
中國機械工程學刊第三十九卷第一期第 113~120 頁(民國一百零七年) 

Journal of the Chinese Society of Mechanical Engineers, Vol.39, No.1, pp 113~120 (2018) 

-113- 

 

Study on Relation Between Noise and Matrix 

Dimension of Data-driven Stochastic Subspace 

Identification Method 
 

 

 

Jun-feng Xin*,Yong-bo Zhang** and Jin-lu Sheng*** 

 

 

 

Keywords: hankel matrix; denoising; data-driven 

subspace identification method 

 

ABSTRACT 

 
As a linear system identification method，the 

data-driven stochastic subspace method can 

effectively obtain modal parameters from the 

structural signal under ambient excitation． The 

noise reduction ability of the method is related 

with its Hankel matrix dimension． The relation 

between the noise and Hankel matrix of 

data-driven subspace identification method was 

introduced theoretically ．  And a verification 

procedure was proposed to justify that the noise 

can be eliminated properly by the data-driven 

subspace identification method with selected 

Hankel matrix． The procedure includes SVD，
stability diagram and finite element result 

( FE) ． The results of numerical study and jacket 

platform vibration test demonstrate that the 

data-driven stochastic subspace identification 

method with non-square Hankel matrix is of better 

capability of denoising and can estimate modal 

parameters with higher accuracy． 

Effective modal identification method can 

obtain the relevant parameters of the structure, 

which can accurately get the basic health status of 

large structures. Many scholars at home and abroad 

(Ewins et al., 1984; Juang et al.;1985; Overschee et 

al., 1993) proposed modal parameter identification 

method based on time-domain response, such as 

time series, random decrement method, the natural 

excitation technique, data-driven stochastic 

subspace method. Among them, the data-driven 

stochastic subspace method is by far one of the 

more advanced modal parameter identification 

methods under environmental incentives. It can 

extract modal parameters of large structures such 

as offshore platforms more accurately. However, 

to determine the Hankel matrix dimension is the 

key to the effective application of this method 

based on Peeters(1999), and different Hankel 

matrix dimensions will result in different 

noise-canceling capabilities of data-driven 

stochastic subspace method(Maia et al., 1997; 

Peter et al.,1996; Li et al.,2011). How to determine 

the dimensions of Hankel matrices? Current 

research on this issue is still rarely reported. 

In response to these problems, we studied the 

theoretical relationship between Hankel matrix 

dimension and the data-driven stochastic subspace 

noise-canceling method, then we proposed  

Hankel matrix dimensions selection method of 

data-driven stochastic subspace identification 

method. And we discussed the relationship 

between data-driven stochastic subspace 

noise-canceling capabilities and different Hankel 

matrix build ways. 

 

MATHEMATICAL THEORY  
 
Data-driven stochastic subspace identification 

method  

 

Under the premise of considering only the 

random noise, the discrete state space equation of 

the vibration system can be expressed as:  

kkk wAxx +=+1            (1)
 

kkk vCxy +=
 

nRxk  is the system state vector in the 
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discrete period time of k  , and n  is the order of 

the system;
nnRA   is discrete state matrix; 

nlRC   is output matrix that describes how the 

internal state is changed into measured values of 

the outside world, l is the number of measuring 

points; 
n

k Rw   is the process noise caused by 

interference and model error ; 
l

k Rv   is the 

measuring noise caused by sensor and other errors. 

Both of the two noises are non-measurable and are 

often assumed to be zero mean, stationary white 

noise in the derivation process. Two noises 

covariance matrix can be expressed as the 

following formula:  
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E  is the mathematical expectation operator;
 

nRQ  n
, 

lRS  n
,

llRX  ; pq
 
is kronecker 

function;
 

1 ( )pq p q = =  , p and q  represents 

different time points;
 

)( 0 qppq = , 

0][ =pwE ， 0][ =pvE
.
Data-driven stochastic 

subspace identification method is discussed in 

detail in reference based on Peeters(1999). 

 
Relationship between Hankel matrix dimension 

selection and noise  

 

P , the projection matrix of data-driven 

stochastic subspace method, can be usually further 

expressed as follows: 
1 2 1 2 1 2
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 (3) 
S represents the true signal; N represents 

noise that needs to be eliminated; i  means 1/2 of 

Hankel matrix row number; j represents the 

columns number of the matrix; m  represents the 

total amount of data. 

After the singular value decomposition (SVD), 

the threshold value (the order mode) is set as n  , 

and the equation (3) is changed into the following 

formular:  
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T

S S S SP U V=  ;
T

N N N NP U V=  ;
i iU R  ;

i jR  ;
j jV R  ;   represents all the 

singular values of the measured signal after 

projection when the decomposition is finished; 

S  is the singular values of true signal after 

projection, on the condition of setting a threshold 

value n . N  is the singular values of noise 

signal after projection, on the condition of  setting 

a threshold value n . 

From formula (4) we can see that singular 

value decomposition can divide the projection 

matrix P  into two unrelated spaces, the true 

signal projection SP  and noise signal projection 

NP . 

The following discussion is focused on the 

relationship between noise projection NP and two 

parameters ,  the dimension number (rows i or 

columns j ) as well as decomposition singular 

value n  of all the measurement signal projection 

P  . 

According to formula (4) we can get formula 

(5) as follows: 
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    (5) 

Since the real signal and the noise is not 

relevant, we can get the following formula: 

    0T T

S N N SP P P P= =           (6) 

According to formula (5) and formula (6) , we 

can get formula (7) as follows: 
T T T

S S N NP P P P P P= +         (7) 

The covariance of the measurement signal, 

the true signal and noise projection are as follows: 

1 TC P P
i

= ， 1 T

s S SC P P
i

= ，
1 T

N N NC P P
i

=   (8) 

So, formula (7) can be rewritten as the 

following formula,  

     S NC C C= +            (9) 

Combining formula (4) and formula (8), the 

formula (9) can be written as follows: 
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                                 (10) 

From formula (8) to formula (10) , we can get the 
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following result: 

2 21 1T T

S S S NV V V V C
i i

 =  +     (11) 

Formula (11) multiplies left by 
TiV and right by 

V  simultaneously on both sides, and the results 

are shown as follows: 
2 2 T

S NiV C V =  +  

  

2 2( ) T

S
N

V V
C

i

 −
=         (12) 

Formula 12 shows that under the premise of the 

same amount of data m , V and S  are 

depending on the number of Hankel matrix 

dimension ( rows number 2i  or columns number 

j , 2 1i j m+ − =  ) and the threshold value  of 

projection matrix singular value decomposition n ; 

 depending on the dimension number of Hankel 

matrix ( rows number 2i  or columns number j , 

2 1i j m+ − =  ) . So, if the threshold value n  of 

the projection singular value decomposition 

unchanged, the dimension number of Hankel 

matrix is the main factor affecting noise NC . 

 
Stabilization diagram 

 

In this paper, the Fourier transform is used as 

the background of the stabilization diagram. The 

stabilization diagram indicates the modal 

identification results under the condition that the 

number of modes order is between 0 to 30 Hz. For 

the same modal, if two adjacent modal 

identification result in a 1% frequency error, while 

the response damping recognition results in a 5% 

error, that is,    
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Then, the recognition result is identified as a stable, 

otherwise unstable based on Li et al.(2011). 

 

 

DATA-DRIVEN STOCHASTIC 

SUBSPACE METHOD---THE METHOD 

OF SETTING AND EVALUATING 

MATRIX DIMENSION NUMBER  
 

 

Normalizing singular value (SVD), 

stabilization diagram and finite element modal 

recognition results (FE), we construct a 

three-dimensional integrated assessment method. 

And each step of the operation flow and function 

are shown in Figure 1. 

 

 

 
 

Fig.1. Operation process of evaluation method 

 

 

HANKEL MATRIX CONSTRUCTION 

PLAN 
 

 

Set the total of data is m ( 2 1+ − =i j m ), 

which studies four Hankel matrix dimension 

number cases (2i/m=2/10， 3/10， 4/10， 5/10) 

respectively . Hankel matrix H is a relatively flat 

non-square one in Case 1 (2i/m=2/10), whereas H 

is a square in Case 4 (2i/m=5/10). So the plan 

shows the process of Hankel matrix change from a 

flat non-square into a square. 

 

 

NUMERICAL EXAMPLES 
 

 

This section will go through five degrees of 

freedom mass - spring - damper system white 

noise excitation test (model shown in Figure 2) to 

study the impact on data-driven stochastic 

subspace noise cancellation capabilities with 

different dimensions of Hankel matrix. The 

effectiveness of combination of SVD, Stabilization 

diagram and FE will be evaluated at the same time. 

 
Five degrees of freedom mass - spring - damper 

system 

 
 

Fig.2. A 5-DOF mass-spring-dashpot system 

Hankel matrix with different dimension 

Comparing identified modal number by SVD 

Comparing the stability of identified modes 

Recognizing the truth of identified modes 

Finding the Hankel matrix with requirement 
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Each unit has the same mass, stiffness and 

damping , and is respectively set to :  mn= 50kg, 

kn= 2.9 *107 N/m， cn= 1000N  s/m . xn is 

displacement, and n = 1, ..., 5. By eigenvalue 

analysis, theoretical values of modal frequencies of 

5 were obtained: 34.499, 100.700, 158.730, 

203.880, 232.520 Hz; theoretical values of modal 

damping ratio of 5 were: 0.003737, 0.010909, 

0.017197, 0.022092, 0.025198 based on Li et 

al.(2011). 

 
White noise excitation loading and data 

acquisition 

 

Gaussian white noise (Figure 3) was used as 

an input, which was generated by the Matlab randn 

function, with mean zero and standard deviation of 

1.006. The white noise was loaded against the 

right-side of the first fixed mass point (Figure 2). 

Vibration response was generated from lsim 

function. 9000 response data were extracted from 

the first fixed mass with a sampling frequency of 

500Hz, as is shown in Figure 4. 

 

 
 

Fig.3. White noise loading 
 

 
 

Fig. 4. Response of mass close to fixed point 

 

Comparison of different cases  

 

First, normalized singular value was used to 

compare the number of modes that was identified 

by different cases.    

 
 

Fig. 5. Normalized singular values in four cases 

 

Normalized singular values (Figure 5) clearly 

shows: When the Hankel matrix transformed 

gradually from flat (Case 1, 2i / m = 2/10) to 

square (Case 4, 2i / m = 5/10), the number of 

model that can be clearly identified by data-driven 

stochastic subspace modal method reduced from 4 

(Case 1, the last larger gap of the red line appeared 

when the horizontal axis is 8) to 1 (Case 4, the last 

larger gap of the purple line appeared when the 

horizontal axis is 2). This shows that during the 

process Hankel matrix tends to square, data-driven 

stochastic subspace noise-canceling capability 

weakened gradually, which results in less modal 

can be identified. 

Next, stability diagram analysis was used to 

compare the stability of modals generated from 

different cases, shown in Figure 6. 

 

 

 
Fig.6. Stability Diagrams for SSI-data in four cases 

(a-d responding to case 1 (2i/m=2/10) to case 4, 

(2i/m=5/10), *stable, o not stable) 
 

   Stability diagram clearly shows the process 
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that the Hankel matrix tends to be square (Figure 6, 

a-d):  

    a. Data-driven stochastic subspace method 

could not identify steadily the fourth modal around 

200Hz and the fifth modal around 230Hz gradually 

(The number of circles that indicates instability 

gradually increased; Peak corresponding linear 

disappeared or was in chaos). This shows that the 

data-driven stochastic subspace noise-canceling 

capability gradually weakened, causing it to 

become less sensitive to weaker modal. 

b. Using data-driven stochastic subspace 

method to estimate the strongest two modes (The 

first modal peak is at around 30Hz range and the 

second modal peak around 100Hz range) gradually 

become unstable (Circle that represents unstable 

gradually replaces asterisks that represents stable). 

This proves that the data-driven stochastic 

subspace method’s ability of de-noising gradually 

weakened, leading to its recognition of the strong 

modal also weakened. 

Finally, true and false of modes identified by 

different cases were determined according to the 

results of the modal finite element analysis (FE). 

Table 1 and Table 2 list the modal frequency and 

damping ratio of different cases. 

 

  

Table 1 and Table 2 show the authenticity of 

the five modes that Case 1 identified. And we can 

also observe from the two tables that: During the 

process that the Hankel matrix changes from 

square (Case 4) to non-square (Case 1) data driven 

stochastic subspace modal parameter estimation 

method gradually accurate estimate especially for 

modal damping ratio. 

In addition, data with different noise levels 

were used and the conclusions obtained were 

consistent with the analysis carried out above. 

In short, numerical examples proved :(1) 

Hankel matrix of data-driven stochastic subspace 

method should be set to a non-square form; (2) the 

SVD, stability diagram and FE combination 

method can effectively evaluate the impact that 

different Hankel matrixes have on the data-driven 

stochastic subspace modal identification 

capabilities. 

 

 

JACKET PLATFORM SHAKING 

TABLE TEST  
 

 

This section will be steel jacket platform 

physics model white noise excitation test to further 

validate the above conclusions. Test program: 

using hydraulic shaker produces white noise 

excitation, at the bottom of the steel jacket 

platforms physical model is loaded (with the x-axis 

and y-axis angle of 45 degrees), to obtain the 

vibration response of the structure data, and then 

compare different data-driven program stochastic 

subspace noise-canceling capability.  

 
Jacket platform physical model and test  

 

The physical model used in the steel jacket 

made in the Y to set up three main beams, X to set 

up two, three layers horizontal cross brace, which 

are located -88cm, 142cm and 188cm at the design 

level crossbars at 88cm to -142cm located at the 

vertical diagonal brace (Figure 7), the size of the 

main components are: the main leg 25 × 2.5mm, 

horizontal struts 16 × 1.5mm, the diagonal brace 

16 × 1.5mm. 

 

 
 

Fig.7. Physical model of jacket platform, white noise 

ground motion loading position and                                              

the sensor A location 
 

 

Table 1. Frequencies estimated in four cases using 

SSI/data 

Mode FE(Hz) Case 1 Case 2 Case 3 Case 4 

1 34.499 34.499 34.183 34.242 34.148 

2 100.700 100.593 101.259 101.295 101.277 

3 158.730 159.108 158.359 158.181 158.633 

4 203.880 204.563 202.828 205.889 - 

5 232.520 232.453 - - - 

Table 2. Damping ratios estimated in four cases using 

SSI/data 

Mode    FE Case 1 Case 2 Case 3 Case 4 

1 0.003737 0.004131 0.008159 0.006852 0.006032 

2 0.010909 0.011083 0.011901 0.008772 0.008942 

3 0.017197 0.017849 0.012354 0.011258 0.006311 

4 0.022092 0.020996 0.041446 0.016069 - 

5 0.025198 0.024856 - - - 
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The first 9 modal steel jacket platform finite 

element model are shown in Table 3, 
 

Table 3. The first nine modal frequencies of FE 

Component Mode Frequecy(Hz) 

1 x-1 17.91 

2 y-1 22.22 

3 ɵ-1 27.31 

4 x-2 43.69 

5 y-2 46.32 

6 ɵ-2 59.71 

7 x-3 135.07 

8 y-3 137.73 

9 ɵ-3 161.84 

 

Hydraulic shaker generate white noise 

excitation, shown in Figure 8. With a sampling 

frequency of 500Hz, A y direction sensor 1024 

data points are extracted (Figure 8). 

 

 
 

Fig.8. Response of sensor A from white noise ground 

motion 

 

Comparison of different cases  

       

With numerical examples considered in the 

analysis process consistent with the normalized 

first singular value comparison of different 

solutions. 

 

 
 

Fig.9. Normalized singular values in four cases in 

jacket platform model test 

 

Normalized singular values (Figure 9) clearly 

shows: When Hankel matrix H tends to square the 

process, stochastic subspace method can identify 

the modal number of data-driven increase. From 4 

(Case 1 (2i / m = 2/10), a large gap in the 

horizontal red line for the final eight when) 

gradually increased to 6 (Case 4 (2i / m = 5/10), 

Purple Line final large gap in the horizontal axis is 

the time 12). This result seems to indicate that the 

square of the Hankel matrix to make data-driven 

stochastic subspace identification more modes, in 

order to confirm this, combined with stability 

diagram below, to continue the analysis. 

 

 
 

Fig.10. Stability Diagrams for SSI-data in four cases 

in jacket platform model test. 

(a-d responding to case 1, 2i/s=2/10 to case 4，2i/s=5/10,  

*stable,o not stable) 
 

With tends square Hankel matrix (Figure 10, a 

to d), from the stability diagram can be observed:  

a. At 30Hz, 50Hz, 130Hz three largest peak, 

data-driven stochastic subspace identification 

results more and more unstable (on behalf of the 

unstable circle gradually increased). 

b. Case 1 (2i / m = 2/10, Fig. `10 (a)) and 

Case 2 (2i / m = 3/10, Figure 10 (b)) can identify 

the four stable modes than other multi-modal 

recognition program, but they differ in the order of 

the fourth mode of recognition: a program 

identified in the fourth-order mode of about 60Hz, 

and the second solution is about 130Hz. 

c. Only. Case 1 (2i / m = 2/10, Figure 10 (a)) 

Analysis and Case 2 (2i / m = 3/10, Figure 10 (b)) 

stability diagram results with normalized singular 

value analysis is consistent: to identify the four 

modes, this phenomenon shows that the need for 
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the proposed second step assessment methods 

(stability diagram analysis). 

In the analysis of the stability diagram, Case 1 

and Case 2 identify a modal too more, but there 

have been inconsistencies in the fourth-order 

modal identification. Thus, we need to identify the 

FE as a reference to identify the authenticity of the 

modes. Table 4 and 5 list the results of the 

assessment of different schemes (modes of order is 

set as 20). 

 

 

        

In Tables 4 and 5, reference result of FE can 

be observed:  

a. Fourth order mode should be around 

torsion mode 63 Hz. The recognition result of Case 

1 (2i / m = 2/10) is correct.  

b. Only Case 1 (2i / m = 2/10) can identify 

about 63Hz fourth modal that proved the 

advantages of a program, and the results show that 

the proposed evaluation method third step (FE 

verification) of necessity.  

In summary, consistent with the analysis 

results jacket platform white noise test and 

numerical tests: raised above assessment method is 

effective and non-square matrix of Hankel make 

data-driven stochastic subspace have more 

capacity and higher noise-canceling modes 

recognition accuracy. 

 

 

CONCLUSIONS  
 

 

A key requirement to the success of 

accurately estimating modal parameters from noisy 

measurements is a proper separation of the system 

information (signal) and noise from the measured 

data for data-driven stochastic subspace of Hankel 

matrix dimension. In this paper, SVD, stability 

diagrams and FE were combined to choose the 

Hankel matrix dimension number of data-driven 

stochastic subspace method. First SVD was used to 

compare modal numbers of different Hankel 

matrix identified by data-driven stochastic 

subspace method. And the Hankel matrix that can 

identify more modal is selected. Then stabilization 

diagram was used to compare modal stability of 

different Hankel matrix and choose the most stable 

one. Finally, the result of FE was used as a 

reference to determine the true stable model and 

then further filter out the Hankel matrix with the 

most genuine modal number. 

Based on this method, numerical analysis and 

shaking table tests jacket platform, systematically 

explores the relationship between data-driven 

stochastic subspace of Hankel matrix dimension 

between its noise-canceling capability. That proved: 

To maximize the data-driven stochastic subspace 

noise-canceling capability and sensitivity to weak 

modal, Hankel matrix should be used in the form 

of a non-square (ie, the number of rows is greater 

than the number of columns), that is the number of 

block-rows and the number of block-columns are 

not chosen to be closest to each other. For future 

work this paper can be data-driven stochastic 

subspace method provides an effective promotion 

and application parameters. 
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NOMENCLATURE 
 

A discrete state matrix 

  

C output matrix 

  

E the mathematical expectation operator
  

  

N noise that needs to be eliminated 

  

P the projection matrix of data-driven stochastic 

subspace method 

  

PN  noise signal projection 

  

PS  true signal projection   

  

S the true signal 

  

c damping of each unit 

  

i 1/2 of Hankel matrix row number 

  

j the columns number of the matrix 

  

k stiffness of each unit 

  

l the number of measuring points; 

  

m mass of each unit 

  

n the order of the system 

  

vk the measuring noise caused by sensor and other 

errors 

  

wk the process noise caused by interference and 

model error 

  

xk the system state vector in the discrete period time  

  

xn displacement of each unit 

  
δpq kronecker function 

  

∑ all the singular values of the measured signal after 

projection  

  

∑N  singular values of noise signal after projection, 

on the condition of setting a threshold value n . 

  

∑S the singular values of true signal after projection 

  


