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ABSTRACT

The aim of this work is to develop a new
numerical model for calculating a supersonic flow
and shock parameters around a 3D cone of arbitrary
cross-section at high temperature, below the
dissociation threshold of the molecules. The
developed method consists to divise the cross section
at several points, and considering the calculation of
the conical shock parameters, as well as the cone
surface parameters in each obtained transverse
deviation. The flow deviation along each obtained
surface is a function of the incidence angle and the
inclination formed by this deflection. The flow
parameters calculation on the cone surface is done by
solving a system of three coupled differential
equations with initial condition by the Runge Kutta
method. The calculation of the thermodynamic
parameters through the conical shock in each
transverse direction is made by solving a modified
obligque shock wave equations at high temperature.
The flow calculation accuracy depends on the
discretization of the cross-section. The computation
of the aerodynamic force and moment on the cone
surface is done consequently, giving each three
components in the three directions of the movement.
The application is for air.

INTRODUCTION

The supersonic flow around a 3D cone of
arbitrary cross-section is particularly important and a
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practical field in the aeronautical applications for the
construction of future missiles and military aircraft,
having a strong maneuverability that is easily found
for asymmetrical 3D constructions. This construction
area will give rise to an aerodynamic force in all three
directions that will still produce an aerodynamic
moment in the three flight directions, resulting six
components of aerodynamic forces. In order to build
such machines, we must study the supersonic flow
around a cone of arbitrary cross-section of any kind
to meet our needed construction. The problem
presents a real three-dimensional flow problem. It can
be solved by the use of the five conservation
equations.

The cone shape at the leading edge is very
interesting to study the problem of an attached shock
wave. (Maccoll, 1937) presents the circular conical
shock wave calculation. This work is valid only at
low M; which can go to about 2.00. (Kopal, 1947,
1949) presented an aerothermodynamic table giving
conical shock parameters using the model presented
in (Maccoll, 1937). (Maslen, 1952) studied a
supersonic flow around a cone of circular section by
CFD equations. (Sims, 1964) illustrates a table by
presenting all the physical parameters of a supersonic
flow around a right cone of circular section with zero
incidences. This study presents a summary of the
works presented in (Maccoll, 1937), (Kopal, 1947,
1949) and (Maslen, 1952). (Briggs, 1960) presented a
supersonic flow around an elliptical section cone
using Laplace's potential velocity equation managing
a supersonic flow when M;<2.00, and 6c<20°. He
took a circle section so that he could use Laplace's
equation. (Ndefo, 1969) presents a numerical flow
calculation around an asymmetric cone with zero
incidence by using CFD in the context of a
callorically and thermally PG.

(Amidon, 1985) have redone the work presented
in (Briggs, 1960) by illustrating all the flow
parameters, since in (Briggs, 1960), the results are
presented only for M and P. (Eastman and Omar,
1965) always presented the flow around a straight
circular cone by the inverse method.

(Chen and Li, 2000) presented a supersonic flow
around a curved cone of circular section. The added
value is that the flow can have a compression or an
expansion according to the local flow deviation from
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the upstream flow. If a compression is found during
the flow, a local shock wave and a decrease in the
Mach number is observed. If an expansion of the
Prandtl Meyer is found, a local expansion wave and
an increase of a local Mach number is observed.

The studies presented in the said (Maccoll, 1937),
(Kopal, 1947, 1949), (Maslen, 1952), (Sims, 1964),
(Briggs, 1960), (Ndefo, 1969), (Amidon, 1985),
(Eastman and Omar, 1965) and (Chen and Li, 2000)
are limited only for the calorically and thermally PG
model, giving well results only if M1<2.00, To<240 K
and 6c<20° for limited application area that does not
meet current flight requirements.

(Elaichi and Zebbiche, 2018) developed a new
model for calculating the conical shock around a
straight circular cone at HT, below the dissociation
threshold of the molecules, when My, To and 6c are
quite high which can reach respectively 6.00, 3500 K
and 60° (depending on the attached shock model).
This study is presented as a generalization of the
works presented in (Maccoll, 1937), (Kopal, 1947,
1949), (Maslen, 1952), (Sims, 1964), (Briggs, 1960),
(Ndefo, 1969), (Amidon, 1985), (Eastman and Omar,
1965) and (Chen and Li, 2000). The main difference
between (Chen and Li, 2000) and (Maccoll, 1937),
(Kopal, 1947, 1949), (Maslen, 1952), (Sims, 1964),
(Briggs, 1960), (Ndefo, 1969), (Amidon, 1985) and
(Eastman and Omar, 1965) is in the energy equation,
where the Cpis taken as constant in (Maccoll, 1937),
(Kopal, 1947, 1949), (Maslen, 1952), (Sims, 1964),
(Briggs, 1960), (Ndefo, 1969), (Amidon, 1985) and
(Eastman and Omar, 1965) and is taken as Cp(T) in
(Maccoll, 1937), (Kopal, 1947, 1949), (Maslen,
1952), (Sims, 1964), (Briggs, 1960), (Ndefo, 1969),
(Amidon, 1985), (Eastman and Omar, 1965) and
(Chen and Li, 2000). This change gives a
considerable modification in the mathematical model,
and which results in the correction of the results and
widening of the field of application.

For air, one finds in (Mc Bride, Gordon and Reno,
1993), (Peterson and Hill, 1965) and (Zebbiche and
Youbi, 2007) a series of tabulated values of Cp(T)
between 55 K and 3550 K (temperature limit to avoid
dissociation). Then, we made an interpolation by a
9th polynomial degree giving a maximum error lower
than 0.01% for any temperature.

The aim of this work is to develop a new
mathematical model for calculating the shock
parameters of a supersonic flow with incidence
around a cone of arbitrary cross-section at HT, less
than the dissociation threshold of the molecules,
meeting the current and future need to have flying
supersonic military gears with a very strong
maneuverability, and in a high My and To, which can
go to 6.00 and 3500 K respectively as a correction to
the results given by the PG model of (Maccoll, 1937),
(Kopal, 1947, 1949), (Maslen, 1952), (Sims, 1964),
(Briggs, 1960), (Ndefo, 1969), (Amidon, 1985),
(Eastman and Omar, 1965) and (Chen and Li, 2000),
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and to the current aerospace constructions witch use a
circular section for machines in front of a supersonic
flow (Peterson and Hill, 1965) and (Tatum, 1997).
The problem therefore consists in determining a
mathematical model and developing a new numerical
calculation program making it possible to determine
the flow parameters 6s, Mz, Pa/P1, To/T1, palp1, v,
Po2/Po1 through the conical shock such, isentropic
parameters P2/Pqoy, T/ To, palpo2 after the shock and the
thermodynamic parameters on the cone surface Mc,
TclTo, Pc/Po2, pclpoo. All these results are a function
of Ac which is also function of the angular deviation g
of the lateral surface of the considered 3D cone.
Consequently, the aerodynamic force and moment
applied on the cone lateral surface can be determined.
The application is made for air.

DISCRETIZATION AND FLOW
ANGLE DEVIATION

The first step is to discretize the cross section in
several points as shown in figure 1. The transverse
cone shape is arbitrarily taken. We obtain a series of
planes that make angles fci between the deflections
of M; witch makes an incidence angle o with the
reference axes of calculation.

3
2
1

N
-1

((xx, Qy , (lz) o

Fig. 1 Cone 3D presentation

The cone is assumed to be in the Oz direction, so
that the leading edge is originally set to O(0,0,0).
Then its cross section is parallel to the xOy plane. It
should be divided into N points as shown in figure 1.
Then (xi, yi, zi) i=1, 2, ..., N are known and differ from
one section to another. The numbering of the nodes is
done counterclockwise,

Zi:L (1)

As a result, N segments are connected with the
point O to form N triangular elementary surfaces. The
numbering of the segment takes the number of the
left node for an observer placed at point O in the Oz
axis direction. In each point of the cross section, there
is a cone to be considered. The flow calculation in
this direction is assimilated to the flow around a cone
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of circular section having the same inclination as this
plane.

The determination of (x, y, r and g) in all points of
the cross section is necessary. Then, the coordinates
(xi, yi) of point i (i=1, 2, ..., N) of the figure 1 is
calculated by,

=t cos(/3;) )

yi=t sin() 3)

All points i will be linked with the point O to
form the chosen cone. The angle i is discretized in
the viewing interval with respect to the point O.

The Mach number M; makes an angle of
incidence a(ox, @y, ;) respectively with the
coordinate axes Ox, Oy and Oz as shown in the figure
1. Then the flow angle deviation 6c; of the cone
surface number i can be calculated by the following

relation,

- - | = - -

AO A Oi=| AO| | Oi|cog AO, Oi 4
With,

- - - -
AO =Mi|cosax i +cosay j+cosa; k (5)

=M: k'

And,

> 5 o> >

Oi = X i +VYi j+Zi k (6)

- -
( AO , Oi ):aci )
Which give,
Ccos X; +COS i+COS Z;
GCi —aco Ay X - ayz Yi i a; Z; ®)
\/Xi +Yi +7i

The relation (8) determines the deviation of the
section number i of the cone with the upstream
velocity vector. This section makes an angle /i with
the positive Ox axis.

One can determine a relation between the angles v
and o (figure 1) by the following way. The Ox'y'z'
mark is obtained from the Oxyz mark by rotation
respectively of the angles v, vy and v, around the axes
Ox, Oy and Oz. While the angles that form M; with
the axes Ox, Oy and Oz are respectively ax, oy and as.

The reference Oxyz is provided by the unit

> o> o

vectors i , j , k and the reference Ox'y'z' is
- 5> >

provided by the unit vectors i', j', k'. The

relationship between the two landmarks is given by,

= > >
I—> —I> A Az Aus —I>
' = [A] J |=| Aar A2 Az || ] 9)
- - As1 As2 Asz || =
k' k k
With,

10 0f C 0SyjjC; S:0
[A]=]0 Cx Sx|| 0 10 |[-S:C.0| (10
0-SxCx ||-Sy 0Cy 0 01

And,
Cx =c0s vx , Cy =cos vy , C; =C0S v; (11)
Sx = Sin Vx , Sy = Sin Vy y Sz = Sin Vz (12)
Witch gives,
Allzcycz (13)
A&ZZCySz (14)
A13:Sy (15)
A2l:_SxSyCz_Csz (16)
A22=_stysz+cxcz (17)
A23=S><Cy (18)
Ag1=—C,S,C,+S,S, (19)
A82=_CxSySZ_Ssz (20)
A?>3:C><Cy (21)

As M is chosen directed along the axis Oz’, then by
identification of the relations (5) and (9), we can
write the following result,

CoS ax = As1 (22)
cos ay = Az (23)
CosS a; = As3 (24)

Relationships (22), (23) and (24) can be replaced
in relation (8) to determine a relation of ¢ directly as
a function of vy, vy and v,.

To determine the values of (v, vy, v;) as a function
of (ax, ay, az), consider the following system:
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fl (Vx,Vy,Vz) = C0S ax — A’31 = 0 (25)
f2 (Vx,Vy,Vz) = CO0S (Xy - A32 = O (26)
f3 (Vx,Vy,Vz) =C0S a; — A33 = 0 (27)

The numerical techniques used to solve a system
of nonlinear equations (Raltson and Rabinowitz,
1985) are based on the Jacobian computation; witch
is formulated from the derivative of f;, f, and fs. The
numerical tests by using thoses methods demonstrate
that the determinant of this Jaconian (denominator of
our computation), takes a null value during the
computation whatever the chosen initial vector,
which interrupts immediatly the calculation. For this
reason and to find a solution to our problem, we
propose a new fast and robust technique. It converges
towards the desired solution without failure.

Physically, the solution (v, vy, v;) belongs to the
interval ([0°, 360°], [0°, 360°], [0°, 360°]).

In the first step, this interval is divided into 4
intervals [90°(l-1), 90°1] I=1, 2, 3 and 4. We calculate
the minimum of the maximum in absolute value of fy,
f, and f3 in all points (v, w, v;) by a step of one
degree with the following relation,

fa

fmin = Min {Max(‘ fy

Bl @

With,
vy =90(-1)+i
vy; =90(1-1) +
vy =90(1-1) +k

i=012.,9 (29)
j=012.,9 (30
k=012.,9 (31

And,
1=1234 (32)

The determined solution (v, vy, v;) is given with
an error in the first digit before the decimal point.

The second step is to determine the solution with
an error in the first digit after the decimal point. We
look for the solution now in the intervals [w-t, wtr],
[vy-t, wtt] and [v,-7, v, +1] for t=1.0 degree and a step
of 4v=0.1 degree with the same way presented in the
first step. The determination of the root with an error
in the n™ digit after the decimal point will be carried
out by the choice of r=10™! degree and a step
Av=1/10 degree.

SHOCK PARAMETERS

The second step is to determine the isentropic
parameters (T1/To, p1/po1, P1/Po1) corresponding to M;
and To just before the shock using (33) to (38)
(Tatum, 1997) and (Zebbiche, 2009). The relation
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(33) gives a nonlinear algebraic equation with
unknown Ty which will be determined by the use of
the dichotomy algorithm (Raltson and Robinowitz,
1985). Integral (37) is made using Simpson's
quadrature with condensation of nodes (Elaichi and
Zehbiche, 2018), (Zebbiche and Youbi, 2007) and
(Raltson and Rabinowitz, 1985),

M(T )= ?T()T) (33)
With,

H(T) =[1° Cp(T) dT (34)
aT)=T) RT (35)
Mg e (36)
And,

pL;;Exp(—ﬂo Z;’g)) dT) (37)

P _[T) £
R, - (TOJ(,DMJ (38)

The PG equation (P=pRT) remains valid, with
R=287.102 J/(kgK). Expressions of Cp(T) and R for
air are presented in (Zebbiche and Youbi, 2007).

The values of (T1/To, pi/po1, P1/Po1) are constant
and do not vary with Si.

The third step consists in determining the flow
properties (0s, Mz, w, TafT1, p2lp1, P2/P1)i through the
shock corresponding to each deflection gi using the
following oblique shock wave relationships at HT
(Kenneth, 1996, 1997) and (Tatum, 1997),

P2 _ tan(0s) (39)
pr tan(fs —y)
P2 _ M2 sin2(0s) x y(Ty) (1— pzj
L_~ A 40)
T 2 (
%)
oL
A
)
M3 = 2 (42)
sin2(fs — ) x y(T2) x [1— ,02:|Q
o R
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Two solutions can be found according to the
value of M, which implies that all the parameters
will admit two solutions. If M2>1.00, we get a weak
shock. If M»<1.00, we get a strong shock. Generally,
the weak shock that occurs in the nature (Peterson
and Hill, 1965) and (Zebbiche and Youbi, 2007).

The relation determining the analytical equation
between (w, 6s and M1) does not exist. To determine
the shock parameters by these relations, it is
necessary first to determine the flow deviation y just
after the shock. (Kenneth, 1996, 1997) and (Tatum,
1997) use the relation for a PG model at constant Cp,
given the difficulty of finding an analytic form
despite nonlinear, which gives the results are far from
reality and does not respond to the HT model. Then
our work, we will determine the deviation y with a
high precision according to the real HT model. All
the parameters after the shock depend in a direct and
explicit way on . Since there is a physical solution,
the value of w must be greter than zero. As the
development of an analytic relationship connecting s
and y is quite complicated, we will use the principle
of a normal shock wave at HT to determine the value
of M.

ISENTROPIC PARAMETERS JUST
AFTER THE SHOCK

It is easy to determine the isentropic parameters
TalTo, palpoz and P2/Pg,, immediately after the shock,
corresponding to each longitudinal plane deviation
number i by the relationships (33), (37) and (38)
when (M:Mz, T=T2, pP=p2 and P=P2).

SHOCK INTENSITY

The total pressure ratio Pg»/Po1 for each deviation
i can be determined by the following relation,
i

JHIE
)

The relation (43) will be used to determine the
shock intensity expressed by the jump of entropie
through the shock.

Py

N (43)

CONE SURFACE PARAMETERS

This step consists to find the isentropic flow
parameters in the region just after the shock and the
longitudinal surface, corresponding to the cone
deflection pi, by the numerical resolution of the
coupled differential equations (44), (45) and (46) to
three variables (Vr, Vg and T) simultaneously by the
use and adaptation of the Runge Kutta method of
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order 6 (Raltson and Rabinowitz, 1985), (Elaichi and
Zebbiche, 2018) and (Curtis, 1975).

Figure 2 represents a general diagram of a conical
shock wave with the physical parameters.

Fig. 2 Conical shock presentation

dvr _

40 =Vy (44)
dv,_a(m) [2V: t9(0) Vo]V Ve t9(6) @)
do tg(@) Vs —a’(m)

dT_ Vo) [V: tg(@)+Vs ] (46)
do 1g(6) Ce(T) [a*(T)-V5 |

V2 =V2+ V4 (47)

-M
V=" (48)

In the relations (44)-(48), we need relationships
(34)-(36). At each flow deflection & just after the
shock and the cone surface, the parameters a, M, p/po.
and P/Pg; can be respectively determined by the
relations (35), (48), (37), (38).

Relationships (44), (45), (46), (47), (35), (48), (36)
and (38) determine the isentropic flow parameters
between the states just after the shock until the cone
surface number i corresponding to the deflection i as
a function of 6 as shown in the figure 2. Then, since
the cone surface deviation 6c corresponding to the
deflection i is known, we search the shock deviation
Os. This deviation will be determined when the
velocity Vy for certain angle 9 of the figure 2 will be
zero.

By varying M1, To and gi (i=1, 2, ..., N) and the
shape of the cone cross section, we can find all the
parameters ec, 93, 78 Mz, Tz/T1, pz/p1, Pz/P1, Poz/Po1,
T2l To, palpoz, P2/Po2, Mc, TclTo, pclpoz, Pc/Poo.

AERODYNAMIC COEFFICIENTS

The lateral surface of the cone is therefore divided
into N triangles, limited with the nodes O, i and j,
such that j=i+1 (i=1, 2, ..., N) as shown in the figure 3.
If i=N one have j=1.



Fig. 3 Presentation of the elementary triangular surface

The pressure Poij applied to each elementary
triangular surface is calculated as the average value at
points i and j and it is applied on the center of gravity
G of the triangle Oij, perpendicular and directed to
the triangle surface in the direction of the unit vector

%
| which is determined by the following relation,

- -
_|>_ Oi A Oj
1 -
0i A Qj

(49)

With,

> - — -
J

Oi/\Oj:(yizj—ziyj)i +(zixj—xizj) + (50)
_)
(xy;-yix;) k

The position of the center of gravity G of the triangle
Oij is given by,

x _M ___yi+yj ; "_Zi+Zj
Oij — 3 v YOI — 3 v £0ij— 3

(51)

The elementary force applied to the triangle Oij can
be calculated by the following relation,

- -
Foij = Roij Aoij | (52)
With,

R+P;
Foij=—>— (53)
And,

=z =

The pressure is calculated as a thermodynamic
ratio. We calculated four ratios that are P2/P1, P2/Pgy,
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Po2/Po1 and Pc/Pgo. In the relation (52), we are
interested on the pressure ratio on the cone surface
Pc/Po2=PilPo,=Poij/Po2. Then, the pressure P; can be
calculated by the relation (55) since Pg, is not
constant after the shock. It depends on i,

P
3]

The pressure Pg represents the total pressure at the
upstream infinity. For external aerodynamic, Po=total
ambient pressure. For internal aerodynamic, Po=total
combustion chamber pressure.

Writing the relation (52) in the following form
according to the global reference axes of the flow,

- - - -
Foij =Xoij 1 +Yoij | +Zojj k (56)

Replace the relationships (6), (49) and (54) in the
relation (52), we find,

Xojj :% Poi (Vizj-z y;) (57)
Yoij =% Poij (zi%-% 2;) (58)
Zojj :% Poiy (% Y5— i ;) (59)

The aerodynamic moment of the elementary force
Foij with respect to the leading edge O can be
calculated by the following relation,

- - -
Moij= OG A FOij (60)

Replace relations (6), (49), (52) and (54) in relation
(60), we find

- —
moij= (Yoij Zoij—Zoij Yoij) 1 +
N
(zoij Xoij—Xoij Zojj) | + (61)
%
(xoij Yoij—Yoij Xoij) k

Consequently, the force exerted on the complete cone
will be equal to the sum of all the elementary forces
exerted on the surface of the N triangles. So,

- i=N — - - -
F= 3 FOij:Xi +Y j+2ZKk (62)
i=1
j=i+l
1fj=N, i=1
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Likewise, the total moment exerted on the lateral
cone surface is equal to the sum of all the elementary
moments exerted on the N triangles. So,

- =N - - -
m = Mojj =My i +my j +m, K (63)
i=
j=i+L
Ifj=N, i=1
In Ox'y'z', we can write the following relations

concerning the force and the aerodynamic moment, in
the same way as the relations (62) and (63),

- - - -
Fr=X"i"+Y"j'"+2'k’ (64)
— — — —
m'=mi'+myj'+m; k' (65)
It is necessary to determine the inverse

transformation from the Ox'y'z' reference to the Oxyz

- > >
mark by expressing the unit vectors i , j, k as
-> > -
a function of i',j", k" directly from the relations

(9). Then, we can determine the inverse of the
orthogonal passage matrix [A]. Let us replace the
relations (62) and (63) and identify the obtained
result with relations (64) and (65) we obtain,

X'=A X+A Y+A Z (66)
Y'=Ap X+ApY+A Z (67)
Z'=As X+ Ay Y+ A Z (68)
My=Ayy My+Ay; My +Ag M, (69)
my=Ap My+Agp My+Ago M, (70)
m;=Az My+ Apzmy+ Agzm, (71)

At the end, we can determine the 3 aerodynamic
forces coefficients, and the 3 aerodynamic moment
coefficients exerted on the complete surface of the
cone, along the axes Ox’, Oy’ and Oz’ of the cone
movement, by the following relations,

X' Y z

Cr=—"2— , Cl=—"—  Cp=%— 72

2R LR, °712R, (72)
my my m;

= y = = 73

E L3R, R (73)

-429-

RESULTS AND COMMENTS

Our applications will be presented for the
consideration of 16 cross sections as shown in the
figure 4. Some sections have axial symmetry such as
circular section 16. Other sections have two
symmetries with respect to the perpendicular axes
such as sections 1, 2, 5 and 7. Other sections have
symmetry with respect to a single axis such as
sections 8, 9 and 11. The rest of the sections do not
represent any symmetry. These sections can be
considered as the random sections of complex
geometries like sections 12, 13, 14, 15. The choice of
these diversities of the sections is to represent the
power of our developed numerical program.

Figure 5 represents the effect at HT on the
variation of the physical parameters through the
shock, and on the cone surface of the section 12 as a
function of g when To=1000 K (curve 2), 2000 K
(curve 3) and 3000 K (curve 4), including the PG
model when y=1.402 (curve 1), for M1=3.00, a,x=90°,
ay=90°, 0o,=0° only for weak shock. The angle g
varies from 0° to 360° so that the physical parameter
at f=0° is the same when pB=360°. This figure
represents that all the parameters depend on M, ax, oy,
oz, To and B. The difference between the flow around
a 3D cone of arbitrary cross section (our study) and
the flow around cone of circular section (section 16
(Elaichi and Zebbiche, 2018)) is that this section, the
parameters do not depend on B. Whreas for our case,
the parameters depend on S. This result demonstrates
that the flow around a circular cone is a quasi-3D
flow (1D computation and 3D presentation (Elaichi
and Zebbiche, 2018)) because the flow depends
solely on the space variable 6 of the figure 2. While
our problem is really of 2D type since it depends on
the two space variables (¢ and $). The presentation is
only 3D.

Square Pentagon

Hexagon Heptagon Octagon Cardioid

14
Four sides

13

ROl
Che N
o) e ()

C PE

Fig. 4 Various shapes of 3D cone cross sections
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Fig. 5 Effect of To on the variation of the flow parameters
around a cone of section 12 as a function of g.

In the figue 6, the presentation is limited only to
Mc as a function of j for the 16 chosen sections when
M1=3.00, ax=90°, a,=90°, a,=0°. The presentation is
made again at HT for T;=1000 K, (curve 2), T;=2000
K (curve 3), To=3000 K (curve 4), including the PG
model (curve 1). The figure represents the results
only for the weak shock. The influence of the shape
of the cross section on Mc variation, and therefore on
all other physical parameters is clearly noticeable. On
the circular section 16, it is clearly seen that the Mc
does not depend on B which demonstrates that there
is only a single value of Mc on the cone surface,
which is not the case for any other sections some is

its geometric form. The result of the section 16 is the
purpose of the reference (Elaichi and Zebbiche,
2018).
2.4
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Fig. 7 Effect of M1 on the variation of the flow parameters
around the cone of section 12 versus £.

Among all the flow parameters, it has been
chosen to present in the figure 8 the effect of M; and
the shape of the cross-section on Mc as a function of
. The results are chosen for To=2000 K, ax=90°,
ay=90°and a,=0°. The 4 curves show respectively the
variation of Mc for M;=3.00 (curve 1), M;=4.00
(curve 2), M;=5.00 (curve 3) and M;=6.00 (curve 4).
It is noteworthy that M; mainly influences Mc in
addition to the effect of To, ax, ay and o,. The results
presented are for the weak shock. The curve 1 in
figure 8 represents the curve 3 in figure 6. On the
circular section 16, it is clearly seen that the Mc does
not depend on B. This result demonstrates that there
exists only a single value of Mc on the cone surface,
which is not the case for any other sections whatever
its geometric shape. The variation shown in section
16 is the purpose of (Elaichi and Zebbiche, 2018).
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Fig. 8 Effect of M1 on the Mc variation of the different
sections as a function of 4.

Figure 9 represents the angle incidence effect, and
the shape of the cross section on the variation of the
physical parameters of the section 12 as a function of
S. The results are chosen for M;=3.00 and T,=2000 K.
The 4 curves respectively show the variation for
(ax=90°, &y=90°, a;=0°) (blue curve), (ax=89°, ay=89°,
0;=1°) (red curve), (ax=85°, ay=85°, @,=3°) (black
curve) and (ax=80°, a,=80°, a;=12°) (purple curve). It
is noted that the incidence angle influences mainly all
the physical parameters. The results are presented for
the weak shock. The blue curve in figure 9 represents
the curve 1 in the figure 7.
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M1=3.00, To=2000 K.
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D ox=89°, 0y=89°, a;=1°

1 0x=85°, oy=85°, 0;=3°

1 ox=80°, 0y=80°, az= 12°

Fig. 9 Effect of incidence angle on the variation of the flow

parameters around the cone of section 12 versus £.

Figure 10 shows the incidence angle and the
shape of the cone cross-section effect on the Mc as a
function of # when M;=3.00 and T,=2000 K. The



figure contains 4 curves. The curve in blue shows the
variation of Mc when x=90°, ay,=90°, @,=0°. The
curve in red is for ox=89°, 0y=89°, a,=1°. The curve
in black is for &,=85°, ay=85°, @,=3°. The purple
curve is for ax=80°, ay=80°, a;=12°. The infiuence of
o and the shape of the cross-section on Mc variation
are clearly noticeable. For the circular section 16, one
always notices that the Mc does not depend on
when a,=90°, ay=90 °, a,=0°, which is the aim of
(Elaichi and Zebbiche, 2018). But when a changes
value, we notice that there is a variation of Mc with j
for all sections including the section 16, and
consequently all the other physical parameters vary
with . The blue curve in the figure 10 shows the
curve 1 in the figure 8 for comparison.
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Fig. 10 Effect of a on Mc variation for the different
sections as a function of S.

Given the present work is done for the calculation
of the supersonic flow parameters, it is very
important to complete it by the calculating the
variation of the aerodynamic coefficients. The shape
of the cross section has shown that there are 6
aerodynamic coefficients along the 3 axes of flight.
Three are designed for the aerodynamic force and
three for the aerodynamic moment.

The results on the tables 1, 2 and 3 are shown
only for the section 12 as a typical example of a
complex 3D section.

In the table 4, we presented the effect of My, Ty
and a on the 6 aerodynamic coefficients of all the
sections chosen in this study.

On the table 1, we clearly see the T, effect to HT
on the 6 coefficients. Likewise, in the tables 2 and 3,
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the effect of M; and « on the aerodynamic
coefficients are respectively noted.

Table 1: Ty effect on the 6 aerodynamic oefficients
of section 12 for M;=3.00 and a,=85°,
ay:85°, az:3°

PG HT HT HT
(y=1.402) | To=1000 K | To=2000 K | To=3000 K
Cr | -0.00139 | -0.00127 -0.00106 -0.00097
CL | 0.01023 0.00968 0.00878 0.00849
Cp | 0.09399 0.08901 0.08098 0.07840
De | -0.01177 | -0.01114 -0.01011 -0.00977
Dr | 0.00200 0.00194 0.00184 0.00183
Dr | 0.00024 0.00019 0.00014 0.00011

Table 2 : M; effect on the 6 aerodynamic coefficients
of section 12 for To=2000 K, 0x=85°
ay:85°, (xz=3°

M:1=2.00 | M:=3.00{M1=4.00| M1=5.00 | M1=6.00
Cr | 0.00073|-0.00106-0.00068| -0.00035 | -0.00018
CL |0.02633|0.00878 | 0.00313 | 0.00129 | 0.00060
Cp | 0.25595|0.08098 | 0.02803 | 0.01135 | 0.00524
Dr [-0.03027|-0.01011|-0.00360| -0.00148 | -0.00069
Dr |0.00882 | 0.00184 | 0.00040 | 0.00010 | 0.00003
Dr [0.00038 | 0.00014 | 0.00011| 0.00006 | 0.00003

Table 3 : Effect of (ax, ay, 0z) on the 6 aerodynamic
coefficients of section 12 for M;=3.00,

To=2000 K.

ax=90° ox=87° 0x=85° ax=80°
0=90° | =87° | =85° | a=75°
(ZZ:OO aZ:2° aZ:3° 0z= 120

Cr | -0.00432 | 0.00349 -0.00106 -0.00386
CL | -0.01171 | 0.00937 0.00878 -0.00512
Co | 0.08440 0.08149 0.08098 0.08750
Dp | 0.02441 | -0.01137 -0.01011 0.01539
Dr | -0.01262 | 0.01133 0.00184 -0.01539
Dr | 0.00000 | -0.00034 0.00012 0.00101

Table 4 : Aerodynamic coefficients of the 16 sections
when M;=3.00, To=2000 K, (ax=85°
ay:85°, az=3°)

Cr CL Co Dp Dt Dr
-0.0110| -0.0036 {0.0403| 0.0053 |-0.0111 |0.0004
-0.0087 | -0.0036 [0.0304| 0.0040 |-0.0088 |0.0004
-0.0062 | -0.0046 [0.0224| 0.0052 |-0.0055 |0.0002
-0.0134 -0.0039 [0.0517| 0.0065 |-0.0142 |0.0006
-0.0136| -0.0043 |{0.0584| 0.0075 |-0.0148 | 0.0006
-0.0141| -0.0038 |0.0632| 0.0073 | -0.0158 | 0.0006
-0.0144 | -0.0039 |0.0662| 0.0077 |-0.0164 |0.0007
0.0078 | -0.0080 |{0.0206| 0.0085 | 0.0081 |0.0003
-0.0082 | -0.0028 [0.0257| 0.0037 |-0.0077 |0.0003
10(-0.0139 | -0.0029 {0.0698| 0.0067 |-0.0162 |0.0007
11(-0.0072 | -0.0062 {0.0159| 0.0058 |-0.0064 |0.0003
12(-0.0010| 0.0087 {0.0809| -0.0101 | 0.0018 |0.0001
13|-0.0038| -0.0037 |0.0061| 0.0033 |-0.0031|0.0001
141-0.0049| -0.0100 |0.0303| 0.0113 |-0.0040 |0.0001
15(-0.0076| -0.0032 |0.0222| 0.0033 |-0.0072|0.0003
16|-0.0023| 0.0019 |0.0028| -0.0016 | -0.0019 | 0.0001

O©CoOoO~NOUILEWNRFRWOW

Table 4 shows a typical example of the
calculation of the 6 aerodynamic coefficients of the
16 selected sections when T,=2000, M;=3.00 and

(ax=85°, ay=85° and a,=3°). This table presents the
effect of the 3D cross-section on the 6 coefficients.
One can choose consequently the suitable form
according to our need.

Table 1 represents the difference between the PG
and HT model on the variation of the 6 aerodynamic
coefficients. The variation is made as a function of T
when M;=3.00 and a,=90°, a,=90°, 0,=0°. The PG
model does not depend on Ty and can be assimilated
as HT model for low To<240 K. We note again that
the HT model is destined to make corrections to the
PG model when To>240 K. We can say that our HT
model is a generalization of the PG model when Ty
will be raised.

Tables 1, 2, 3 and 4 clearly represent the effect of
Mi, To, a and the shape of the transeversal cone
section on the values of the 6 aerodynamic
coefficients which demonstrate that there is a strong
maneuverability during the flight according to the 3
directions since the 6 coefficients are not zero.

CONCLUSIONS

From this study, we can quote the following
conclusions:

1. The developed program can process any Cross
section of the 3D cone. Te presentation is limited
by 16 cross-sections.

2. Tois an essential parameter of our HT model. The
PG model results do not depend on To.

3. To degrades the parameters s, To/T1, P2/P1, palpo,
P2/Po2, pclpoz, Pc/Pozand increases the parameters
My, v, pz/p1, Po2/Po1, T2/To, Mc, Tc/To with respect
to the results of the PG model and this difference
increases with the increase of To.

4. The flow around a cone of circular cross section
really depends on one space variable (1D) which
is # and does not depend on g. While the flow
around an arbitrary 3D cross section cone depends
on two space variables (2D) that are 6 and $. The
presentation is only 3D.

5. The flow around a cone of circular cross section
with zero incidences becomes a particular case of
our modest work.

6. The PG model gives good results if M;<2.00,
To<240 K and 6c<20°.

7. 1f M1>2.00 or To> 240 K or 6c>20°, the correction
of the PG model results is necessary, which gives
the needs to use our HT model.

8. The supersonic flow around a cone of arbitrary
cross section is characterized by strong flight
maneuverability, since there are 6 aerodynamic
coefficients in the 3 flight directions.

9. The 6 aerodynamic coefficients presented in this
work are only those given by the shock wave.

10. For low M; approaching to unity, there is the limit
of having a detached shock wave. This size
depends on the shape of the cone (that is to say of
Oc) as well as on the values of To, ax, ay and o;.
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As a perspective, the supersonic flow around a cone
of arbitrary cross section and curved with the
longitudinal direction at HT can be studied. In this
case one will have the birth of a progressive shock
and or a progressive Prandtl Meyer expansion. The
flow in this case is actually of three-dimensional
calculation, where it depends on three space variables

0, 8. 2).
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NOMENCLATURE
M Mach number.
\Y Velocity
p Density
P Pressure
T Temperature
v Flow deflection just after the shock
a Sound velocity
H Enthalpy
R Thermodynamic constant of air
y Specific heats ratio
Oc Cone surface deviation
Os Conical shock deviation
ax Angle of incidence between M1 and the Ox axis
ay Angle of incidence between M1 and the Oy axis
ax Angle of incidence between M1 and the Oz axis
Vx Angle of incidence around the Ox axis
vy Angle of incidence around the Oy axis
Vx Angle of incidence around the Oz axis
F Aerodynamic force in the Oxyz mark
X Aerodynamic force along the Ox axis
Y Aerodynamic force along the Oy axis
Z Aerodynamic force along the Oz axis
F Aerodynamic force in the Ox'y'z ' mark
X’ Aerodynamic force along the Ox” axis
Y’ Aerodynamic force along the Oy’ axis
z Aerodynamic force along the Oz’ axis
G Center of gravity of an elemental triangle
N Number of points of the cone cross section.
m Aerodynamic moment relative to the cone leading

edge in the Oxyz mark
mx Aerodynamic moment around the Ox axis
my Aerodynamic moment around the Oy axis
m; Aerodynamic moment around the Oz axis
Aerodynamic moment relative to the cone leading
edge in the Ox’y’z” mark
m’x  Aerodynamic moment around the Ox’ axis
m’y  Aerodynamic moment around the Oy’ axis
m’;  Aerodynamic moment around the Oz’ axis
Cr Trigger force coefficient
Cu Lift force coefficient
Co Drag force coefficient
De Pitchnig moment coefficient
Dv Yaw moment coefficient
Dr Roullette moment coefficient
[A] Matrix of passage

-436-



Mohamed Roudane et al.: Supersonic Flow Around Asymmetrical Cone of Arbitrary Cross Section.

Polar deviation of the cone cross section surface.
Polar Ray

Longitudinal abscissa of cone

Position of a point in the cone cross-section.
Flow angle deviation.

Normal unit vector to the cone surface
Longitudinal length of the cone

HT High Temperature

PG Perfect Gas

Ce Specific heat at constant pressure

f1, f2, f3 Nonlinear equations

i,j, k Angles for calculating f1, f> and f3

| To divide 360 degrees into 4 quadrants

=X NS
<

Subscripts

Upstream shock condition
Downstream shock condition
Stagnation condition

Cone surface parameter
Cross-sectional component
Radial component
Benchmark position

Shock

ij Triangular elementary surface
Ox axis

Oy axis

Oz axis

N< XQuwo~-" 0o nNE
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	The first step is to discretize the cross section in several points as shown in figure 1. The transverse cone shape is arbitrarily taken. We obtain a series of planes that make angles θCi between the deflections of M1 witch makes an incidence angle α ...
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