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ABSTRACT 
Effective vibration isolation in machinery 

foundations is essential for reducing structure-borne 
noise and improving operational performance, 
particularly in naval, aerospace, and industrial 
applications. This study investigates the dynamic 
behavior and vibration isolation performance of a two-
stage raft-mounted system. A nine-degree-of-freedom 
(DoF) mathematical model was developed, 
considering translational and rotational motions, and 
analyzed using MATLAB and ANSYS. Modal 
analysis identified the natural frequencies of the 
system, ranging from 5.91 Hz to 24.71 Hz, with 
harmonic analysis used to evaluate the system's 
response under dynamic excitation forces. The 
experimental setup, involving impact hammer testing 
and accelerometers, validated the numerical results, 
achieving close agreement attributed to real-world 
conditions such as imperfect boundary constraints. 
The model assumes negligible damping for simplicity, 
focusing on the elastic response of the system 

 
INTRODUCTION    

  
Raft foundations, often constructed as thick, 

reinforced slabs of concrete or metal, are commonly  
 

 

used to distribute loads from structures to the 
ground. Raft foundations, often constructed as thick, 
reinforced slabs of concrete or metal, are commonly 
used to distribute loads from structures to the ground. 
In both static structures and vibrating machinery, these 
foundations serve as essential components to prevent 
Raft foundations, often constructed as thick, reinforced 
slabs of concrete or metal, are commonly excessive 
motion, which can disrupt machine performance and 
create adverse conditions for nearby personnel. 
Structural vibration, caused by dynamic forces from 
engines, pumps, and compressors, is a key challenge 
in heavy machinery.  
 

Studies on vibration reduction emphasize the 
need for foundations with tailored dynamic properties 
to withstand these forces effectively. Various 
approaches, including finite element analysis (FEA) 
and soil-structure interaction models, have been 
explored to predict how machine foundations respond 
to vibrations and to optimize their design accordingly 
(Valliappan and Hakam 2001; Barata 2019). 
Multistage raft-mounted systems are effective 
solutions for vibration isolation in machinery, offering 
enhanced damping and stiffness control compared to 
single-stage systems (Zhao and Chen 2008; Qiu et al. 
2022). In such systems, a primary raft supports 
multiple machines, with the raft mounted on isolators 
to the foundation. Finite element analysis is 
recommended for foundation design to identify 
resonance conditions and maintain vibration 
amplitudes within acceptable limits (Jayarajan and 
Kouzer 2014). In metallurgical production, where 
greater foundation vibration is common, dynamic 
vibration dampers are critical. For heavy forging tools 
and manipulators, foundations are modeled as rigid 
bodies placed on a homogeneous elastic isotropic half-
space (Evgeny et al. 2021). Mathematical modelling 
was widely used in the investigation to simulate the 
experimental model in vibration analysis of different 
static and dynamic structures (Al-Wakel et al. 2015; 
Liu et al. 2022). The findings show a reasonable 
correlation between the numerical model's predictions 
and those from the experimental model. To ensure 
satisfactory performance, carefully considered 
analysis and construction must be applied to structures 
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supporting machines that generate dynamic loads. 
These highly complex systems must be reduced to 
mathematical (Guizani et al. 2022) and computational 
models (Sharma, Palli and Sharma 2023) that act 
similarly to the prototype structure-machine-soil 
system.  
 

This paper focuses on analyzing the vibration 
response of a two-stage raft-mounted system, 
specifically examining the interaction between 
machine components on the raft and the foundation. 
To model this system, we develop a nine-degree-of-
freedom (DoF) framework, which captures essential 
translational and rotational dynamics across multiple 
mounting stages. This model is analyzed using both 
MATLAB and ANSYS, with modal and harmonic 
analyses applied to determine the natural frequencies, 
mode shapes, and displacement responses under 
simulated dynamic loading. 

 
MATHEMATICAL MODELING 

Two-stage raft-mounted undamped vibration 
isolation  

 
In the dynamic analysis of any machinery base, 

the number of model degrees of freedom (DoF’s) is 
very important in determining many of the essential 
parameters of the system dynamics. In the current 
study, a model with nine degrees of freedom (DoF) is 
used, which describes the motion of translational and 
rotational components of the raft and machinery. This 
approach simplifies the analysis by focusing on 
vertical vibrations and neglecting the yaw rotation 
angle and the horizontal displacements (Xie et al. 
2024). While this simplification may overlook certain 
horizontal or rotational movements, it enables a 
focused examination of the primary system 
behavior—vertical vibration response. The 
determination of 9 DoFs for the system was based on 
the speculation that vertical vibrations are most critical 
for vibration isolation efficiency. The two-stage raft-
mounted vibration isolation system described here is 
depicted in Figure 1.  

 
Figure 1. Two-stage raft-mounted isolation system 

It consists of two machines, M1 and M2, 
mounted on a raft, which is in turn mounted on a rigid 
base. The system includes isolators positioned 
between the raft and the base, between the raft and 
machine M1, and between the raft and machine M2. 
These isolators have a specific stiffness value, denoted 

by 𝑘𝑘1 ,𝑘𝑘2 ,………, 𝑘𝑘𝑛𝑛𝑟𝑟  for the base-to-raft isolators, 
𝑘𝑘𝑛𝑛𝑟𝑟+1  …... 𝑘𝑘𝑛𝑛𝑟𝑟+𝑛𝑛1   for the raft-to-M1 isolators, and 
𝑘𝑘𝑛𝑛𝑟𝑟+𝑛𝑛1+1 … … 𝑘𝑘𝑛𝑛𝑟𝑟+𝑛𝑛1+𝑛𝑛2  for the raft-to-M2 isolators. 
The raft's motion is defined by its translational 
displacement 𝑈𝑈𝑟𝑟   and rotational angles 𝜃𝜃𝑟𝑟𝑟𝑟   and 𝜃𝜃𝑟𝑟𝑟𝑟 
about its center of gravity (C.G.). Similarly, each 
machine (M1 and M2) experiences translational 
displacements 𝑈𝑈1,𝑈𝑈2   and rotational displacements 
𝜃𝜃1𝑥𝑥,𝜃𝜃1𝑦𝑦 ,𝜃𝜃2𝑥𝑥,𝜃𝜃2𝑦𝑦  at their respective C.G.s. The 
isolators between the raft and the base are 
characterized by stiffness values 𝑘𝑘1, 𝑘𝑘2 ,….. 𝑘𝑘𝑛𝑛𝑟𝑟   
while those between the raft and machine M1 are 
characterized by 𝑘𝑘𝑛𝑛𝑟𝑟+1   …... 𝑘𝑘𝑛𝑛𝑟𝑟+𝑛𝑛1  , and those 
between the raft and machine M2 are represented by 
𝑘𝑘𝑛𝑛𝑟𝑟+𝑛𝑛1+1 … … 𝑘𝑘𝑛𝑛𝑟𝑟+𝑛𝑛1+𝑛𝑛2 .  

 
Figure 2. Raft with raft isolators. 

 

Raft 
Isolators 

𝐹𝐹1 = 𝑘𝑘𝑖𝑖  �𝑈𝑈𝑟𝑟 + 𝑦𝑦1𝜃𝜃𝑟𝑟𝑟𝑟 + 𝑥𝑥1𝜃𝜃𝑟𝑟𝑟𝑟� (1) 
𝐹𝐹2 = 𝑘𝑘𝑖𝑖  �𝑈𝑈𝑟𝑟 + 𝑦𝑦2𝜃𝜃𝑟𝑟𝑟𝑟 + 𝑥𝑥2𝜃𝜃𝑟𝑟𝑟𝑟� (2) 
𝐹𝐹𝑛𝑛𝑟𝑟 = 𝑘𝑘𝑛𝑛𝑟𝑟  �𝑈𝑈𝑟𝑟 + 𝑦𝑦𝑛𝑛𝑟𝑟𝜃𝜃𝑟𝑟𝑟𝑟 +
𝑥𝑥𝑛𝑛𝑟𝑟𝜃𝜃𝑟𝑟𝑟𝑟�  

(3) 

Machine 
M1 
Isolators 

𝐹𝐹𝑛𝑛𝑟𝑟+1 = 𝑘𝑘𝑛𝑛𝑟𝑟+1 �𝑈𝑈1 +
𝐵𝐵𝑛𝑛𝑟𝑟+1𝜃𝜃1𝑥𝑥 + 𝐴𝐴𝑛𝑛𝑟𝑟+1𝜃𝜃1𝑦𝑦� −
 �𝑈𝑈𝑟𝑟 + 𝑦𝑦𝑛𝑛𝑟𝑟+1𝜃𝜃𝑟𝑟𝑟𝑟 + 𝑥𝑥𝑛𝑛𝑟𝑟+1𝜃𝜃𝑟𝑟𝑟𝑟�  

(4) 

𝐹𝐹𝑛𝑛𝑟𝑟+𝑛𝑛1 = 𝑘𝑘𝑛𝑛𝑟𝑟+𝑛𝑛1  �𝑈𝑈1 +
𝐵𝐵𝑛𝑛𝑟𝑟+𝑛𝑛1𝜃𝜃1𝑥𝑥 + 𝐴𝐴𝑛𝑛𝑟𝑟+𝑛𝑛1𝜃𝜃1𝑦𝑦� −
 �𝑈𝑈𝑟𝑟 + 𝑦𝑦𝑛𝑛𝑟𝑟+𝑛𝑛1𝜃𝜃𝑟𝑟𝑟𝑟 + 𝑥𝑥𝑛𝑛𝑟𝑟+𝑛𝑛1𝜃𝜃𝑟𝑟𝑟𝑟�  

(5) 

Machine 
M2 
Isolators 

𝐹𝐹𝑛𝑛𝑟𝑟+𝑛𝑛1+1 = 𝑘𝑘𝑛𝑛𝑟𝑟+𝑛𝑛1+1 �𝑈𝑈2 +
𝐷𝐷𝑛𝑛𝑟𝑟+𝑛𝑛1+1𝜃𝜃2𝑥𝑥 + 𝐶𝐶𝑛𝑛𝑟𝑟+𝑛𝑛1+1𝜃𝜃2𝑦𝑦� −
 �𝑈𝑈𝑟𝑟 + 𝑦𝑦𝑛𝑛𝑟𝑟+𝑛𝑛1+1𝜃𝜃𝑟𝑟𝑟𝑟 +
𝑥𝑥𝑛𝑛𝑟𝑟+𝑛𝑛1+1𝜃𝜃𝑟𝑟𝑟𝑟�  

(6) 

𝐹𝐹𝑛𝑛𝑟𝑟+𝑛𝑛1+𝑛𝑛2 = 𝑘𝑘𝑛𝑛𝑟𝑟+𝑛𝑛1+𝑛𝑛2  �𝑈𝑈2 +
𝐷𝐷𝑛𝑛𝑟𝑟+𝑛𝑛1+𝑛𝑛2𝜃𝜃2𝑥𝑥 +
𝐶𝐶𝑛𝑛𝑟𝑟+𝑛𝑛1+𝑛𝑛2𝜃𝜃2𝑦𝑦� −  �𝑈𝑈𝑟𝑟 +
𝑦𝑦𝑛𝑛𝑟𝑟+𝑛𝑛1+𝑛𝑛2𝜃𝜃𝑟𝑟𝑟𝑟 + 𝑥𝑥𝑛𝑛𝑟𝑟+𝑛𝑛1+𝑛𝑛2𝜃𝜃𝑟𝑟𝑟𝑟�  

(7) 

 
The positions of the raft isolators are variable 

which are defined in the X-Y Cartesian coordinate 
system with respect to the C.G. of the raft, as shown in 
Figure 2. The X and Y coordinates of the isolators are 
labelled as 𝑥𝑥1 ,  𝑥𝑥2 …….𝑥𝑥𝑛𝑛𝑟𝑟 ,  𝑥𝑥𝑛𝑛𝑟𝑟+1  …….., 𝑥𝑥𝑛𝑛𝑟𝑟+𝑛𝑛1  , 
𝑥𝑥𝑛𝑛𝑟𝑟+𝑛𝑛1+1  ………. 𝑥𝑥𝑛𝑛𝑟𝑟+𝑛𝑛1+𝑛𝑛2   and 𝑦𝑦1 ,  𝑦𝑦2 ……. 𝑦𝑦𝑛𝑛𝑟𝑟 , 
𝑦𝑦𝑛𝑛𝑟𝑟+1  ……..,𝑦𝑦𝑛𝑛𝑟𝑟+𝑛𝑛1  ,  𝑦𝑦𝑛𝑛𝑟𝑟+𝑛𝑛1+1  ……….𝑦𝑦𝑛𝑛𝑟𝑟+𝑛𝑛1+𝑛𝑛2   . 
For machine M1, the isolators are defined in the A-B 
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coordinate system, with isolator coordinates 𝐴𝐴𝑖𝑖  and 
𝐵𝐵𝑖𝑖   corresponding to the isolator stiffness values 𝑘𝑘𝑖𝑖. 
For machine M2, the isolators are defined in the C-D 
coordinate system, with isolator coordinates 𝐶𝐶𝑖𝑖  and 
𝐷𝐷𝑖𝑖 , corresponding to the stiffness values 𝑘𝑘𝑖𝑖   as well. 
The forces acting on the isolators in the system are 
given from Eq (1-7). It is assumed that machines and 
raft have three degrees of freedom, translation (U) and 
rotations θx and θy and both machines and raft are rigid. 

 
Equations of Motion 

 
The equations of motion describe the dynamics 

of the raft and machines within the system, accounting 
for forces in the isolators and moments of inertia. The 
equation of motion for the bounce of the raft is given 
by Eq. (8). 

 
𝑀𝑀𝑟𝑟 𝑈𝑈𝑟̈𝑟 + ∑ 𝑘𝑘𝑖𝑖𝑢𝑢𝑟𝑟

𝑛𝑛𝑡𝑡
𝑖𝑖=1 + ∑ −𝑘𝑘𝑖𝑖𝑢𝑢1

𝑛𝑛𝑟𝑟+𝑛𝑛1
𝑛𝑛𝑟𝑟+1 +

∑ −𝑘𝑘𝑖𝑖𝑢𝑢2
𝑛𝑛𝑡𝑡
𝑖𝑖=𝑛𝑛𝑟𝑟+𝑛𝑛1+1 + ∑ 𝑘𝑘𝑖𝑖𝑦𝑦𝑖𝑖𝜃𝜃𝑟𝑟𝑟𝑟

𝑛𝑛𝑡𝑡
𝑖𝑖=1 +

∑ 𝑘𝑘𝑖𝑖𝑥𝑥𝑖𝑖𝜃𝜃𝑟𝑟𝑟𝑟
𝑛𝑛𝑡𝑡
𝑖𝑖=1 + ∑ −𝑘𝑘𝑖𝑖𝐵𝐵𝑖𝑖𝜃𝜃1𝑥𝑥

𝑛𝑛𝑟𝑟+𝑛𝑛1
𝑖𝑖=𝑛𝑛𝑟𝑟+1 +

∑ −𝑘𝑘𝑖𝑖𝐴𝐴𝑖𝑖𝜃𝜃1𝑦𝑦
𝑛𝑛𝑟𝑟+𝑛𝑛1
𝑖𝑖=𝑛𝑛𝑟𝑟+1 + ∑ −𝑘𝑘𝑖𝑖𝐷𝐷𝑖𝑖𝜃𝜃2𝑥𝑥

𝑛𝑛𝑡𝑡
𝑖𝑖=𝑛𝑛𝑟𝑟+𝑛𝑛1+1 +

∑ −𝑘𝑘𝑖𝑖𝐶𝐶𝑖𝑖𝜃𝜃2𝑦𝑦
𝑛𝑛𝑡𝑡
𝑖𝑖=𝑛𝑛𝑟𝑟+𝑛𝑛1+1 = 0   

(8) 

 
𝑛𝑛𝑡𝑡 = Total number of isolators in the system= 𝑛𝑛𝑟𝑟 +
𝑛𝑛1 + 𝑛𝑛2 . The equation of motion for the bounce of 
machine 1 is presented in Eq. (9). 
 
𝑀𝑀1 𝑈𝑈1̈ + ∑ −𝑘𝑘𝑖𝑖𝑢𝑢𝑟𝑟

𝑛𝑛𝑟𝑟+𝑛𝑛1
𝑖𝑖=𝑛𝑛𝑟𝑟+1 + ∑ 𝑘𝑘𝑖𝑖𝑢𝑢1

𝑛𝑛𝑟𝑟+𝑛𝑛1
𝑛𝑛𝑟𝑟+1 +

∑ 0𝑢𝑢2 + ∑ −𝑘𝑘𝑖𝑖𝑦𝑦𝑖𝑖𝜃𝜃𝑟𝑟𝑟𝑟
𝑛𝑛𝑟𝑟+𝑛𝑛1
𝑖𝑖=𝑛𝑛𝑟𝑟+1 +

∑ −𝑘𝑘𝑖𝑖𝑥𝑥𝑖𝑖𝜃𝜃𝑟𝑟𝑟𝑟
𝑛𝑛𝑟𝑟+𝑛𝑛1
𝑖𝑖=𝑛𝑛𝑟𝑟+1 + ∑ 𝑘𝑘𝑖𝑖𝐵𝐵𝑖𝑖𝜃𝜃1𝑥𝑥

𝑛𝑛𝑟𝑟+𝑛𝑛1
𝑖𝑖=𝑛𝑛𝑟𝑟+1 +

∑ 𝑘𝑘𝑖𝑖𝐴𝐴𝑖𝑖𝜃𝜃1𝑦𝑦
𝑛𝑛𝑟𝑟+𝑛𝑛1
𝑖𝑖=𝑛𝑛𝑟𝑟+1 + ∑ 0𝜃𝜃2𝑥𝑥

𝑛𝑛𝑡𝑡
𝑖𝑖=𝑛𝑛𝑟𝑟+𝑛𝑛1+1 +

∑ 0𝜃𝜃2𝑦𝑦
𝑛𝑛𝑡𝑡
𝑖𝑖=𝑛𝑛𝑟𝑟+𝑛𝑛1+1 = 0   

(9) 

The equation of motion for the bounce of machine 2, 
roll of raft, pitch of raft, roll of machine 1, pitch of 
machine 1, roll of machine 2 and pitch of machine 2 is 
outlined in Eq. (10), (11), (12), (13), (14), (15) and (16) 
respectively.  
 
𝑀𝑀2 𝑈𝑈2̈ + ∑ −𝑘𝑘𝑖𝑖𝑢𝑢𝑟𝑟

𝑛𝑛𝑡𝑡
𝑖𝑖=𝑛𝑛𝑟𝑟+𝑛𝑛1+1 +

∑ 0𝑢𝑢1
𝑛𝑛𝑟𝑟+𝑛𝑛1
𝑛𝑛𝑟𝑟+1 + ∑ 𝑘𝑘𝑖𝑖𝑢𝑢2

𝑛𝑛𝑡𝑡
𝑖𝑖=𝑛𝑛𝑟𝑟+𝑛𝑛1+1 +

∑ −𝑘𝑘𝑖𝑖𝑦𝑦𝑖𝑖𝜃𝜃𝑟𝑟𝑟𝑟
𝑛𝑛𝑡𝑡
𝑖𝑖=𝑛𝑛𝑟𝑟+𝑛𝑛1+1 +

∑ −𝑘𝑘𝑖𝑖𝑥𝑥𝑖𝑖𝜃𝜃𝑟𝑟𝑟𝑟
𝑛𝑛𝑡𝑡
𝑖𝑖=𝑛𝑛𝑟𝑟+𝑛𝑛1+1 + ∑ 0𝜃𝜃1𝑥𝑥

𝑛𝑛𝑟𝑟+𝑛𝑛1
𝑖𝑖=𝑛𝑛𝑟𝑟+1 +

∑ 0𝜃𝜃1𝑦𝑦
𝑛𝑛𝑟𝑟+𝑛𝑛1
𝑖𝑖=𝑛𝑛𝑟𝑟+1 + ∑ 𝑘𝑘𝑖𝑖𝐷𝐷𝑖𝑖𝜃𝜃2𝑥𝑥

𝑛𝑛𝑡𝑡
𝑖𝑖=𝑛𝑛𝑟𝑟+𝑛𝑛1+1 +

∑ 𝑘𝑘𝑖𝑖𝐶𝐶𝑖𝑖𝜃𝜃2𝑦𝑦
𝑛𝑛𝑡𝑡
𝑖𝑖=𝑛𝑛𝑟𝑟+𝑛𝑛1+1 = 0   

(10) 

𝐼𝐼𝑟𝑟𝑟𝑟 𝜃𝜃𝑟𝑟𝑟𝑟̈ + ∑ 𝑘𝑘𝑖𝑖𝑦𝑦𝑖𝑖𝑢𝑢𝑟𝑟
𝑛𝑛𝑡𝑡
𝑖𝑖=1 + ∑ −𝑘𝑘𝑖𝑖𝑦𝑦𝑖𝑖𝑢𝑢1

𝑛𝑛𝑟𝑟+𝑛𝑛1
𝑛𝑛𝑟𝑟+1 +

∑ −𝑘𝑘𝑖𝑖𝑦𝑦𝑖𝑖𝑢𝑢2
𝑛𝑛𝑡𝑡
𝑖𝑖=𝑛𝑛𝑟𝑟+𝑛𝑛1+1 + ∑ 𝑘𝑘𝑖𝑖𝑦𝑦𝑖𝑖2𝜃𝜃𝑟𝑟𝑟𝑟

𝑛𝑛𝑡𝑡
𝑖𝑖=1 +

∑ 𝑘𝑘𝑖𝑖𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖𝜃𝜃𝑟𝑟𝑟𝑟
𝑛𝑛𝑡𝑡
𝑖𝑖=1 + ∑ −𝑘𝑘𝑖𝑖𝐵𝐵𝑖𝑖𝑦𝑦𝑖𝑖𝜃𝜃1𝑥𝑥

𝑛𝑛𝑟𝑟+𝑛𝑛1
𝑖𝑖=𝑛𝑛𝑟𝑟+1 +

∑ −𝑘𝑘𝑖𝑖𝐴𝐴𝑖𝑖𝑦𝑦𝑖𝑖𝜃𝜃1𝑦𝑦
𝑛𝑛𝑟𝑟+𝑛𝑛1
𝑖𝑖=𝑛𝑛𝑟𝑟+1 +

∑ −𝑘𝑘𝑖𝑖𝐷𝐷𝑖𝑖𝑦𝑦𝑖𝑖𝜃𝜃2𝑥𝑥
𝑛𝑛𝑡𝑡
𝑖𝑖=𝑛𝑛𝑟𝑟+𝑛𝑛1+1 +

∑ −𝑘𝑘𝑖𝑖𝐶𝐶𝑖𝑖𝑦𝑦𝑖𝑖𝜃𝜃2𝑦𝑦
𝑛𝑛𝑡𝑡
𝑖𝑖=𝑛𝑛𝑟𝑟+𝑛𝑛1+1 = 0  

    
(11) 
 

𝐼𝐼𝑟𝑟𝑟𝑟 𝜃𝜃𝑟𝑟𝑟𝑟̈ + ∑ 𝑘𝑘𝑖𝑖𝑥𝑥𝑖𝑖𝑢𝑢𝑟𝑟
𝑛𝑛𝑡𝑡
𝑖𝑖=1 + ∑ −𝑘𝑘𝑖𝑖𝑥𝑥𝑖𝑖𝑢𝑢1

𝑛𝑛𝑟𝑟+𝑛𝑛1
𝑛𝑛𝑟𝑟+1 + (12) 

∑ −𝑘𝑘𝑖𝑖𝑥𝑥𝑖𝑖𝑢𝑢2
𝑛𝑛𝑡𝑡
𝑖𝑖=𝑛𝑛𝑟𝑟+𝑛𝑛1+1 + ∑ 𝑘𝑘𝑖𝑖𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖𝜃𝜃𝑟𝑟𝑟𝑟

𝑛𝑛𝑡𝑡
𝑖𝑖=1 +

∑ 𝑘𝑘𝑖𝑖𝑥𝑥𝑖𝑖2𝜃𝜃𝑟𝑟𝑟𝑟
𝑛𝑛𝑡𝑡
𝑖𝑖=1 + ∑ −𝑘𝑘𝑖𝑖𝐵𝐵𝑖𝑖𝑥𝑥𝑖𝑖𝜃𝜃1𝑥𝑥

𝑛𝑛𝑟𝑟+𝑛𝑛1
𝑖𝑖=𝑛𝑛𝑟𝑟+1 +

∑ −𝑘𝑘𝑖𝑖𝐴𝐴𝑖𝑖𝑥𝑥𝑖𝑖𝜃𝜃1𝑦𝑦
𝑛𝑛𝑟𝑟+𝑛𝑛1
𝑖𝑖=𝑛𝑛𝑟𝑟+1 +

∑ −𝑘𝑘𝑖𝑖𝐷𝐷𝑖𝑖𝑥𝑥𝑖𝑖𝜃𝜃2𝑥𝑥
𝑛𝑛𝑡𝑡
𝑖𝑖=𝑛𝑛𝑟𝑟+𝑛𝑛1+1 +

∑ −𝑘𝑘𝑖𝑖𝐶𝐶𝑖𝑖𝑥𝑥𝑖𝑖𝜃𝜃2𝑦𝑦
𝑛𝑛𝑡𝑡
𝑖𝑖=𝑛𝑛𝑟𝑟+𝑛𝑛1+1 = 0   

 

𝐼𝐼1𝑥𝑥 𝜃𝜃1𝑥𝑥̈ + ∑ −𝑘𝑘𝑖𝑖𝐵𝐵𝑖𝑖𝑢𝑢𝑟𝑟
𝑛𝑛𝑟𝑟+𝑛𝑛1
𝑛𝑛𝑟𝑟+1 +

∑ 𝑘𝑘𝑖𝑖𝐵𝐵𝑖𝑖𝑢𝑢1
𝑛𝑛𝑟𝑟+𝑛𝑛1
𝑛𝑛𝑟𝑟+1 + ∑ 0𝑢𝑢2 +

∑ −𝑘𝑘𝑖𝑖𝑦𝑦𝑖𝑖𝐵𝐵𝑖𝑖𝜃𝜃𝑟𝑟𝑟𝑟
𝑛𝑛𝑟𝑟+𝑛𝑛1
𝑖𝑖=𝑛𝑛𝑟𝑟+1 +

∑ −𝑘𝑘𝑖𝑖𝑥𝑥𝑖𝑖𝐵𝐵𝑖𝑖𝜃𝜃𝑟𝑟𝑟𝑟
𝑛𝑛𝑟𝑟+𝑛𝑛1
𝑖𝑖=𝑛𝑛𝑟𝑟+1 + ∑ 𝑘𝑘𝑖𝑖𝐵𝐵𝑖𝑖2𝜃𝜃1𝑥𝑥

𝑛𝑛𝑟𝑟+𝑛𝑛1
𝑖𝑖=𝑛𝑛𝑟𝑟+1 +

∑ 𝑘𝑘𝑖𝑖𝐴𝐴𝑖𝑖𝐵𝐵𝑖𝑖𝜃𝜃1𝑦𝑦
𝑛𝑛𝑟𝑟+𝑛𝑛1
𝑖𝑖=𝑛𝑛𝑟𝑟+1 + ∑ 0𝜃𝜃2𝑥𝑥

𝑛𝑛𝑡𝑡
𝑖𝑖=𝑛𝑛𝑟𝑟+𝑛𝑛1+1 +

∑ 0𝜃𝜃2𝑦𝑦
𝑛𝑛𝑡𝑡
𝑖𝑖=𝑛𝑛𝑟𝑟+𝑛𝑛1+1 = 0  

(13) 

𝐼𝐼1𝑦𝑦 𝜃𝜃1𝑦𝑦̈ + ∑ −𝑘𝑘𝑖𝑖𝐴𝐴𝑖𝑖𝑢𝑢𝑟𝑟
𝑛𝑛𝑟𝑟+𝑛𝑛1
𝑛𝑛𝑟𝑟+1 +

∑ 𝑘𝑘𝑖𝑖𝐴𝐴𝑖𝑖𝑢𝑢1
𝑛𝑛𝑟𝑟+𝑛𝑛1
𝑛𝑛𝑟𝑟+1 + ∑ 0𝑢𝑢2 +

∑ −𝑘𝑘𝑖𝑖𝑦𝑦𝑖𝑖𝐴𝐴𝑖𝑖𝜃𝜃𝑟𝑟𝑟𝑟
𝑛𝑛𝑟𝑟+𝑛𝑛1
𝑖𝑖=𝑛𝑛𝑟𝑟+1 +

∑ −𝑘𝑘𝑖𝑖𝑦𝑦𝑖𝑖𝐴𝐴𝑖𝑖𝜃𝜃𝑟𝑟𝑟𝑟
𝑛𝑛𝑟𝑟+𝑛𝑛1
𝑖𝑖=𝑛𝑛𝑟𝑟+1 +

∑ 𝑘𝑘𝑖𝑖𝐴𝐴𝑖𝑖𝐵𝐵𝑖𝑖𝜃𝜃1𝑥𝑥
𝑛𝑛𝑟𝑟+𝑛𝑛1
𝑖𝑖=𝑛𝑛𝑟𝑟+1 + ∑ 𝑘𝑘𝑖𝑖𝐴𝐴𝑖𝑖2𝜃𝜃1𝑦𝑦

𝑛𝑛𝑟𝑟+𝑛𝑛1
𝑖𝑖=𝑛𝑛𝑟𝑟+1 +

∑ 0𝜃𝜃2𝑥𝑥
𝑛𝑛𝑡𝑡
𝑖𝑖=𝑛𝑛𝑟𝑟+𝑛𝑛1+1 + ∑ 0𝜃𝜃2𝑦𝑦

𝑛𝑛𝑡𝑡
𝑖𝑖=𝑛𝑛𝑟𝑟+𝑛𝑛1+1 = 0   

(14) 

𝐼𝐼2𝑥𝑥 𝜃𝜃2𝑥𝑥̈ + ∑ −𝑘𝑘𝑖𝑖𝐵𝐵𝑖𝑖𝑢𝑢𝑟𝑟
𝑛𝑛𝑡𝑡
𝑛𝑛𝑟𝑟+𝑛𝑛1+1 + ∑ 0𝑢𝑢1 +

∑ 𝑘𝑘𝑖𝑖𝐵𝐵𝑖𝑖𝑢𝑢2
𝑛𝑛𝑡𝑡
𝑛𝑛𝑟𝑟+𝑛𝑛1+1 +

∑ −𝑘𝑘𝑖𝑖𝑦𝑦𝑖𝑖𝐵𝐵𝑖𝑖𝜃𝜃𝑟𝑟𝑟𝑟
𝑛𝑛𝑡𝑡
𝑖𝑖=𝑛𝑛𝑟𝑟+𝑛𝑛1+1 +

∑ −𝑘𝑘𝑖𝑖𝑥𝑥𝑖𝑖𝐵𝐵𝑖𝑖𝜃𝜃𝑟𝑟𝑟𝑟
𝑛𝑛𝑡𝑡
𝑖𝑖=𝑛𝑛𝑟𝑟+𝑛𝑛1+1 + ∑ 0𝜃𝜃1𝑥𝑥

𝑛𝑛𝑟𝑟+𝑛𝑛1
𝑖𝑖=𝑛𝑛𝑟𝑟+1 +

∑ 0𝜃𝜃1𝑦𝑦
𝑛𝑛𝑟𝑟+𝑛𝑛1
𝑖𝑖=𝑛𝑛𝑟𝑟+1 + ∑ 𝑘𝑘𝑖𝑖𝐵𝐵𝑖𝑖2𝜃𝜃2𝑥𝑥

𝑛𝑛𝑡𝑡
𝑖𝑖=𝑛𝑛𝑟𝑟+𝑛𝑛1+1 +

∑ 𝑘𝑘𝑖𝑖𝐴𝐴𝑖𝑖𝐵𝐵𝑖𝑖𝜃𝜃2𝑦𝑦
𝑛𝑛𝑡𝑡
𝑖𝑖=𝑛𝑛𝑟𝑟+𝑛𝑛1+1 = 0  

(15) 

𝐼𝐼2𝑦𝑦 𝜃𝜃2𝑦𝑦̈ + ∑ −𝑘𝑘𝑖𝑖𝐴𝐴𝑖𝑖𝑢𝑢𝑟𝑟
𝑛𝑛𝑡𝑡
𝑛𝑛𝑟𝑟+𝑛𝑛1+1 + ∑ 0𝑢𝑢1 +

∑ 𝑘𝑘𝑖𝑖𝐴𝐴𝑖𝑖𝑢𝑢2
𝑛𝑛𝑡𝑡
𝑛𝑛𝑟𝑟+𝑛𝑛1+1 +

∑ −𝑘𝑘𝑖𝑖𝑦𝑦𝑖𝑖𝐴𝐴𝑖𝑖𝜃𝜃𝑟𝑟𝑟𝑟
𝑛𝑛𝑡𝑡
𝑖𝑖=𝑛𝑛𝑟𝑟+𝑛𝑛1+1 +

∑ −𝑘𝑘𝑖𝑖𝑥𝑥𝑖𝑖𝐴𝐴𝑖𝑖𝜃𝜃𝑟𝑟𝑟𝑟
𝑛𝑛𝑡𝑡
𝑖𝑖=𝑛𝑛𝑟𝑟+𝑛𝑛1+1 + ∑ 0𝜃𝜃1𝑥𝑥

𝑛𝑛𝑟𝑟+𝑛𝑛1
𝑖𝑖=𝑛𝑛𝑟𝑟+1 +

∑ 0𝜃𝜃1𝑦𝑦
𝑛𝑛𝑟𝑟+𝑛𝑛1
𝑖𝑖=𝑛𝑛𝑟𝑟+1 + ∑ 𝑘𝑘𝑖𝑖𝐴𝐴𝑖𝑖𝐵𝐵𝑖𝑖𝜃𝜃2𝑥𝑥

𝑛𝑛𝑡𝑡
𝑖𝑖=𝑛𝑛𝑟𝑟+𝑛𝑛1+1 +

∑ 𝑘𝑘𝑖𝑖𝐴𝐴𝑖𝑖2𝜃𝜃2𝑦𝑦
𝑛𝑛𝑡𝑡
𝑖𝑖=𝑛𝑛𝑟𝑟+𝑛𝑛1+1 = 0  

(16) 

 
In the mathematical modeling, there are 6 raft 

isolators, 4 isolators associated with machine 1 (M-1), 
and 4 isolators associated with machine 2 (M-2). 
Therefore, the total number of isolators, is denoted as 
𝑛𝑛𝑡𝑡= 14, which is the sum of the raft isolators 𝑛𝑛𝑟𝑟= 6, 
the machine 1 isolators 𝑛𝑛1 = 4, and the machine 2 
isolators 𝑛𝑛2= 4. These values can be substituted into 
the system of equations i.e., Eq. (8) to Eq. (16) as 
described in the model.  
 
Table 1. Mass and inertial parameters. 

 M-1 M-2 Raft 

Mass (kg) 35 35 34 
Mass Moment of Inertia, Ix (kg 𝑚𝑚2) 0.271 0.271 0.032 
Mass Moment of Inertia, Iy (kg 𝑚𝑚2) 0.271 0.271 0.061 

Table 2. Location of isolators for two-stage rafted 
system (distances in meters).  

Isolator Relative to C.G.  
of machine 1 

Relative to 
C.G. of 
machine 2 

Relative to C.G. 
of Raft 
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 𝑨𝑨𝒊𝒊 𝑩𝑩𝒊𝒊 𝑪𝑪𝒊𝒊 𝑫𝑫𝒊𝒊 𝒙𝒙𝒊𝒊 𝒚𝒚𝒊𝒊 

1     -0.4 -0.292 

2     0 -0.292 

3     0.4 -0.292 

4     -0.4 0.292 

5     0 0.292 

6     0.4 0.292 

7 -0.1 -0.1   -0.341 -0.1 

8 0.1 -0.1   -0.141 -0.1 

9 -0.1 0.1   -0.341 0.1 

10 0.1 0.1   -0.141 0.1 

11   -0.1 -0.1 0.141 -0.1 

12   0.1 -0.1 0.341 -0.1 

13   -0.1 0.1 0.141 0.1 

14   0.1 0.1 0.341 0.1 

 
The specific values of the masses (M), moments of 
inertia (I), location of isolators, and stiffness of 
isolators are listed in Tables 1, 2, and 3, respectively. 
These parameters are crucial for the numerical 
solution of the equations and for analyzing the 
dynamic behavior of the system. 
 
Table 3. Stiffness of isolators. 

 Notations Value 

Raft Isolators 𝐾𝐾1,2,3,4,5,6 68148 N/m 

Machine-1 Isolators 𝐾𝐾7,8,9,10 18572.51 N/m 

Machine-2 Isolators 𝐾𝐾11,12,13,14 15679.27 N/m 

 
ANALYSIS OF THE MATHEMATICAL 

MODEL 
Natural frequencies and mode shapes 
(Analytical)  
 

The mathematical model is analyzed using 
MATLAB to determine the natural frequencies of the 
raft mounting system. In free-free conditions, no 
constraints are applied to the model. This is done so 
that the results obtained from computational analysis 
can be compared with experimental eigenvalue 
analysis and ANSYS eigenvalue analysis. Figure 3 
displays the relationship between amplitude and 
degrees of freedom. Table 4 shows the natural 
frequencies of the system obtained from MATLAB 
code. 

 

 

 

 

 

 
Figure 3. Amplitude Vs DoF for mode frequency 
from mode 1 to mode 9 (a) 5.9243 Hz (b) 6.4595 Hz 
(c) 7.7285 Hz (d) 7.7855 Hz (e) 8.3797 Hz (f) 
8.4205 Hz (g) 20.4909 Hz (h) 22.0222 Hz (i) 
24.7151 Hz. 

Table 4. Natural frequencies and corresponding mode 
shapes of raft mounting system 

Orders Value of 
frequency (Hz) 

Vibration mode 

1 5.9243 M1 Bounce 
2 6.4595 M2 Bounce 
3 7.7285 M1 Rolling 
4 7.7855 M1 Pitching 
5 8.3797 M2 Rolling 
6 8.4205 M2 Pitching 
7 20.4909 Raft Bounce 
8 22.0222 Raft Pitching 
9 24.7151 Raft Rolling 

 
Harmonic Response Analysis using MATLAB 

The mode superposition method of harmonic 
analysis is performed on raft mounted isolation system 
in fixed conditions. In this analysis, a load of 1000 N 
is applied on (i) on Machine-1 only (Figure 4) (ii) on 
Machine-2 only (Figure 5) (iii) on two Machines 
(Figure 6). Frequency response of Raft, Machine-1 
and Machine-2 are taken for these conditions. 
Responses are plotted in the semi-logarithmic graph; 
the x-axis shows the frequency and units' rad/sec; the 
y-axis shows the amplitude (responses) and units dB. 

 



S. Palli et al.: Structural Dynamic Analysis of Multistage Mounted Machine Foundation. 

-401- 
 

𝑑𝑑𝑑𝑑 =  20 log10 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (17) 

  

  

  

  

 
Figure 4. Frequency response of Raft: Bounce (a), 
Roll (b), Pitch (c), Machine-1: Bounce (d), Roll (e), 
Pitch (f) and Machine-2: Bounce (g), Roll (h), Pitch 
(i); when Machine-1 having excitation force 
(Analytical). 

  

  

  

  

 
Figure 5. Frequency response of Raft: (a) Bounce 
(b) Roll (c) Pitch, Machine-1: (d) Bounce (e) Roll 
(f) Pitch and Machine-2: (g) Bounce (h) Roll (i) 
Pitch when; Machine-2 having excitation force 
(Analytical). 
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Figure 6. Frequency response of Raft: (a) Bounce 
(b) Roll (c) Pitch, Machine-1: (d) Bounce (e) Roll 
(f) Pitch and Machine-2: (g) Bounce (h) Roll (i) 
Pitch; when Machine-1 and Machine-2 having 
excitation force (Analytical). 

 
Maximum and minimum amplitudes at natural 

frequencies of the raft-mounted system from 
mathematical analysis are listed in Table 5.   

 
Table 5. Maximum and minimum amplitudes of raft 
system at mode frequencies (Analytical). 

Mode 
Number 

Maximum 
Displacement (m) 

Minimum 
Displacement (m) 

1 0.0297 -0.0247 

2 0.0590 -0.0247 

3 9.2490×10−17 -4.3418×10−17 

4 0.0227 -0.0309 

5 1.0383×10−17 -8.4969×10−16 

6 0.0317 -0.0403 

7 0.0118 -0.0108 

8 2.013×10−18 -1.4650×10−18 

9 0.0089 -0.0137 

 
FINITE ELEMENT ANALYSIS USING 

ANSYS 
Natural frequencies and mode shapes using 
ANSYS 

 
Modal analysis is carried out using ANSYS to 

investigate the dynamic characteristics of the two-
stage isolation system. In the two-stage system of 
isolation, a total of 14 spring elements have been used, 
wherein the foundation, raft and mounts have been 
simplified to three spring elements. The first stage of 
mounts connects the base and the raft whereas the 
second stage connects the raft to the prime movers. To 
realize the FEM, a hybrid of elements was utilized, so 
that there is a balance between computation time and 
detail level for the representation of the physical 
configuration. The rigid foundation was modelled 
using the MPC 184 beam link element while the parts 
that rotate, such as machines were modelled using the 
MPC 184 joint element. For the isolation system, the 
combination of COMBIN14 elements was used to 
model springs and dampers. This meshing strategy 
was selected to balance computational efficiency with 
the level of detail required for an accurate 
representation of the system. Following the approach 

of the MATLAB model, both the raft and the machines 
were treated as rigid bodies in the FEM model, and the 
geometry and stiffness parameters of the isolators 
were kept consistent. 

 
This assumption ensured that the FEM model 

and MATLAB model were directly comparable, 
producing similar results while focusing on the 
primary objective of evaluating the vibrational 
behavior of the system with two-stage isolation. 

 

 

 

 

 
Figure 7. Mode shape corresponding to (a) bounce 
M1 bounce (b) M2 Bounce (c) M1 Rolling (d) M1 
Pitching (e) M2 Rolling (f) M2 Pitching (g) Raft 
Bounce (h) Raft Pitching (i) Raft Rolling. 

 
The results of the modal analysis, including the 

modal frequencies, are summarized in Table 6, while 
the corresponding mode shapes are displayed in Figure 
7. These computational results from ANSYS are then 
compared with results obtained from MATLAB and 
experimental modal analysis, providing a 
comprehensive evaluation of the system's dynamic 
performance. 
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Table 6. Natural frequencies and corresponding mode 
shapes (ANSYS). 

Orders Value of frequency (Hz) Vibration mode 
1 5.9069 M1 Bounce 
2 6.4554 M2 Bounce 
3 7.6932 M1 Rolling 
4 7.7491 M1 Pitching 
5 8.3789 M2 Rolling 
6 8.4200 M2 Pitching 
7 20.475 Raft Bounce 
8 22.015 Raft Pitching 
9 24.713 Raft Rolling 

 
Harmonic analysis using ANSYS 

Definition of harmonic analysis: any sustained 
cyclic loads will produce a sustained cyclic response 
in a structural system. Harmonic response analysis 
gives the ability to predict the sustained dynamic 
behavior of any structure. It determines the steady 
state response of a linear structure to loads that vary 
sinusoidal with time. This calculates the structure's 
response at several frequencies and obtains a graph of 
some response quantity versus frequency. The two-
stage isolation system is modelled with the foundation, 
raft, and mounts as springs and base. The first stage of 
mounts connects the foundation and raft. The second 
stage of mounts connects the raft and machines. The 
mounts are modelled using spring elements. The total 
spring elements on two-stage isolation are 14. The 
mode Superposition method of Harmonic analysis is 
performed on Raft mounted isolation system in fixed 
conditions. In this analysis, a load of 1000 N is applied 
on (i) Machine-1 only (Figure 8) (ii) Machine-2 only 
(Figure 9) (iii) two Machines (Figure 10). Frequency 
response of Raft, Machine-1 and Machine-2 are taken 
for these conditions. 

 

 

 

 

 

 
Figure 8. Frequency response of Raft: (a) Bounce (b) 
Roll (c) Pitch, Machine-1: (d) Bounce (e) Roll (f) Pitch 
and Machine-2: (g) Bounce (h) Roll (i) Pitch; when 
Machine-1 having excitation force (ANSYS). 

 

 

 

 
Figure 9. Frequency response of Raft: (a) Bounce (b) 
Roll (c) Pitch, Machine-1: (d) Bounce (e) Roll (f) Pitch 
and Machine-2: (g) Bounce (h) Roll (i) Pitch when; 
Machine-2 having excitation force (ANSYS). 
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Figure 10. Frequency response of Raft: (a) Bounce (b) 
Roll (c) Pitch, Machine-1: (d) Bounce (e) Roll (f) Pitch 
and Machine-2: (g) Bounce (h) Roll (i) Pitch; when 
Machine-1 and Machine-2 having excitation force 
(ANSYS). 
 

Maximum and minimum amplitudes at natural 
frequencies of the raft-mounted system are obtained 
corresponding to positive and negative force, 
respectively and values are listed in Table 7. 

 
Table 7. Maximum and minimum amplitudes of raft 
mounting system at mode frequencies (ANSYS). 

Mode Number Maximum 
Displacement (m) 

Minimum 
Displacement (m) 

1 0.0298 -0.02484 

2 0.0592 -0.06210 

3 2.733×10−15 -2.423×10−16 

4 0.0277 -0.01361 

5 4.3772×10−15 -7.101×10−15 

6 0.0317 -0.04040 

7 0.0118 -0.06210 

8 2.013×10−18 -7.101×10−15 

9 0.0089 -0.04040 

 
EXPERIMENTAL ANALYSIS 

 
Experimental testing involves artificially 

exciting the structure with a specially designed impact 
hammer with an inbuilt piezo-sensor. The tip used to 
excite the structure is very specific for different 
structures; rubber tip can excite frequencies up to 500 
Hz, plastic tip up to 1000 Hz and steel up to 5 kHz; 
choosing a suitable tip plays a vital role in proper 
excitation of the structure. Once the structure is 
suitably excited by the impact hammer, the responses, 
i.e., structural vibration due to it, are acquired using an 
accelerometer. The output of the sensors is recorded in 
the FFT analyser. These received signals are processed 
to get the frequency response function (FRF). The 
block diagram of the test method is shown in Figure 
11. 

 
Figure 11. Block diagram of impact hammers test 

method. 
 

The experiment utilizes a comprehensive 
instrumentation setup, including a LAN-XI data 
collector and analyzer (type 3050-A-060) with a 51.2 
kHz frequency range and Type 2831-A battery module, 
supported by Pulse Software (Type 7700) for FFT, 
CPB (1/n-octave), and overall level analysis, capable 
of simultaneous measurement of exponential, linear, 
impulse, and peak levels. An impact hammer (8208 
B&K type) with 0.23 mV/N sensitivity and a 
measuring range of 22,100 is used, along with a 
piezoelectric accelerometer (10.13 mV/m/s² 
sensitivity, 0–10 kHz frequency range), Nexus power 
amplifier, Microdot cable, and a display unit. The 
experimental setup, shown in Figure 12, features a 
rigidly fixed foundation connected to a raft through a 
two-stage mounting system: the first stage links the 
foundation to the raft, and the second stage connects 
the raft to the machine. The impact hammer test 
procedure follows this setup to evaluate system 
responses effectively. 

 
The experimental set-up is placed on the 

foundation, fixed to the ground with hexagonal nuts 
and bolts. Accelerometers are placed on the raft and 
machines that generate an electric charge when 
mechanically stressed or compressed due to the 
vibration induced by the raft and machines. The raft 
and machines are set into vibration with force 
generated by hitting with the impact hammer 
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individually. The electric signal proportional to the 
acceleration is generated within the accelerometer, 
which forms the input to the conditioning amplifier. 
Condition amplifier amplifies the signal produced 
with a specific gain set into the system. The output 
from the conditioning amplifier is fed into the signal 
analyzer to convert the analogue signal for time to 
frequency domain conversion. The output is 
windowed in the range of interest (0-200 Hz) as our 
modal frequencies are within the limit. The output is 
the plot between frequency vs. acceleration at the X-
axis and Y-axis, respectively. The foundation is rigidly 
fixed on the floor with hexagonal nuts and bolts. It is 
excited by an impact hammer (having built-in sensors 
to measure the applied force) on the foundation's outer 
surface. Simultaneously, response is measured with 
accelerometers at the excitation point. The measured 
force and response signal is processed to get the FRF 
(Frequency Response Function) and phase which 
gives the modal frequencies of the foundation. The 
frequency domain acceleration response of machine 1, 
machine 2, and raft obtained from the experimental 
test is shown in Figure 13.  

 

 
Figure 12. Experimental setup. 

 

 

 
Figure 13. Frequency domain acceleration response of 
(a) machine 1, (b) machine 2, (c) raft (Experimental) 
 

RESULTS & DISCUSSION 
The modal analysis for raft mounting system is 

performed in ANSYS, MATLAB. The system's modal 
frequencies are obtained experimentally using the 

impact hammer method. The results are shown in 
Table 8, where natural frequencies obtained from 
MATLAB, ANSYS and experiment are denoted as  
𝑓𝑓𝑛𝑛𝑛𝑛  , 𝑓𝑓𝑛𝑛𝑛𝑛 , and 𝑓𝑓𝑛𝑛𝑛𝑛  respectively; while % Error 
between MATLAB & ANSYS, MATLAB & 
Experiment, and ANSYS & Experiment are denoted as 
%𝐸𝐸𝐸𝐸(𝑀𝑀 − 𝐴𝐴) , %𝐸𝐸𝐸𝐸(𝑀𝑀 − 𝐸𝐸),  and %𝐸𝐸𝐸𝐸 (𝐴𝐴 − 𝐸𝐸) 
respectively.  

 
The results from MATLAB and ANSYS align 

closely due to accurate modeling assumptions. A little 
higher discrepancy between the simulated and 
experimental results highlights the real-world effects 
like imperfections in setup and environmental factors. 
Although ANSYS uses Finite Element Analysis (FEA), 
which is generally more precise due to its spatial 
discretization, errors persist. For example, the 4th 
mode has a 16.97% error. The errors could be due to 
mesh resolution or mesh density and the element type 
in ANSYS may not completely capture the system's 
dynamics. A refined mesh can be used for simulation 
with a higher hardware configuration in future which 
is a limitation at the time of carrying the work. Also, 
the experimental setup may have constraints or forces 
that differ slightly from those modeled. The larger 
error values (e.g., 19.07% for the 6th mode) indicate 
significant differences between the MATLAB 
simulations and experimental conditions. Factors like 
ambient disturbances, imperfect material properties, or 
non-uniform boundary conditions during the 
experiment can contribute to this error. Additionally, 
MATLAB calculations might have assumed ideal 
conditions (e.g., linear material behavior or perfect 
isotropy) that don't fully represent the experimental 
setup. 

 
Table 8. MATLAB, ANSYS and Experimental natural 
frequencies and % Errors. 

Mod
e No. 

𝑓𝑓𝑛𝑛𝑛𝑛 
(Hz) 

𝑓𝑓𝑛𝑛𝑛𝑛 
(Hz) 𝑓𝑓𝑛𝑛𝑛𝑛 (Hz) %𝐸𝐸𝐸𝐸𝑀𝑀−𝐴𝐴 %𝐸𝐸𝐸𝐸𝑀𝑀−𝐸𝐸 %𝐸𝐸𝐸𝐸𝐴𝐴−𝐸𝐸 

1 5.924 5.9069 5.0 0.29 15.60 15.35 

2 6.459 6.4554 5.5 0.06 14.85 14.80 

3 8.420 8.4200 9.5 0.456 12.81 12.82 

4 20.49 20475 17 0.077 17.03 16.97 

5 22.02 22.01 18.50 0.032 15.99 15.96 

6 24.71 24.71 20 0.0084 19.07 19.07 

 

* 𝑓𝑓𝑛𝑛𝑛𝑛 ,  𝑓𝑓𝑛𝑛𝑛𝑛,  and 𝑓𝑓𝑛𝑛𝑛𝑛  denote Natural frequencies 
obtained from MATLAB, Ansys, and Experiment 
respectively. %𝐸𝐸𝐸𝐸𝑀𝑀−𝐴𝐴 , %𝐸𝐸𝐸𝐸𝑀𝑀−𝐸𝐸 , and  %𝐸𝐸𝐸𝐸𝐴𝐴−𝐸𝐸   
denote percentage Error between Matlab & Ansys, 
between Matlab & Experiment, and between Ansys & 
Experiment respectively.  
 
Table 9. Values of M-1, M-2 and Raft response in 
Harmonic analysis from ANSYS and MATLAB. 
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Mode 
no. 

Mode 
shape 

Displacement 
response in 
ANSYS (m) 

Displacement 
response in 
MATLAB (m) 

% 
Error  

1 M1 B 0.0298 0.0297 0.3367 
2 M2 B 0.0592 0.0590 0.3389 
3 M1 R 2.733×10−15 9.2490×10−17 0.28 
4 M1 P 0.0277 0.0227 0 
5 M2 R 4.3772×10−15 1.0383×10−17 4.2 
6 M2 P 0.0317 0.0317 0 
7 Raft B 0.0118 0.0118 0 
8 Raft P 2.013×10−18 2.013×10−18 0 
9 Raft R 0.0089 0.0089 0 

B: Bounce; R: Rolling; P: Pitching 
 
Table 9 shows that the modal frequencies 

obtained from MATLAB and ANSYS are almost equal, 
and the maximum error obtained is about 0.456. It 
shows that the code developed for the system is 
acceptable. However, the results obtained from the 
experiment are comparable with the software results. 
The variation of results is due to the non-ideal 
conditions and the maximum error is 19%. The error 
is also due to external disturbances in the ambience 
which influence the results. Harmonic analysis for the 
raft mounting system is performed in the 0-30 Hz 
frequency range in ANSYS and MATLAB. The values 
of the response of harmonic analysis and the responses 
obtained from MATLAB and ANSYS are almost 
tallying, and the maximum error is 0.338%. 

 
CONCLUSIONS AND FUTURE SCOPE 

 
This study provides a framework for optimizing 

two-stage raft-mounted systems, supported by 
numerical and experimental analyses for improved 
vibration isolation. The equations of motion, derived 
via a matrix methodology, are applicable to systems 
with any number of isolators in arbitrary 
configurations. Using MATLAB and ANSYS, 
eigenvalues (natural frequencies) and eigenvectors 
(mode shapes) were calculated and validated against 
experimental modal testing, showing excellent 
agreement. Varying raft mass demonstrated its effect 
on natural frequencies. Forced vibration analysis 
under harmonic excitation also yielded consistent 
results between FEA and MATLAB, confirming the 
accuracy of harmonic response predictions. 

 
Results revealed significantly reduced vibration 

responses for the two-stage system compared to 
single-stage systems, with displacement amplitudes as 
low as 0.0089 m at higher frequencies, demonstrating 
superior isolation. Recommendations include placing 
isolators near the center of mass and tuning stiffness to 
the system’s natural frequencies to minimize 
resonance. These findings highlight the system's 
applicability in fields demanding strict vibration 
control, such as naval shipbuilding, precision 
manufacturing, and aerospace engineering. 
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