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ABSTRACT 

 
The challenge of Vertical-Axis Wind Turbines 

(VAWT) is to extract the maximum power from wind. 
Therefore, the best modeling should take into account 
all elements constituting the turbine. In this work, both 
the dynamic model for one stage straight bevel gear 
and the aerodynamic model for VAWT are developed. 
For the first, we developed a lumped-mass dynamic 
model with 14 degrees of freedom. For the second, the 
actuator disk theory was used and leads to torque mod-
eling. The aim of this study is to analyze the dynamic 
behavior of VAWT with variable aerodynamic excita-
tion in the presence of a gearing system. Thus, the 
turbine is subject to external and internal excitations. 
The main factors of these excitations are the variability 
of the aerodynamic torque and the fluctuation of the 
gear mesh stiffness. Using the step-by-step time 
integration method (Newmark algorithm), dynamic 
equation was resolved. From frequency and time 
domains, the dynamic response in each bearing shows 
the persisting influence of gear mesh and wind 
fluctuation. 
 

INTRODUCTION 
 

Wind turbine is used to convert wind energy into 
electrical or mechanical energy. It can be divided into 
two groups of turbines, Horizontal Axis Wind 
Turbines (HAWT) and Vertical Axis Wind Turbines 
(VAWT). The VAWT attract many researchers for 
their benefits for domestic applications. Particularly, 
they have blades with uniform untwisted section, 
which makes them easy to manufacture. In addition, 
almost all the components of the mechanical power 
generation equipment are located at the ground levels, 
which facilitates their maintenance. The most apparent 
 
 
 
 

advantage of VAWT is their ability to operate in all 
wind direction without any yawing mechanism. 

Wind speed variation is the main source of 
power fluctuating. Among the models found in the 
literature, the work of Abboudi et al. (2011) which 
introduces empirical approach to estimate the steady 
power coefficient. In fact, this is far from the reality 
where wind turbines are generally exposed on 
randomly varied wind speed. In addition, Malcolm 
(1988) and Paul (1984) in their works studied the 
dynamic response of vertical axis wind turbine 
subjected to turbulent flow whose stochastic wind 
model is based on the Kaimal spectra (Paul, 1984; 
Chad et al., 2014; Giuseppe, 2012; Pedro, 2003). Other 
researchers modeled the wind as a deterministic form 
by sums of several harmonics like the work of Ridha 
et al. (2013). 

The literature is rich in theoretical and computa-
tional models achieved on aerodynamic modeling for 
VAWT. The most well-known models can be classi-
fied into two approaches. The first, called 
Computational Fluid Dynamics model (CFD), 
presents a numerical simulation used by many 
researchers like Marco (2011) to predict the perfor-
mance of Darrieus wind turbine. The second category 
is based on the momentum theory, which presents an 
analytical investigation, and it includes three main 
mathematical models that are respectively: the double-
multiple streamtube model, the Vortex model and the 
Cascade model. Each of these models has its strengths 
and weaknesses and they are well studied by Islam et 
al. (2008) and Asress et al. (2013). They analyzed the 
aerodynamic behavior of straight bladed VAWT using 
a comparative study between these models which are 
very expensive and become invalid in high solidity and 
high-speed rotation. Hansen et al. gives also a review 
of the works done by applying, on wind turbine rotors, 
the simple aerodynamic Blade Element Momentum, 
CFD, vortex and panel methods Hansen (2006, 2008). 

In VAWT, the gearing mechanical system is 
used to transmit power from the input to the generator. 
However, several researchers have studied the 
dynamic behavior of mechanical systems with only 
internal excitation induced by the periodic variation of 
the mesh stiffness Khabou et al. (2011). Driss et al. 
(2014) presents the model of two-stage straight bevel 
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gear system excited with only the periodic fluctuations 
of the gear meshes' stiffness. In addition to this 
research, there are other works in literature in which 
the bevel gear system transmission are modeled by a 
lumped masses spring parameters. Fujii et al. (1995) 
analyzed the dynamic behavior of straight bevel gear 
supported on angular bearings and tapered roller. Also, 
Li et al. (2003) studied the dynamic response of a 
spiral bevel-geared rotor-bearing system. Chang-jian 
(2011) studied the nonlinear dynamic behavior of 
bevel-gear system. Y. Wang et al. (2001) developed a 
new approach based on the finite element theory. 

 
Fig. 1. Vertical axis wind turbine 

 
In this paper we present the dynamic behavior 

of the one-stage straight bevel gear system used in ver-
tical axis wind turbine and powered by two main 
sources of excitation which are the aerodynamic 
torque fluctuation and the periodic variation of the 
gear meshes' stiffness. 

The bevel gear system is modeled by lumped 
parameters considering shafts and bearings flexibili-
ties. Besides, brief explanation of the aerodynamic 
approach based on coupling the ‘Actuator disk model 
with Blade Element Theory is introduced. The 
dynamic response of the bearing is investigated due to 
numerical simulation with an implicit Newmark algo-
rithm. This work presents a new methodology allow-
ing the coupling between the aerodynamic torque fluc-
tuation and the bevel gear lumped parameter 
models. Thus, complete simulation of dynamic 
behavior of VAWT was analyzed and presented. 
 

DYNAMIC MODEL OF VERTICAL 
AXIS WIND TURBINE 

 
Figure 1 shows the whole structure and ordinary 

mechanical transmission used in vertical axis wind 
turbine. The aerodynamic part includes the wind speed 

excitation V(t) acting on three straight-bladed Darrieus 
rotor. Resulting torque AT(t) is transmitted to the 
generator via a Speed-up gearbox constituted by the 
one-stage bevel gear. 

Figure 2 shows the dynamic model based on 
lumped parameter to achieve the study of dynamic 
behavior of one-stage straight bevel gear system. This 
model includes two blocks. The first block is made up 
of the Darrieus rotor modeled by the mass (11) linked 
to the bevel gear (12) via a shaft with torsional rigidity 
Kθ1. The second block is composed of the bevel gear 
(21), the receiving wheel (22) and the second shaft 
with torsional rigidity Kθ2. The bevel gear (12) is 
linked to the bevel gear (21) via teeth mesh stiffness 
K(t). Each block is supported by a flexible bearing 
with different traction–compression stiffness Kxi, Kyi, 
Kzi and bending stiffness KΦi, Kψi. 

 
Fig. 2. Dynamic model of one-stage straight bevel 

gear system. 
 

EQUATION OF MOTION 
 

The equation of motion describing the dynamic 
behavior of the system was established using the 
formalism of Lagrange and it is presented in the 
following matrix form: 
[𝑀𝑀]{�̈�𝑞(𝑡𝑡)} + [𝐶𝐶]{�̇�𝑞(𝑡𝑡)} + ([𝐾𝐾𝑆𝑆] + [𝐾𝐾(𝑡𝑡)]){𝑞𝑞(𝑡𝑡)} =
{𝐹𝐹(𝑡𝑡)}           (1) 
Where {𝑞𝑞(𝑡𝑡)} is the generalized coordinate vector of 
the model, defined by: 

{𝑞𝑞(𝑡𝑡)} = �
𝑥𝑥1,𝑦𝑦1,, 𝑧𝑧1, 𝑥𝑥2,𝑦𝑦2, 𝑧𝑧2,𝜙𝜙1,𝜓𝜓1,𝜙𝜙2,𝜓𝜓2,

𝜃𝜃11,𝜃𝜃12,𝜃𝜃21,𝜃𝜃22
�
𝑇𝑇

   (2) 

{xi, yi, zi} are linear displacements of bearing in each 
blocs (i=1:2), {ϕi,ψi} are angular displacements of the 
bearing following X and Y respectively and {θ1i,θ2i} 
are angular displacements of the wheel and gear 
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following Z direction (i=1:2). 
[𝑀𝑀]is the total mass matrix, expressed by: 

[𝑀𝑀] = �
[𝑀𝑀𝐿𝐿] 0

0 [𝑀𝑀𝐴𝐴]�               (3) 

[𝑀𝑀𝐿𝐿] = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[𝑚𝑚1,𝑚𝑚1,𝑚𝑚1,𝑚𝑚2,𝑚𝑚2,𝑚𝑚2]         (4) 

[𝑀𝑀𝐴𝐴] = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 �
𝐼𝐼11𝑥𝑥 + 𝐼𝐼12𝑥𝑥, 𝐼𝐼11𝑦𝑦 + 𝐼𝐼12𝑦𝑦 , 𝐼𝐼21𝑥𝑥 +
𝐼𝐼22𝑥𝑥, 𝐼𝐼21𝑦𝑦 + 𝐼𝐼22𝑦𝑦 , 𝐼𝐼11, 𝐼𝐼12, 𝐼𝐼21, 𝐼𝐼22

�    (5) 

mi present the mass of each block. I11, I12, I21 and I22 
are respectively the inertia moment of the drive wheel 
11, the bevel gears 12 and 21 and the receiving wheel 
22. I11x, I12x, I21x, I22x and I11y, I12y, I21y, I22y are the 
inertias of these elements following X and Y 
respectively. 
[𝐶𝐶] is the proportional damping matrix (Khabou et al., 
2011; Srikanth et al., 2015; Wilson, 1980; Closs, 2015). 
It is determined from the mass and stiffness matrix 
multiplied by the damping constants α and β. Where α 
and β are Rayleigh coefficients, α for mass propor-
tional damping and β for stiffness proportional damp-
ing. These constants can be evaluated by assuming 
critical damping with natural frequencies of first and 
second modes of the system. 
[𝐶𝐶] = 𝛼𝛼[𝑀𝑀] + 𝛽𝛽[𝐾𝐾𝑠𝑠]          (6) 
where 𝛼𝛼 = 0.05𝑑𝑑𝑎𝑎𝑑𝑑𝛽𝛽 = 10−5 
[Ks] is the average stiffness matrix of the structure 
defined by: 

[𝐾𝐾𝑠𝑠] = ��𝐾𝐾𝑝𝑝� 0
0 [𝐾𝐾𝜃𝜃]

�       ( 7 ) 

�𝐾𝐾𝑝𝑝� = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝐾𝐾𝑥𝑥1,𝐾𝐾𝑦𝑦1,𝐾𝐾𝑧𝑧1,𝐾𝐾𝑥𝑥2,𝐾𝐾𝑦𝑦2,𝐾𝐾𝑧𝑧2�        (8) 
0 0 0 0 0 0 01

0 0 0 0 0 0 01
0 0 0 0 0 0 02
0 0 0 0 0 0 02
0 0 0 0 0 01 1
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{𝐹𝐹(𝑡𝑡)}  is the external excitation force and it is 
expressed as 
{𝐹𝐹(𝑡𝑡)} = {0 0 0 0 0 0 0 0 0 0 𝐴𝐴𝑇𝑇(𝑡𝑡) 0 0 − 𝑅𝑅𝑇𝑇(𝑡𝑡)}𝑇𝑇 
                                        (10) 
Where 𝑅𝑅𝑇𝑇(𝑡𝑡)  is the electromagnetic torque that 
expresses the generator effect and 𝐴𝐴𝑇𝑇(𝑡𝑡)  is the 
aerodynamic torque. [𝐾𝐾(𝑡𝑡)]  is the mesh stiffness 
matrix defined by Driss et al. (2014): 
[𝐾𝐾(𝑡𝑡)] = 𝑘𝑘(𝑡𝑡)⟨𝐿𝐿⟩𝑇𝑇 . ⟨𝐿𝐿⟩                      (11) 
k(t) is mesh stiffness fluctuation and ⟨𝐿𝐿⟩ presents the 
geometric parameters of the dynamic model, Driss et 
al. (2014). 

Figure.3 describes the variation of the mesh 
stiffness, which has a periodic behavior with a 
constant period. Then, the mesh stiffness spectrum is 
presented, and we note the presence of meshing 

frequencies ‘fe1’ corresponding to the internal 
excitation of the bevel gear system obtained from 
equation 12: 

1 1001 60
Z Nf Hze = ≈                   (12) 

Where Z1 is the number of gear teeth and N is the rotor 
speed.  

In reality, the fluctuation of mesh stiffness is due 
to periodic variation of the teeth number in contact 
during meshing period Te. Indeed, mesh stiffness is 
maximal during the time ((ε-1) Te) and minimal during 
the time ((2-ε) Te). 

1
1

Te Z fe
=                    (13) 

Where fe is the frequency of rotation and ε is the 
meshing contact ratio. 

 

 
Fig. 3. Periodic meshes stiffness fluctuation and the 

corresponding spectrum. 
 

AERODYNAMIC TORQUE 
MODELING 

 
In this section, the aerodynamic model used to 

calculate the performance of the Darrieus rotor is 
introduced; it is based on the Actuator Disk Theory 
(Hansen, 2006; Hansen, 2008; Khabou et al., 2011). 
Wind turbine power production is strongly related to 
the interaction between the blade rotor and the wind, 
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which presents the external excitation of the wind 
turbine. 

In this work, the time fluctuation of wind speed 
is modeled by deterministic form, as a sum of several 
harmonics. The wind speed is written as follows 
(Mirecki, 2005): 
𝑉𝑉(𝑡𝑡) = 14 + 2 𝑠𝑠𝑑𝑑𝑎𝑎(𝜔𝜔𝑡𝑡) − 1.75 𝑠𝑠𝑑𝑑𝑎𝑎(3𝜔𝜔𝑡𝑡) +
1.5 𝑠𝑠𝑑𝑑𝑎𝑎(5𝜔𝜔𝑡𝑡) − 1.25 𝑠𝑠𝑑𝑑𝑎𝑎(10𝜔𝜔𝑡𝑡) + 𝑠𝑠𝑑𝑑𝑎𝑎(30𝜔𝜔𝑡𝑡) +
0.5 𝑠𝑠𝑑𝑑𝑎𝑎(50𝜔𝜔𝑡𝑡) + 0.25 𝑠𝑠𝑑𝑑𝑎𝑎(100𝜔𝜔𝑡𝑡)            (14) 
where ω is the angular speed 

The relative flow velocity 𝑊𝑊(𝑡𝑡) can be written 
as a function of the wind velocity 𝑉𝑉(𝑡𝑡) [9] 

𝑊𝑊(𝑡𝑡) = �𝑉𝑉𝑐𝑐2 + 𝑉𝑉𝑛𝑛2

= 𝑉𝑉(𝑡𝑡)��(1 − 𝑑𝑑) 𝑠𝑠𝑑𝑑𝑎𝑎 𝜃𝜃�2 + �(1 − 𝑑𝑑) 𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃 + 𝜆𝜆(𝑡𝑡)�2 
                                       (15) 

�𝑉𝑉𝑐𝑐 = 𝑅𝑅𝜔𝜔 + 𝑉𝑉𝑎𝑎 𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃
𝑉𝑉𝑛𝑛 = 𝑉𝑉𝑎𝑎 𝑠𝑠𝑑𝑑𝑎𝑎 𝜃𝜃

                     (16) 

where Vc and Vn are the chordal velocity component 
and the normal velocity component respectively. R is 
the radius of the turbine and θ the azimuth angle. 
Va is the axial velocity (induced velocity) and can be 
expressed as: 

𝑉𝑉𝑎𝑎 = 𝑉𝑉(𝑡𝑡)(1 − 𝑑𝑑)                         (17) 
where ‘a’ is the axial induction factor (Asress, 2013). 
λ(t) is the Tip Speed Ratio, defined as the ratio between 
the tangential speed at blade tip and the wind speed 
𝑉𝑉(𝑡𝑡) . It can be expressed as (Asress et al., 2013; 
Prathamesh et al., 2013): 

𝜆𝜆(𝑡𝑡) = 𝜔𝜔𝜔𝜔
𝑉𝑉(𝑡𝑡)

                               (18) 

The angle of attack α is defined as the angle 
between the blade chord and relative velocity as shown 
in (Figure.4). In this Fig all possible positions of the 
blade are presented. 

The local angle of attack can be expressed in 
terms of the azimuth angle by Hansen (2008):  

𝛼𝛼(𝜃𝜃) = 𝑡𝑡𝑑𝑑𝑎𝑎−1 �𝑉𝑉𝑛𝑛
𝑉𝑉𝑐𝑐
� = � (1−𝑎𝑎) 𝑠𝑠𝑠𝑠𝑛𝑛 𝜃𝜃

(1−𝑎𝑎) 𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃+𝜆𝜆
�       (19) 

According to equation 18, at θ=0° azimuth 
position and (θ=180°) position, the angle of attack α is 
set to zero, since the symmetrical airfoil are used. Thus, 
at this point, only a drag force exists (Habtamu et al., 
2011). 𝛼𝛼 increases with the increase of the azimuth 
angle which causes the rise in the lift force. This lift 
force is perpendicular to the resultant wind direction. 
 

 
Fig. 4. Flow velocities and forces in the Darrieus rotor 
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Using the Blade-Element Momentum (BEM) 
theory (Asress et al., 2013), the normal and tangential 
forces acting in a single blade at azimuth location θ are 
established. These forces can be expressed as 

𝐹𝐹𝑁𝑁𝑖𝑖(𝜃𝜃) =
1
2
𝜌𝜌𝐶𝐶𝑁𝑁𝑊𝑊2ℎ𝑐𝑐 

𝐹𝐹𝑇𝑇𝑖𝑖(𝜃𝜃) = 1
2
𝜌𝜌𝐶𝐶𝑇𝑇𝑊𝑊2ℎ𝑐𝑐                     (20) 

Where h is the blade height, c is the blade chord length 
and ρ is the air density. 

The tangential force coefficient CT and normal 
force coefficient CN are defined according to (Islam et 
al., 2008; Asress et al., 2013) as: 
𝐶𝐶𝑇𝑇 = 𝐶𝐶𝐿𝐿 𝑠𝑠𝑑𝑑𝑎𝑎 𝛼𝛼 − 𝐶𝐶𝐷𝐷 𝑐𝑐𝑐𝑐𝑠𝑠 𝛼𝛼 
𝐶𝐶𝑁𝑁 = 𝐶𝐶𝐿𝐿 𝑐𝑐𝑐𝑐𝑠𝑠 𝛼𝛼 + 𝐶𝐶𝐷𝐷 𝑠𝑠𝑑𝑑𝑎𝑎 𝛼𝛼     (21) 

CL and CD are respectively the lift coefficient 
and the drag coefficient for angle of attack; they are 
expressed in terms of the local Reynolds number and 
the angle of attack (David, 1994). 

The total tangential forces applied to the rotor 
are the sum of the forces acting on the blades. 

As shown in Figure 5, the resulting force can be 
composed with the lift force (FL) and drags force (FD) 
or with the normal and tangential components which 
are FN and FT respectively. 

 
Fig. 5. Force diagram for a single blade of a Darrieus 

turbine 

The torque 𝐴𝐴𝑇𝑇𝑠𝑠(𝜃𝜃) produced by a single blade 
(i) is calculated using the tangential force (Asress et al., 
2013): 
𝐴𝐴𝑇𝑇𝑠𝑠(𝜃𝜃) = 𝐹𝐹𝑇𝑇𝑠𝑠(𝜃𝜃)𝑅𝑅          (22) 

And the total produced torque (for VAWT with 
n blades) is obtained from equation 23 
𝐴𝐴𝑇𝑇 = ∑ 𝐴𝐴𝑇𝑇𝑠𝑠(𝜃𝜃)𝑛𝑛

𝑠𝑠=1 = ∑ 𝐹𝐹𝑇𝑇𝑠𝑠(𝜃𝜃)𝑅𝑅𝑛𝑛
𝑠𝑠=1

 
       (23) 

The power performance parameter of the wind 
turbine is calculated from the resulting torque 𝐴𝐴𝑇𝑇(𝑡𝑡), 
it can be expressed by (Islam et al., 2008): 

𝑃𝑃(𝑡𝑡) = 𝐴𝐴𝑇𝑇(𝑡𝑡).𝜔𝜔 = 𝐶𝐶𝐶𝐶 1
2
𝜌𝜌𝐴𝐴𝑉𝑉(𝑡𝑡)3        (24) 

A is the swept area of the turbine and Cp is the power 
coefficient. 

The shape of the swept area depends on the rotor 
configuration. For HAWT, the swept area has circular 
shape, while for a straight-bladed VAWT, the swept 
area has a rectangular shape which is calculated as 
(Habtamu et al., 2011; Federico, 2012): 

A=2.R.h                     (25) 
 

DYNAMIC RESPONSE FOR ONE-
STAGE STRAIGHT BEVEL GEAR 

SYSTEM 
 

In order to study the dynamic behavior of bevel 
gear system used in vertical axis wind turbine and 
powered by the aerodynamic torque in addition to the 
periodic variations of mesh stiffness, we use numerical 
simulation based on the implicit Newmark method. 

In the equation of motion (1) the variation of 
mesh stiffness was introduced in the first member of 
the equation but the fluctuation of the wind power 
appeared in the second member. Therefore, the 
coupling between the two phenomena exists when 
developing the equality of the two members. 

The technological and dimensional parameters 
of the bevel gear transmission are presented in Table 
1. Details of the vertical axis wind turbine are shown 
in Table 2.  

Table 1. Characteristics of the studied bevel gear 
system 

Number of teeth  18 / 45 
Module(m) 0.004 

Bearing stiffness (N/m) Kx1=Ky1=Kx2=Ky2=2.108, 
Kz1=Kz2=4.108 

Torsional stiffness 
(N/rd/m) Kθ1=Kθ2=3108 

Pressure angle 20α = °  
Contact ratio ε =1.56 
Density (42CrMo4) 7860kg/m3 

 
Table 2. Wind turbine specification 

Type Straight blade Darrieus  
Airfoil profile NACA0018 
Airfoil chord(mm) 480  
Blade length (m) 3.66 
Turbine diameter (m) 4 
Number of blades  3 
Rotor Speed (rev/min) 334 

 
The wind speed vibration and its spectrum are 

shown in Figure.6.  
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Fig. 6. Temporal evolution of the wind speed and the 

corresponding spectrum 
We note the presence of seven frequencies in a band 
[0 600Hz]. These frequencies (fwi) are very important 
since they present an external excitation of the bevel 
gear system. Besides, their effect will be clearly 
apparent in the dynamic response of the VAWT. 

Figure. 7.a. shows the variation of the tangential 
force (FT2) acting on a single rotor blade (blade 2). 
Fig.7.b. shows the aerodynamic torque fluctuations, 
which present a periodic external source of excitation 
to the bevel gear system. It is generated from the total 
tangential force obtained via equation 23. The torque 
fluctuates between the maximum value of 3500N.m 
and the minimum value of 800N.m. 

 

 
Fig. 7. a. Tangential force for one blade; b. Evolution 

of the total aerodynamic torque 

Figure .8 shows the variation of the power 
output function of time, which is related to the 
aerodynamic torque according to equation (24). The 
case considered was run for optimum Cp that is for 
TSR about 5. For such wind conditions, the turbine 

generates its nominal power (Mohammad, 2014). 

 
Fig. 8. Power fluctuation of Darrieus wind turbine for 

TSR =5 
The dynamic responses to non-stationary exci-

tation on the first bearing are presented in Figure.9 and 
Figure.10. In the spectrum, we note that the most 
important peaks are due to wind frequencies fwi. 

 

 
Fig. 9. Temporal and frequency dynamic responses of 

Y- direction 
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Fig. 10. Temporal and frequency dynamic responses 

of Angular displacement Φ 
 

Figure 11 shows the linear displacement and it 
frequency spectrum in the second bearing. Like the 
first bearing, the dynamic response is dominated by 

wind effect. In fact, we don’t find any apparent effect 
of the bevel gear. 

 

 
Fig. 11. Temporel and frequency dynamic responses 

of Angular displacement ψ 

In order to verify the safety condition on teeth, 
we examine the intermesh forces. Figure 12 presents 
the time evolution of intermesh forces, which presents 
the multiplication, at each time ti, the meshing 
stiffness K(t) by the teeth deflection. The 
corresponding spectrum presents both the mesh 
frequency and its harmonics (fei) and the wind 
frequencies (fwi). 

 

 
Fig. 12. Dynamic force fluctuation and the 

corresponding spectrum 
From these numerical results, we conclude that the 
displacement in each bearing is variable and fluctuates 
around an acceptable amplitude. Besides, we remark 
that bearing displacement has the same shape of the 
aerodynamic torque excitation.  
In addition, on the spectrums results, we clearly 
observe the presence of several peaks corresponding 
on the wind frequencies (fwi). In fact, these 
frequencies are more interesting than meshing ones. 
These results are very useful to control the dynamic 
behavior of wind turbines and to initiate maintenance 
tasks when necessary. 
 

CONCLUSIONS 
 

In this paper, a three dimensional model of one-
stage straight bevel gear system is used in a vertical 
axis wind turbine. This model was developed in order 
to study the dynamic response of this kind of gearbox 
subjected to internal and external sources of excitation, 
which are presented by the periodic variation of the 
mesh stiffness and the aerodynamic torque fluctuation 
respectively. The aerodynamic model for the Darrieus-
type straight-bladed vertical axis wind turbines was 
studied using actuator disk theory and Blade-Element 
Momentum (BEM) theory. The simulation of the 
dynamic response was done by a step-by-step time 
integration method (Newmark algorithm). The 
frequency dynamic response clearly shows the 
domination of peaks corresponding to the wind speed 
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frequencies to the detriment of the mesh frequencies.  
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NOMENCLATURE 
 
a: Axial induction factor      
A: Swept area of the turbine  
AT(t): Aerodynamic torque  
ATi: Single blade torque 

 c: Blade chord  
[C]: Proportional damping matrix 
CT: Tangential force coefficient  
CN: Normal force coefficient  
CL and CD : Lift and drag coefficients

 Cp : Power coefficient 
F(t): External force  
fe: Frequency of rotation 
fei: Mesh frequency and its harmonics  
FL and FD: Lift and drag forces  
FN and FT: Normal and tangential forces 
fwi: Wind frequencies  
h: Blade height 
k(t): Teeth mesh stiffness  
I11, I12, I21, I22: Inertia moments  
Kθ1, Kθ2: Torsional rigidities 
Kxi, Kyi, Kzi: Traction–compression stiffness  

KΦi, Kψi: Bending stiffness  
[Ks]: Average stiffness matrix  
[K(t)]: Mesh stiffness matrix  
<L>: Geometric parameters of dynamic model 
[M]: Total mass matrix 
mi: Mass of block i  
N: Rotor speed 
P(t): Power  
q(t): Generalized coordinate vector  
R: Radius of the turbine  
RT(t): Electromagnetic torque  
V(t): Wind speed  
Va: Axial velocity 
Vc: Chordal velocity component  
Vn: Normal velocity component  
W(t): Relative flow velocity 

 xi, yi, zi: Linear displacements of bearing  
Z: Gear teeth number  
α: Angle of attack  
θ: Azimuth angle 
ω: Angular speed 
ε : Meshing contact ratio 
ρ: Air density 
λ(t): Tip Speed Ratio 
φi,ψi,θ1i ,θ2i : Angular displacements  

 
 
 


