately detecting the deviation ratio of the 
cross-sectional area and the quadratic moment of 
inertia of the pre-simulated elements of the reference 
model. The eigenvalues and eigenvectors are 
simultaneously included in (2), as follows: 
 
�𝜙𝜙𝑙𝑙�
𝜆𝜆𝑙𝑙�
� = �𝜙𝜙𝑖𝑖

𝜆𝜆𝑖𝑖
� + [𝑆𝑆𝑖𝑖]��𝜃𝜃�� − {𝜃𝜃}�                          (2) 

where𝜆𝜆𝑖𝑖 , {𝜙𝜙𝑖𝑖}, and 𝜆𝜆𝚤𝚤� , �𝜙𝜙𝚤𝚤� � are the i-th eigenvalues 
and eigenvectors of the analysis and modal test results, 
respectively. 

�𝜃𝜃�� − {𝜃𝜃} = {𝛥𝛥𝜃𝜃} = �𝛥𝛥𝑝𝑝1，…，𝛥𝛥𝑝𝑝𝑛𝑛�
𝑇𝑇
  

is the difference between the target and the analyzed 
mode variables, where 𝑝𝑝𝑟𝑟 is the r-th model variable 
in a total of n. The eigensensitivity matrix 𝑆𝑆𝑖𝑖  is 
defined as follows (Hemez FM et al., 1994): 
 

[𝑆𝑆𝑖𝑖] = �
𝜕𝜕�𝜙𝜙𝑖𝑖�
𝜕𝜕𝑝𝑝𝑟𝑟
𝜕𝜕𝜕𝜕𝑖𝑖
𝜕𝜕𝑝𝑝𝑟𝑟

�.                              (3) 

 
Udwadia and Garba proposed the FIM. FIM as a 
distribution of strain energy B is defined as the 
summation of the contribution of the selected modes 
(Udwadia FE et al., 1985), as follows: 
[𝐵𝐵𝑖𝑖] = [𝑆𝑆𝑖𝑖]𝑇𝑇[𝑆𝑆𝑖𝑖].                           (4) 
 

The measurement points should be deployed to 
obtain as much linear independent measurement data 
as possible. From the possible measurement position 
DOF of the structure, the measurement DOF that 
minimizes the variation of the FIM matrix determinant 
value are successively deleted. Thereby, the DOF that 
contributes to linear independence in the mode under 
consideration is retained. 
Kammer (1991) has proposed that the diagonal terms 
of the following matrix be used to rank the importance 
of possible measurement points positions as follows: 
 
[𝑀𝑀𝑖𝑖] = �[𝑆𝑆𝑖𝑖]�[𝑆𝑆𝑖𝑖]𝑇𝑇[𝑆𝑆𝑖𝑖]�

−1[𝑆𝑆𝑖𝑖]𝑇𝑇�.               (5) 
The larger the value of the diagonal term of 

matrix [𝑀𝑀𝑖𝑖], the more the modes of interest exist that 
can be presented; the corresponding DOF are used as 

the measurement points. The DOF position of the 
structural analysis model that can be used as the 
measurement point is sorted according to its 
importance, in descending order. The DOF whose 
importance is less need not be measured. After 
determining the number of DOF to be measured and 
configuring the DOF of the measurement, a suitable 
measurement point layout can be obtained. 

 
Mode-shape relationship between the measurement 
and non-measurement DOF 

Compared to the FEA model, the modal test has 
considerably less DOF. The FEA model can classify 
the DOF corresponding to the measurement and non-
measurement points. The mass matrix [M] and 
stiffness matrix [K] of the FEA model are divided into 
two parts according to the DOF: measurement and 
non-measurement (Friswell MI et al., 1995): 
 
�−𝜔𝜔𝑚𝑚𝑖𝑖

2 �𝑀𝑀𝑚𝑚𝑚𝑚 𝑀𝑀𝑚𝑚𝑚𝑚
𝑀𝑀𝑚𝑚𝑚𝑚 𝑀𝑀𝑚𝑚𝑚𝑚

�+ �𝑀𝑀𝑚𝑚𝑚𝑚 𝑀𝑀𝑚𝑚𝑚𝑚
𝑀𝑀𝑚𝑚𝑚𝑚 𝑀𝑀𝑚𝑚𝑚𝑚

�� �
𝜙𝜙𝑚𝑚𝑖𝑖

𝜙𝜙𝑚𝑚𝑖𝑖
� = �00�,               (6) 

where ωmj  is the j-th natural frequency, and �𝜙𝜙𝑚𝑚𝑖𝑖� 
is the mode shape corresponding to each measurement 
DOF. If �𝜙𝜙𝑚𝑚𝑖𝑖� is the mode shape of each unmeasured 
DOF,  
 
�𝜙𝜙𝑚𝑚𝑖𝑖� = −�−𝜔𝜔𝑚𝑚𝑖𝑖

2 [𝑀𝑀𝑚𝑚𝑚𝑚] + [𝑀𝑀𝑚𝑚𝑚𝑚]�−1�−𝜔𝜔𝑚𝑚𝑖𝑖
2 [𝑀𝑀𝑚𝑚𝑚𝑚] + [𝑀𝑀𝑚𝑚𝑚𝑚]��𝜙𝜙𝑚𝑚𝑖𝑖�.         (7) 

 
Model Updating Method 
 
Eigensensitivity matrix 

This section presents the algorithm for the FEA 
model updating method. The eigensensitivity matrix is 
established from the modes of interest:  
 
[𝑆𝑆]{∆𝜃𝜃} = {∆𝑧𝑧}.                           (8)                                 
 
It can be expressed as follows: 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝜕{𝜙𝜙𝑎𝑎}1
𝜕𝜕𝑝𝑝1

𝜕𝜕(𝜆𝜆𝑎𝑎)1
𝜕𝜕𝑝𝑝1

．
𝜕𝜕{𝜙𝜙𝑎𝑎}𝑚𝑚
𝜕𝜕𝑝𝑝1

𝜕𝜕(𝜆𝜆𝑎𝑎)𝑚𝑚
𝜕𝜕𝑝𝑝1

𝜕𝜕{𝜙𝜙𝑎𝑎}1
𝜕𝜕𝑝𝑝2

𝜕𝜕(𝜆𝜆𝑎𝑎)1
𝜕𝜕𝑝𝑝2

．
𝜕𝜕{𝜙𝜙𝑎𝑎}𝑚𝑚
𝜕𝜕𝑝𝑝2

𝜕𝜕(𝜆𝜆𝑎𝑎)𝑚𝑚
𝜕𝜕𝑝𝑝2

…
……
…
…

𝜕𝜕{𝜙𝜙𝑎𝑎}1
𝜕𝜕𝑝𝑝𝑛𝑛

𝜕𝜕(𝜆𝜆𝑎𝑎)1
𝜕𝜕𝑝𝑝𝑛𝑛

．
𝜕𝜕{𝜙𝜙𝑎𝑎}𝑚𝑚
𝜕𝜕𝑝𝑝𝑛𝑛

𝜕𝜕(𝜆𝜆𝑎𝑎)𝑚𝑚
𝜕𝜕𝑝𝑝𝑛𝑛 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

�

∆𝑝𝑝1
∆𝑝𝑝2
⋮

∆𝑝𝑝𝑛𝑛

� =

⎩
⎪
⎨

⎪
⎧ {𝜙𝜙𝑥𝑥}1 − {𝜙𝜙𝑎𝑎}1

(𝜆𝜆𝑥𝑥)1 − (𝜆𝜆𝑎𝑎)1⋯
{𝜙𝜙𝑥𝑥}𝑚𝑚 − {𝜙𝜙𝑎𝑎}𝑚𝑚
(𝜆𝜆𝑥𝑥)𝑚𝑚 − (𝜆𝜆𝑎𝑎)𝑚𝑚⎭

⎪
⎬

⎪
⎫

.           (9) 

𝜆𝜆𝑎𝑎  and {𝜙𝜙𝑎𝑎}  in the above equation are the 
eigenvalues and mode shapes obtained by FEM 
analysis, respectively; the first to m modes constitute 
the eigensensitivity matrix [S]. The difference in each 
model variable before and after each iteration in the 
modal updating procedure, for a total of n model 
variables (Δ𝑝𝑝i), constitutes {𝛥𝛥𝜃𝜃}.  

The eigensensitivity matrix of the model 
updating process is iteratively calculated until it meets 
the convergence stop criterion. 

 
Convergence stop criterion 

The FEA model updating method is discussed 
with respect to the natural frequency. The convergence 
stop criterion is established based on the correlation 
coefficient ( 𝐶𝐶𝐶𝐶t):  
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𝐶𝐶𝐶𝐶𝑖𝑖 = 1

𝑚𝑚
∑ 𝐶𝐶𝑟𝑟𝑖𝑖𝑚𝑚
𝑖𝑖=1

|∆𝜔𝜔𝑖𝑖|
𝜔𝜔𝑖𝑖

,          (10) 
where m is the number of natural frequencies, 𝐶𝐶𝑟𝑟𝑖𝑖 is 
the expected relative error value, and 𝜔𝜔𝑎𝑎𝑎𝑎  and 𝜔𝜔𝑥𝑥 
are the natural frequencies obtained from the update 
analysis and modal test results. ∆𝜔𝜔𝑖𝑖 = 𝜔𝜔𝑖𝑖

𝑎𝑎𝑎𝑎 − 𝜔𝜔𝑖𝑖
𝑥𝑥  is 

the difference in the natural frequency between the 
analysis and modal test results for each iterative 
procedure. Moreover, 𝜔𝜔𝑖𝑖 = 𝜔𝜔𝑖𝑖

𝑥𝑥 . In addition, 𝐶𝐶𝑟𝑟𝑖𝑖  = 
0.01 is used as the desired relative error value at all the 
natural frequencies. 

The following two stop indicators are combined: 
𝐶𝐶𝐶𝐶𝑖𝑖 < 𝜖𝜖1  and |𝐶𝐶𝐶𝐶𝑖𝑖+1 − 𝐶𝐶𝐶𝐶𝑖𝑖| < 𝜖𝜖2 , where 
𝜖𝜖1=0.005, 𝜖𝜖2=0.001 (FEM tools). 

 
Case study 

 

 
 

 
 
Figure 1 Portal beam structure: For members 1 and 3: 

I = 0.000084911 m4 (204 in4) ,  A = 
0.0049355 m2 (7.65 in2), and the Depth = 
0.310388 m (12.22 in); for member 2: I = 
0.000125285 m4 (301 in4), A = 0.0049548 m2 
(7.68 in2), and the Depth = 0.398526 m 
(15.69 in). 

 
Structural composition 
 
Correct structure 

The portal beam structure is shown in Figure 1. 
The left and right columns are divided into eight beam 
elements, respectively, whereas the upper structure is 
divided into 10. The positions of a total of 26 beam 
elements are indicated from 1 to 26. Assume that the 
bottom of the structure is fixed to the ground. The 
portal beam structure does not consider the axial 
deformation for each element of the structure, but only 
considers the lateral X-direction displacement and the 
angle of rotation around the Z-axis; hence, each node 
has 2 DOF. 

The structure is composed of steel with a 

Young's modulus  𝑀𝑀 = 2.11 × 1010(kgf
m2) （ 30 × 106

（psi) ). The cross-sectional area A and quadratic 
moment of inertia I of the structure are also depicted 
in Figure 1. The left and right columns are denoted as 
member 1 and member 3, respectively, and are 
composed of W12×26 steel beams; the upper member 
2 is composed of W16×26 steel beams (Moaveni S, 
2008).  

 
Reference damage model 

The analysis results of the reference damage-
model are considered as the modal test data for this 
example. Stiff connectors are present at the ends of the 
members, and these, together with the nodes 
themselves, are considered perfectly rigid. During 
bending, the element stiffness and mass matrix for a 
member in the same plane with a flexible length (l) 
separated by a rigid portion of length (a) from the node 
can be expressed as follows (Mottershead JE, 2000): 

[𝑘𝑘] = 𝐸𝐸𝐸𝐸
𝑎𝑎3

⎣
⎢
⎢
⎡

12𝑎𝑎 (12𝑎𝑎 + 6𝑙𝑙) −12 6𝑙𝑙
(12𝑎𝑎 + 6𝑙𝑙) (12𝑎𝑎2 + 12𝑎𝑎𝑙𝑙 + 4𝑙𝑙2) −(12𝑎𝑎 + 6𝑙𝑙) (6𝑎𝑎𝑙𝑙 + 2𝑙𝑙2)

−12
6𝑙𝑙

−(12𝑎𝑎 + 6𝑙𝑙)
(6𝑎𝑎𝑙𝑙 + 2𝑙𝑙2)

12 −6𝑙𝑙
−6𝑙𝑙 4𝑙𝑙2 ⎦

⎥
⎥
⎤
.    (11) 

 

[𝑚𝑚] =

⎣
⎢
⎢
⎡

156 (156𝑎𝑎 + 22𝑙𝑙) 54 −13𝑙𝑙
(156𝑎𝑎 + 22𝑙𝑙) (156𝑎𝑎2 + 44𝑎𝑎𝑙𝑙 + 4𝑙𝑙2) (54𝑎𝑎 + 13𝑙𝑙) −(13𝑎𝑎𝑙𝑙 + 3𝑙𝑙2)

54
−13𝑙𝑙

(54𝑎𝑎 + 13𝑙𝑙)
−(13𝑎𝑎𝑙𝑙 + 3𝑙𝑙2)

156
−22𝑙𝑙

−22𝑙𝑙
4𝑙𝑙2 ⎦

⎥
⎥
⎤
.  (12) 

 
Suppose the following are the elements with the rigid 
portions (a):  
(I) Member 1: Element numbers 1 and 8.  
(II) Member 2: Element numbers 9 and 18.  
(III) Member 3: Element numbers 19 and 26.  
The other elements of members 1, 2, and 3 are 
considered as the flexible lengths. The rigid part (a) of 
the reference model is 0.45 times the length of each 
element. 

The reference damage model is the structure in 
Figure 1 in which the geometric or material property 
variables can be changed. The Young's coefficient of 
the reference model is 𝑀𝑀 = 2.11 × 1010(kgf

m2)（30 ×
106（psi)). During the welding of steel beams, the 
local uneven heating and cooling of the metal have 
different degrees of thermal expansion and contraction, 
resulting in changes in the cross-sectional area and 
secondary moment of inertia of the different elements. 
The deviation ratio from the correct value of the cross-
sectional area (A) and quadratic moment of inertia (I) 
of the reference model are listed in Table 1. The cross-
sectional area (A) and quadratic moment of inertia (I) 
of the initial analysis model need to be updated with 
those of the reference model. 
 
Table 1 Deviation ratios of A and I in the reference 

model 
Elemental 
order 2 4 5 11 13 16 

A 10% 10%   15% 15% 

I   -
20% 

-
20%   

https://www.google.com.tw/url?sa=i&url=http://www.tqhnet.com/img/cbdc2ffcdb7b1e6da79787caecdf8c.html&psig=AOvVaw3iuuSfPD6l8f_khm2roe3m&ust=1580101586360000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCOCc_5-_oOcCFQAAAAAdAAAAABAD
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Elemental 
order 19 20 21 22 23 24 

A  15% 15%  10% 10% 

I -
20%   -

20%   

 
Measurement-point number and position layout 
 
Problem description  

For structures, because of the limitations in the 
cost and measuring instruments for modal testing, the 
measurement points are limited. The number of 
measurement points in the modal test is often less than 
the number of DOF in the FEA model. Therefore, it is 
necessary to select specific DOF in the FEA model for 
measurement.  
 
Correct-structure FEA model to evaluate the 
appropriate measurement point layout for the modal 
test 

It is assumed that only the modal test data of a 
specific DOF can be considered as the FEA model 
target for updating. Therefore, the number of 
measurement points and the configuration of the 
positions are critical. The FEA model pre-evaluates 
the appropriate measurement point layout method. The 
number of indices in Figure 2 and Table 2 are the same 
as the element position number in Figure 1. The lateral 
displacement is represented by x, and the rotation 
angle is represented by z.  

The importance of the DOF of the structure 
takes advantage of the eigensensitivity of the first six 
modes according to Eq. (5). The diagonal values of 
matrix [𝑀𝑀] are depicted in Figure 2. Table 2 presents 
the importance of the corresponding DOF of the 
diagonal term values in descending order.  
 

 
 
Figure 2 Matrix [E] diagonal term value for the 

corresponding DOF 
  
Table 2 Order of importance of the measurement point 

DOF 
Index 1 2 3 4 5 6 7 8 9 10 11 12 13 
DOF 10x 11x 12x 13x 14x 15x 14z 15z 16z 23x 24x 25x 1x 
Index 14 15 16 17 18 19 20 21 22 23 24 25 26 
DOF 1z 2x 20z 21z 3x 4x 5x 6x 17z 7x 8x 9x 18z 
Index 27 28 29 30 31 32 33 34 35 36 37 38 39 
DOF 19z 2z 16x 3z 4z 5z 19x 20x 6z 7z 21x 8z 9z 
Index 40 41 42 43 44 45 46 47 48 49 50   
DOF 10z 17x 18x 11z 12z 13z 22z 23z 24z 25z 22x   

 
Figure 3 indicates that when the measurement 

points increase in the order of importance listed in 
Table 2 until the increase to 38 measurement points, 
the curve of the largest nondiagonal elements of the 
MAC matrix gradually decreases until it stabilizes. 

This demonstrates that the measurement points with 
the first 38 orders of importance contribute to 
reasonably orthogonal modes. The maximum off-
diagonal element MAC value, when 38 measurement 
points are included, is 0.022. 

 

 
 
Figure 3 MAC maximum nondiagonal element change 

curve 
 

The cumulative value of the MKE in Figure 4 is 
based on the order of the DOF listed in Table 2 and is 
established according to Eq. (1). The cumulative MKE 
for the DOF is based on the number of measurement 
points added. As observed in Figure 4, when the most 
important 38 DOF are included in the MKE 
cumulative value, the value approaches 89% of all the 
DOF. The 38 measurement points can be arranged 
according to the order listed in Table 2. 
 

 
 
Figure 4 Relationship between the MKE cumulative 

value and the number of measurement points 
 

The number of measurement points emerging 
from the maximum value of the nondiagonal elements 
of the MAC matrix in Figure 3 is the optimal number 
of measurement points with reasonably orthogonal 
modes. Then, the MKE value of the optimal number 
of measurement points is obtained from Figure 4. 

 
Method for simulating non-measurement data 

The reference model of this example includes 
measurement points with limited DOF (Not all the 
DOF of the FEA model are measured). Considering 
the portal beam structure as an example, the 
measurement points are arranged according to the 
DOF importance listed in Table 2. The structure has 50 
DOF, and some of them have measurement data. If the 
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DOF lack measurement data, the mode shape is 
replaced by the initial analysis results of the structure 
in the corresponding FEM DOF for the model update 
calculation.  
 
Noise addition 

From the measurement data, the modal 
parameters of the six modes are obtained. Noise is 
added to the natural frequency without noise under a 
normal distribution with a standard deviation of 0.2%. 
In addition, 1% is added to the mode shape without 
noise, which is 𝜙𝜙𝑖𝑖𝑖𝑖∗ = 𝜙𝜙𝑖𝑖𝑖𝑖�1 + 𝑟𝑟𝑖𝑖�𝜙𝜙𝑚𝑚𝑎𝑎𝑥𝑥,𝑖𝑖�� , where 
𝜙𝜙𝑖𝑖𝑖𝑖∗  and 𝜙𝜙𝑖𝑖𝑖𝑖 are the j-th mode in the i-th DOF of the 
structure and the mode shape in the presence or 
absence of noise, respectively. 𝑟𝑟𝑖𝑖 is 1%, and 𝜙𝜙𝑚𝑚𝑎𝑎𝑥𝑥,𝑖𝑖 
is the maximum value among the DOF of the j-th mode 
shape. 
 
Results and discussion  

According to the MKE cumulative value, the 
number of measurement points is selected, and the 
positions of the measurement points are determined 
according to the importance of the DOF. The 
measurement data from the modal test is used as the 
FEA model target for updating.  

The core consideration regarding the number of 
measurement points is to sufficiently contribute to the 
linear independence of the modal shapes. As the 
number of measurement points increases, the degree 
of linear independence contribution also increases. 
Although the maximum value of the nondiagonal 
elements of the MAC matrix in Figure 3 and the MKE 
value in Figure 4 tend to converge, the former requires 
fewer measurement points than the latter. This 
indicates that the MKE method is more conservative 
in evaluating the number of measurement points. In 
contrast with the maximum nondiagonal element 
change curve of the MAC matrix for evaluation, when 
the MKE cumulative value was greater than 0.89, this 
example adopts the corresponding optimal 
measurement point number. 

The analysis results of model updating, with and 
without noise, detect the pre-simulated damage 
position and extent for the reference model. This case 
can accurately detect the deviation ratio of the cross-
sectional area (A) and quadratic moment of inertia (I) 
of the reference model and the correct structure 
through the model updating procedure. 
 

 
 

Figure 5 Updated results of the deviation ratios of A 
and I in the FEA model 

 
For this example, the updated results after the 

iterative calculation of the model updating method 
converge accurately, and the natural frequency is 
obtained. The differences in the natural frequency 
before and after updating are listed in Table 3. After 
updating the model, the percentage of maximum 
difference between the modal test results and FEA 
model is 2.115%, whereas that of the minimum 
difference is 0.864% 

 
Table 3 Differences between the analysis and 

measurement values of the natural 
frequency (Unit: Hz) 

Mode 
Modal 

test 
results 

Before 
updating 

Natural 
frequency 
difference 

(%) 

After 
updating 

Natural 
frequency 
difference 

(%) 
1 13.846 14.988 8.248 13.643 -1.465 
2 54.658 58.824 7.622 55.757 2.011 
3 133.894 141.241 5.487 135.402 1.126 
4 222.851 236.147 5.966 220.926 /-0.864 
5 236.156 254.264 7.668 232.004 -1.758 
6 313.726 336.528 7.268 320.361 2.115 

 
General procedure for checking the applicability in 
other structures 

The flowchart in Figure 6 presents the important 
steps of the proposed method used in this case study. 
This case takes a portal beam structure as an example 
to illustrate the feasibility of the method. It is still 
necessary to further verify the feasibility of this 
method for other structures. 
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Figure 6 Flow chart 
 

Conclusions 
 

The measurement and model updating methods 
developed in this study can be applied for monitoring 
and early warning with respect to structural damage. 
The measurement point layout method includes the 
MKE cumulative value for the number of 
measurement points and the Hemez method for 
reasonable positions. The FEA model is established 
using the model variables (geometric or material 
property variables) of the structure. When the modal 
parameters (natural frequency and modal shape) of the 
structure are changed, the FEA model updating 
method, using the eigensensitivity matrix, can detect 
the damage position and extent in the structure. 

Although modal testing can depict the actual 
dynamic behavior of the structure, there are limits 
regarding costs and instrumentation. Therefore, it is 
necessary to use FEA modeling to plan the 
measurement point layout for the modal test. Before 

modal testing, the FEA model can pre-evaluate the 
number and position configuration of the 
measurement points for completely understanding the 
dynamic characteristics of the structure and confirm 
the feasibility and economy of the modal test.  

The modal test presents the true structural 
dynamic characteristics. Because of the uncertainty of 
the model variables of the FEA model, it is necessary 
to render the modal parameters of the FEA model and 
modal test consistent by updating the model variables. 
The updated FEA model can be used for structural 
design and analysis.  

In this study, a combination of the measurement 
point layout and model updating method was used to 
detect the damage position and extent in the structure. 
A case study involving a portal beam structure 
confirmed that the proposed method can detect the 
damage position and extent. The optimal number of 
measurement points and the corresponding MKE were 
obtained using the largest nondiagonal element in the 
MAC matrix that gradually converges. The 
considerably high number of obtained measurement 
points (38), with respect to the total number of DOF 
(52), were aimed to optimize the linear independence 
of the modes of interest. However, if the number of 
measuring instruments is limited, they can be arranged 
according to the importance of their position.  

Although the case study demonstrated that the 
proposed method can be practically implemented and 
provide adequate results, it includes certain 
shortcomings. In this study, the method for evaluating 
the measurement point layout is based on positions 
that can be measured. Certain DOF can present the 
important dynamic characteristics of the structure. 
However, because it is difficult to obtain the measured 
values of the DOF within the structure, this method 
cannot be used for evaluation. There is a continual 
need for an adequate theoretical basis for the practical 
application of measurement planning. 
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摘要 

本研究提出了一種結合量測點佈局與模型更新方 

法作為檢測結構損傷位置與程度的方法。最初， 

結構的有限元分析（FEA）模型用於評估模態測試 

的適當量測點佈局。本研究中提出的方法是基於 

結合模態動能（MKE）與 Hemez 方法的功能互補性。 

該方法利用 MKE 累積值求取量測點數量，及 Hemez 

方法求取合理量測位置。模型變量（例如:橫截面 

積和二次慣性矩）用於表示結構的幾何或材料特 

性。此外，模型更新方法利用特徵靈敏度矩陣， 

並且透過迭代計算以更新 FEA 模型的模型變量。 

結果顯示更新 FEA模型後，模型變量的分析結果 

可以逼近參考模型預先模擬的結構損傷位置與程 

度。這項研究發展的量測與模型更新方法可應用 

於結構損傷的監測和預警。 


