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ABSTRACT 
 

The aim of this work is to develop a new 
numerical model for calculating a supersonic flow 
and shock parameters around a 3D cone of arbitrary 
cross-section at high temperature, below the 
dissociation threshold of the molecules. The 
developed method consists to divise the cross section 
at several points, and considering the calculation of 
the conical shock parameters, as well as the cone 
surface parameters in each obtained transverse 
deviation. The flow deviation along each obtained 
surface is a function of the incidence angle and the 
inclination formed by this deflection. The flow 
parameters calculation on the cone surface is done by 
solving a system of three coupled differential 
equations with initial condition by the Runge Kutta 
method. The calculation of the thermodynamic 
parameters through the conical shock in each 
transverse direction is made by solving a modified 
oblique shock wave equations at high temperature. 
The flow calculation accuracy depends on the 
discretization of the cross-section. The computation 
of the aerodynamic force and moment on the cone 
surface is done consequently, giving each three 
components in the three directions of the movement. 
The application is for air. 
 

INTRODUCTION 
 

The supersonic flow around a 3D cone of 
arbitrary cross-section is particularly important and a 

practical field in the aeronautical applications for the 
construction of future missiles and military aircraft, 
having a strong maneuverability that is easily found 
for asymmetrical 3D constructions. This construction 
area will give rise to an aerodynamic force in all three 
directions that will still produce an aerodynamic 
moment in the three flight directions, resulting six 
components of aerodynamic forces. In order to build 
such machines, we must study the supersonic flow 
around a cone of arbitrary cross-section of any kind 
to meet our needed construction. The problem 
presents a real three-dimensional flow problem. It can 
be solved by the use of the five conservation 
equations. 

The cone shape at the leading edge is very 
interesting to study the problem of an attached shock 
wave. (Maccoll, 1937) presents the circular conical 
shock wave calculation. This work is valid only at 
low M1 which can go to about 2.00. (Kopal, 1947, 
1949) presented an aerothermodynamic table giving 
conical shock parameters using the model presented 
in (Maccoll, 1937). (Maslen, 1952) studied a 
supersonic flow around a cone of circular section by 
CFD equations. (Sims, 1964) illustrates a table by 
presenting all the physical parameters of a supersonic 
flow around a right cone of circular section with zero 
incidences. This study presents a summary of the 
works presented in (Maccoll, 1937), (Kopal, 1947, 
1949) and (Maslen, 1952). (Briggs, 1960) presented a 
supersonic flow around an elliptical section cone 
using Laplace's potential velocity equation managing 
a supersonic flow when M1<2.00, and θC<20°. He 
took a circle section so that he could use Laplace's 
equation. (Ndefo, 1969) presents a numerical flow 
calculation around an asymmetric cone with zero 
incidence by using CFD in the context of a 
callorically and thermally PG. 

(Amidon, 1985) have redone the work presented 
in (Briggs, 1960) by illustrating all the flow 
parameters, since in (Briggs, 1960), the results are 
presented only for M and P. (Eastman and Omar, 
1965) always presented the flow around a straight 
circular cone by the inverse method.  

(Chen and Li, 2000) presented a supersonic flow 
around a curved cone of circular section. The added 
value is that the flow can have a compression or an 
expansion according to the local flow deviation from 
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the upstream flow. If a compression is found during 
the flow, a local shock wave and a decrease in the 
Mach number is observed. If an expansion of the 
Prandtl Meyer is found, a local expansion wave and 
an increase of a local Mach number is observed. 

The studies presented in the said (Maccoll, 1937), 
(Kopal, 1947, 1949), (Maslen, 1952), (Sims, 1964), 
(Briggs, 1960), (Ndefo, 1969), (Amidon, 1985), 
(Eastman and Omar, 1965) and (Chen and Li, 2000) 
are limited only for the calorically and thermally PG 
model, giving well results only if M1<2.00, T0<240 K 
and θC<20° for limited application area that does not 
meet current flight requirements. 

(Elaichi and Zebbiche, 2018) developed a new 
model for calculating the conical shock around a 
straight circular cone at HT, below the dissociation 
threshold of the molecules, when M1, T0 and θC are 
quite high which can reach respectively 6.00, 3500 K 
and 60° (depending on the attached shock model). 
This study is presented as a generalization of the 
works presented in (Maccoll, 1937), (Kopal, 1947, 
1949), (Maslen, 1952), (Sims, 1964), (Briggs, 1960), 
(Ndefo, 1969), (Amidon, 1985), (Eastman and Omar, 
1965) and (Chen and Li, 2000). The main difference 
between (Chen and Li, 2000) and (Maccoll, 1937), 
(Kopal, 1947, 1949), (Maslen, 1952), (Sims, 1964), 
(Briggs, 1960), (Ndefo, 1969), (Amidon, 1985) and 
(Eastman and Omar, 1965) is in the energy equation, 
where the CP is taken as constant in (Maccoll, 1937), 
(Kopal, 1947, 1949), (Maslen, 1952), (Sims, 1964), 
(Briggs, 1960), (Ndefo, 1969), (Amidon, 1985) and 
(Eastman and Omar, 1965) and is taken as CP(T) in 
(Maccoll, 1937), (Kopal, 1947, 1949), (Maslen, 
1952), (Sims, 1964), (Briggs, 1960), (Ndefo, 1969), 
(Amidon, 1985), (Eastman and Omar, 1965) and 
(Chen and Li, 2000). This change gives a 
considerable modification in the mathematical model, 
and which results in the correction of the results and 
widening of the field of application. 

For air, one finds in (Mc Bride, Gordon and Reno, 
1993), (Peterson and Hill, 1965) and (Zebbiche and 
Youbi, 2007) a series of tabulated values of CP(T) 
between 55 K and 3550 K (temperature limit to avoid 
dissociation). Then, we made an interpolation by a 
9th polynomial degree giving a maximum error lower 
than 0.01% for any temperature. 

The aim of this work is to develop a new 
mathematical model for calculating the shock 
parameters of a supersonic flow with incidence 
around a cone of arbitrary cross-section at HT, less 
than the dissociation threshold of the molecules, 
meeting the current and future need to have flying 
supersonic military gears with a very strong 
maneuverability, and in a high M1 and T0, which can 
go to 6.00 and 3500 K respectively as a correction to 
the results given by the PG model of (Maccoll, 1937), 
(Kopal, 1947, 1949), (Maslen, 1952), (Sims, 1964), 
(Briggs, 1960), (Ndefo, 1969), (Amidon, 1985), 
(Eastman and Omar, 1965) and (Chen and Li, 2000), 

and to the current aerospace constructions witch use a 
circular section for machines in front of a supersonic 
flow (Peterson and Hill, 1965) and (Tatum, 1997). 
The problem therefore consists in determining a 
mathematical model and developing a new numerical 
calculation program making it possible to determine 
the flow parameters θS, M2, P2/P1, T2/T1, ρ2/ρ1, ψ, 
P02/P01 through the conical shock such, isentropic 
parameters P2/P02, T2/T0, ρ2/ρ02 after the shock and the 
thermodynamic parameters on the cone surface MC, 
TC/T0, PC/P02, ρC/ρ02. All these results are a function 
of θC which is also function of the angular deviation β 
of the lateral surface of the considered 3D cone. 
Consequently, the aerodynamic force and moment 
applied on the cone lateral surface can be determined. 
The application is made for air. 
 

DISCRETIZATION AND FLOW 
ANGLE DEVIATION 

 
The first step is to discretize the cross section in 

several points as shown in figure 1. The transverse 
cone shape is arbitrarily taken. We obtain a series of 
planes that make angles θCi between the deflections 
of M1 witch makes an incidence angle α with the 
reference axes of calculation. 

 
 
 
 
 
 
 
 
 

 
 
 
 
Fig. 1 Cone 3D presentation 
 

The cone is assumed to be in the Oz direction, so 
that the leading edge is originally set to O(0,0,0). 
Then its cross section is parallel to the xOy plane. It 
should be divided into N points as shown in figure 1. 
Then (xi, yi, zi) i=1, 2, ..., N are known and differ from 
one section to another. The numbering of the nodes is 
done counterclockwise, 

 
Lzi=                                     (1) 

 
As a result, N segments are connected with the 

point O to form N triangular elementary surfaces. The 
numbering of the segment takes the number of the 
left node for an observer placed at point O in the Oz 
axis direction. In each point of the cross section, there 
is a cone to be considered. The flow calculation in 
this direction is assimilated to the flow around a cone 
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of circular section having the same inclination as this 
plane. 

The determination of (x, y, r and β) in all points of 
the cross section is necessary. Then, the coordinates 
(xi, yi) of point i (i=1, 2, ..., N) of the figure 1 is 
calculated by, 

 
( )iii rx βcos =                               (2) 

 
( )iii ry βsin =                               (3) 

 
All points i will be linked with the point O to 

form the chosen cone. The angle βi is discretized in 
the viewing interval with respect to the point O. 

The Mach number M1 makes an angle of 
incidence α(αx, αy, αz) respectively with the 
coordinate axes Ox, Oy and Oz as shown in the figure 
1. Then the flow angle deviation θCi of the cone 
surface number i can be calculated by the following 
relation, 
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The relation (8) determines the deviation of the 

section number i of the cone with the upstream 
velocity vector. This section makes an angle βi with 
the positive Ox axis.  

One can determine a relation between the angles ν 
and α (figure 1) by the following way. The Ox'y'z' 
mark is obtained from the Oxyz mark by rotation 
respectively of the angles νx, νy and νz around the axes 
Ox, Oy and Oz. While the angles that form M1 with 
the axes Ox, Oy and Oz are respectively αx, αy and αz. 

The reference Oxyz is provided by the unit 

vectors
→
i ,

→
j ,

→
k  and the reference Ox'y'z' is 

provided by the unit vectors 
→

' i ,
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' k . The 
relationship between the two landmarks is given by, 
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With, 
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And, 
 

zzyyxx νCνCνC   cos   cos   cos    ,       ,   ===     (11) 
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Witch gives,   
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As M1 is chosen directed along the axis Oz’, then by 
identification of the relations (5) and (9), we can 
write the following result, 
 

31  cos Ax =α                             (22) 

32  cos Ay =α                            (23) 

33  cos Az =α
          

                  (24) 
 

Relationships (22), (23) and (24) can be replaced 
in relation (8) to determine a relation of θC directly as 
a function of νx, νy and νz. 

To determine the values of (νx, νy, νz) as a function 
of (αx, αy, αz), consider the following system: 
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. 0cos)( 311 =−= A  α,ν,ννf xzyx           (25) 

0cos)( 322 =−= A  α,ν,ννf yzyx           (26) 

0cos)( 333 =−= A  α,ν,ννf zzyx           (27) 
 

The numerical techniques used to solve a system 
of nonlinear equations (Raltson and Rabinowitz, 
1985) are based on the Jacobian computation; witch 
is formulated from the derivative of f1, f2 and f3. The 
numerical tests by using thoses methods demonstrate 
that the determinant of this Jaconian (denominator of 
our computation), takes a null value during the 
computation whatever the chosen initial vector, 
which interrupts immediatly the calculation. For this 
reason and to find a solution to our problem, we 
propose a new fast and robust technique. It converges 
towards the desired solution without failure. 

Physically, the solution (νx, νy, νz) belongs to the 
interval ([0°, 360°], [0°, 360°], [0°, 360°]). 

In the first step, this interval is divided into 4 
intervals [90°(l-1), 90°l] l=1, 2, 3 and 4. We calculate 
the minimum of the maximum in absolute value of f1, 
f2 and f3 in all points (νx, νy, νz) by a step of one 
degree with the following relation, 
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And, 
 

4 ,3 ,2 ,1=l                               (32) 
 

The determined solution (νx, νy, νz) is given with 
an error in the first digit before the decimal point. 

The second step is to determine the solution with 
an error in the first digit after the decimal point. We 
look for the solution now in the intervals [νx-τ, νx+τ], 
[νy-τ, νy+τ] and [νz-τ, νz+τ] for τ=1.0 degree and a step 
of Δν=0.1 degree with the same way presented in the 
first step. The determination of the root with an error 
in the nth digit after the decimal point will be carried 
out by the choice of τ=10-n+1 degree and a step 
Δν=τ/10 degree. 

 
SHOCK PARAMETERS 

 
The second step is to determine the isentropic 

parameters (T1/T0, ρ1/ρ01, P1/P01) corresponding to M1 
and T0 just before the shock using (33) to (38) 
(Tatum, 1997) and (Zebbiche, 2009). The relation 

(33) gives a nonlinear algebraic equation with 
unknown T1 which will be determined by the use of 
the dichotomy algorithm (Raltson and Robinowitz, 
1985). Integral (37) is made using Simpson's 
quadrature with condensation of nodes (Elaichi and 
Zebbiche, 2018), (Zebbiche and Youbi, 2007) and 
(Raltson and Rabinowitz, 1985), 
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The PG equation (P=ρRT) remains valid, with 

R=287.102 J/(kgK). Expressions of CP(T) and R for 
air are presented in (Zebbiche and Youbi, 2007). 

The values of (T1/T0, ρ1/ρ01, P1/P01) are constant 
and do not vary with βi. 

The third step consists in determining the flow 
properties (θS, M2, ψ, T2/T1, ρ2/ρ1, P2/P1)i through the 
shock corresponding to each deflection βi using the 
following oblique shock wave relationships at HT 
(Kenneth, 1996, 1997) and (Tatum, 1997), 
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Two solutions can be found according to the 
value of M2, which implies that all the parameters 
will admit two solutions. If M2≥1.00, we get a weak 
shock. If M2<1.00, we get a strong shock. Generally, 
the weak shock that occurs in the nature (Peterson 
and Hill, 1965) and (Zebbiche and Youbi, 2007). 

The relation determining the analytical equation 
between (ψ, θS and M1) does not exist. To determine 
the shock parameters by these relations, it is 
necessary first to determine the flow deviation ψ just 
after the shock. (Kenneth, 1996, 1997) and (Tatum, 
1997) use the relation for a PG model at constant CP, 
given the difficulty of finding an analytic form 
despite nonlinear, which gives the results are far from 
reality and does not respond to the HT model. Then 
our work, we will determine the deviation ψ with a 
high precision according to the real HT model. All 
the parameters after the shock depend in a direct and 
explicit way on ψ. Since there is a physical solution, 
the value of ψ must be greter than zero. As the 
development of an analytic relationship connecting θS 
and ψ is quite complicated, we will use the principle 
of a normal shock wave at HT to determine the value 
of M2. 

 
ISENTROPIC PARAMETERS JUST 

AFTER THE SHOCK 
 
It is easy to determine the isentropic parameters 

T2/T0, ρ2/ρ02 and P2/P02, immediately after the shock, 
corresponding to each longitudinal plane deviation 
number i by the relationships (33), (37) and (38) 
when (M=M2, T=T2, ρ=ρ2 and P=P2). 
 

SHOCK INTENSITY 
 

The total pressure ratio P02/P01 for each deviation 
i can be determined by the following relation, 
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The relation (43) will be used to determine the 
shock intensity expressed by the jump of entropie 
through the shock. 

 
CONE SURFACE PARAMETERS 

 

This step consists to find the isentropic flow 
parameters in the region just after the shock and the 
longitudinal surface, corresponding to the cone 
deflection βi, by the numerical resolution of the 
coupled differential equations (44), (45) and (46) to 
three variables (Vr, Vθ and T) simultaneously by the 
use and adaptation of the Runge Kutta method of 

order 6 (Raltson and Rabinowitz, 1985), (Elaichi and 
Zebbiche, 2018) and (Curtis, 1975). 

Figure 2 represents a general diagram of a conical 
shock wave with the physical parameters. 

 
 
 
 
 
 

 
 
 
 
Fig. 2 Conical shock presentation 
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In the relations (44)-(48), we need relationships 

(34)-(36). At each flow deflection θ just after the 
shock and the cone surface, the parameters a, M, ρ/ρ02 
and P/P02 can be respectively determined by the 
relations (35), (48), (37) , (38). 

Relationships (44), (45), (46), (47), (35), (48), (36) 
and (38) determine the isentropic flow parameters 
between the states just after the shock until the cone 
surface number i corresponding to the deflection βi as 
a function of θ as shown in the figure 2. Then, since 
the cone surface deviation θC corresponding to the 
deflection βi is known, we search the shock deviation 
θS. This deviation will be determined when the 
velocity Vθ for certain angle θ of the figure 2 will be 
zero. 

By varying M1, T0 and βi (i=1, 2, ..., N) and the 
shape of the cone cross section, we can find all the 
parameters θC, θS, ψ, M2, T2/T1, ρ2/ρ1, P2/P1, P02/P01, 
T2/T0, ρ2/ρ02, P2/P02, MC, TC/T0, ρC/ρ02, PC/P02. 
 

AERODYNAMIC COEFFICIENTS 
 

The lateral surface of the cone is therefore divided 
into N triangles, limited with the nodes O, i and j, 
such that j=i+1 (i=1, 2, ..., N) as shown in the figure 3. 
If i=N one have j=1. 
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Fig. 3 Presentation of the elementary triangular surface 
 

The pressure POij applied to each elementary 
triangular surface is calculated as the average value at 
points i and j and it is applied on the center of gravity 
G of the triangle Oij, perpendicular and directed to 
the triangle surface in the direction of the unit vector 
→
l  which is determined by the following relation, 
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The position of the center of gravity G of the triangle 
Oij is given by, 
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The elementary force applied to the triangle Oij can 
be calculated by the following relation, 
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P
+

=                               (53) 
 
And, 
 

→
∧

→
=      OjOiAOij 2

1                          (54) 

. 
The pressure is calculated as a thermodynamic 

ratio. We calculated four ratios that are P2/P1, P2/P02, 

P02/P01 and PC/P02. In the relation (52), we are 
interested on the pressure ratio on the cone surface 
PC/P02=Pi/P02=POij/P02. Then, the pressure Pi can be 
calculated by the relation (55) since P02 is not 
constant after the shock. It depends on βi, 
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=                        (55) 

 
The pressure P0 represents the total pressure at the 

upstream infinity. For external aerodynamic, P0=total 
ambient pressure. For internal aerodynamic, P0=total 
combustion chamber pressure. 

Writing the relation (52) in the following form 
according to the global reference axes of the flow, 

 
 

→
+

→
+

→
=

→
k  Z j  Y i  X F OijOijOijOij            (56) 

 
Replace the relationships (6), (49) and (54) in the 
relation (52), we find, 
 

( )          jijiOijOij yzzyPX −=
2
1                 (57) 

( )          jijiOijOij zxxzPY −=
2
1                  (58) 

( )          jijiOijOij xyyxPZ −=
2
1                  (59) 

 

The aerodynamic moment of the elementary force 
FOij with respect to the leading edge O can be 
calculated by the following relation, 
 

→
∧

→
=

→
OijOij F OG m  

                       

 (60) 
 
Replace relations (6), (49), (52) and (54) in relation 
(60), we find 
 

( )

( )
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−

+
→

−

+
→

−=
→

k XyYx         

  j ZxXz

  i YzZy m
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Oij OijOij OijOij

        

            

 (61) 

 
Consequently, the force exerted on the complete cone 
will be equal to the sum of all the elementary forces 
exerted on the surface of the N triangles. So, 
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Likewise, the total moment exerted on the lateral 
cone surface is equal to the sum of all the elementary 
moments exerted on the N triangles. So, 

 
→

+
→

+
→

=∑
→

=
→ =

==
+=
=

k  m j m i m 
     

m m zy xOij
Ni

N, iIf j
. ij

i

1
1

1
   

     (63) 

 
In Ox'y'z', we can write the following relations 
concerning the force and the aerodynamic moment, in 
the same way as the relations (62) and (63), 
 

→
+

→
+

→
=

→
'''       k'  Z j'  Y i'  X F '

                

(64) 
 

→
+

→
+

→
=

→
''' ''''     k  m j m i m m zy x                (65) 

 

 
It is necessary to determine the inverse 
transformation from the Ox'y'z' reference to the Oxyz 

mark by expressing the unit vectors 
→→→
k  j  i ,,  as 

a function of 
→→→

',','    k  j i  directly from the relations 
(9). Then, we can determine the inverse of the 
orthogonal passage matrix [A].  Let us replace the 
relations (62) and (63) and identify the obtained 
result with relations (64) and (65) we obtain, 
 

ZAYAXA' X     312111 ++=

                    

(66) 
 

ZAYAXA' Y     322212 ++=

                    

(67) 
 

ZAYAXA' Z       332313 ++=

                   

(68) 
 

zyxx mAmAmA m    312111' ++=

                  

(69) 
 

zyxy mAmAmA m    322212' ++=

                 

(70) 
 

zyxz mAmAmA m      332313' ++=

                 

(71) 
 

At the end, we can determine the 3 aerodynamic 
forces coefficients, and the 3 aerodynamic moment 
coefficients exerted on the complete surface of the 
cone, along the axes Ox’, Oy’ and Oz’ of the cone 
movement, by the following relations, 
 

02
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 (73) 

 
 
 
 

RESULTS AND COMMENTS 
 

Our applications will be presented for the 
consideration of 16 cross sections as shown in the 
figure 4. Some sections have axial symmetry such as 
circular section 16. Other sections have two 
symmetries with respect to the perpendicular axes 
such as sections 1, 2, 5 and 7. Other sections have 
symmetry with respect to a single axis such as 
sections 8, 9 and 11. The rest of the sections do not 
represent any symmetry. These sections can be 
considered as the random sections of complex 
geometries like sections 12, 13, 14, 15. The choice of 
these diversities of the sections is to represent the 
power of our developed numerical program. 

Figure 5 represents the effect at HT on the 
variation of the physical parameters through the 
shock, and on the cone surface of the section 12 as a 
function of β when T0=1000 K (curve 2), 2000 K 
(curve 3) and 3000 K (curve 4), including the PG 
model when γ=1.402 (curve 1), for M1=3.00, αx=90°, 
αy=90°, αz=0° only for weak shock. The angle β 
varies from 0° to 360° so that the physical parameter 
at β=0° is the same when β=360°. This figure 
represents that all the parameters depend on M1, αx, αy, 
αz, T0 and β. The difference between the flow around 
a 3D cone of arbitrary cross section (our study) and 
the flow around cone of circular section (section 16 
(Elaichi and Zebbiche, 2018)) is that this section, the 
parameters do not depend on β. Whreas for our case, 
the parameters depend on β. This result demonstrates 
that the flow around a circular cone is a quasi-3D 
flow (1D computation and 3D presentation (Elaichi 
and Zebbiche, 2018)) because the flow depends 
solely on the space variable θ of the figure 2. While 
our problem is really of 2D type since it depends on 
the two space variables (θ and β). The presentation is 
only 3D. 
 

      

     
 

    
 

           
Fig. 4 Various shapes of 3D cone cross sections 
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M1=3.00, αx=90°, αy=90°, αz=0°. 
Curve 1 : PG (γ=1.402).  Curve 2 : HT (T0=1000 K) 

Curve 3 : HT (T0=2000 K).  Curve 4 : HT (T0=3000 K) 
 

Fig. 5 Effect of T0 on the variation of the flow parameters 
around a cone of section 12 as a function of β. 

 
In the figue 6, the presentation is limited only to 

MC as a function of β for the 16 chosen sections when 
M1=3.00, αx=90°, αy=90°, αz=0°. The presentation is 
made again at HT for T0=1000 K, (curve 2), T0=2000 
K (curve 3), T0=3000 K (curve 4), including the PG 
model (curve 1). The figure represents the results 
only for the weak shock. The influence of the shape 
of the cross section on MC variation, and therefore on 
all other physical parameters is clearly noticeable. On 
the circular section 16, it is clearly seen that the MC 
does not depend on β which demonstrates that there 
is only a single value of MC on the cone surface, 
which is not the case for any other sections some is 
its geometric form. The result of the section 16 is the 
purpose of the reference (Elaichi and Zebbiche, 
2018). 
 

 
 

 
 

 
 

 
 

0 90 180 270 360 
0.4 

0.6 

0.8 

1.0 

β (deg) 

Section 12 4 
3 
2 
1 

P02/P01 

0 90 180 270 360 
0 

15 

30 

45 

β (deg) 
Section 12 θC (°) 

0 90 180 270 360 
0 

15 
30 
45 
60 

β (deg) θS (°) Section 12 

1 
2 
3 
4 

0 90 180 270 360 
0 

10 
20 
30 
40 ψ (°) 4 

3 
2 
1 

Section 12 

β (deg) 

0 90 180 270 360 
1 

2 

3 

β (deg) 

Section 12 
M2 

4 
3 
2 
1 

0 90 180 270 360 
1.0 

1.5 

2.0 

2.5 T2/T1 1 
2 
3 
4 

Section 12 

β (deg) 

0 90 180 270 360 
1 

2 

3 

4 

β (deg) 

Section 12 4 
3 
2 
1 

ρ2/ρ1 

0 90 180 270 360 

2 

4 

6 

8 

β (deg) 

Section 12 

P2/P1 
1 
2 
3 
4 

0 90 180 270 360 
0.2 

0.4 

0.6 

0.8 

β (deg) 

Section 12 4 
3 
2 
1 T2/T0 

0 90 180 270 360 
0.0 

0.2 

0.4 

0.6 

β (deg) 

Section 12 
1 
2 
3 
4 

ρ2/ρ02 

P2/P02 

0 90 180 270 360 
0.0 

0.2 

0.4 

β (deg) 

Section 12 
1 
2 
3 
4 

0 90 180 270 360 
1 

2 

3 

β (deg) 

Section 12 MC 
1 
2 
3 
4 

0 90 180 270 360 
0.2 

0.4 

0.6 

0.8 
Section 12 

β (deg) 
TC/T0 

4 
3 
2 
1 

0 90 180 270 360 
0.0 

0.2 

0.4 

0.6 ρC/ρ02 

β (deg) 

Section 12 
1 
2 
3 
4 

PC/P02 

0 90 180 270 360 
0.0 
0.1 
0.2 
0.3 
0.4 
0.5 

β (deg) 

Section 12 
1 
2 
3 
4 

4 
3 
2 
1 

0 90 180 270 360 
1.8 

2.0 

2.2 

2.4 

MC 

β (deg) Section 1 

0 90 180 270 360 
1.8 
2.0 
2.2 
2.4 
2.6 

β (deg) 

Section 2 

4 
3 
2 
1 

MC 

0 90 180 270 360 
1.8 
2.0 
2.2 
2.4 
2.6 
2.8 

β (deg) 

4 

Section 3 

MC 

3 
2 

1 

0 90 180 270 360 
1.9 
2.0 
2.1 
2.2 
2.3 
2.4 

β (deg) 

Section 4 

MC 
4 3 2 1 



Mohamed Roudane et al.: Supersonic Flow Around Asymmetrical Cone of Arbitrary Cross Section. 

 -431- 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

M1=3.00, αx=90°, αy=90°, αz=0°. 

Curve 1 : PG (γ=1.402).  Curve 2 : HT (T0=1000 K) 
Curve 3 : HT (T0=2000 K).  Curve 4 : HT (T0=3000 K) 

 

Fig. 6 Effect of T0 on the MC variation for of the 16 
different sections as a function of the angle β. 

 
In figure 7, we presents the M1 effect on the 

variation of the physical parameters for the section 12 
as function of β, when T0=2000K, αx=90°, αy=90° and 
αz=0°. The 4 curves show respectively the parameters 
variation for M1=3.00 (curve 1), M1=4.00 (curve 2), 
M1=5.00 (curve 3) and M1=6.00 (curve 4). It is noted 
that M1 mainly affects all the parameters in addition 
to the influence of T0, αx, αy and αz. The results 
presented are for the weak shock. Curve 1 in the 
figure 7 represents curve 3 in the figure 5. 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

β (deg) 

0 90 180 270 360 
1.9 
2.0 
2.1 
2.2 
2.3 

Section 5 
MC 

4 3 2 1 

β (deg) 

0 90 180 270 360 
1.9 
2.0 
2.1 
2.2 
2.3 Section 6 

MC 4 3 2 1 

β (deg) 

0 90 180 270 360 
1.9 
2.0 
2.1 
2.2 
2.3 Section 7 

MC 

4 3 2 1 

0 90 180 270 360 
1.8 
2.1 
2.4 
2.7 
3.0 

Section 8 

β (deg) 

MC 
4 
3 
2 
1 

0 90 180 270 360 
1.8 

2.1 

2.4 

2.7 

β (deg) 
Section 9 

MC 
4 
3 
2 
1 

4 

0 90 180 270 360 
1.8 
1.9 
2.0 
2.1 
2.2 
2.3 

β (deg) 

Section 10 MC 

3
 2 1 

0 90 180 270 360 
2.1 

2.4 

2.7 

3.0 

β (deg) 

Section 11 
MC 

4 3 2 1 

0 90 180 270 360 
1.2 
1.6 
2.0 
2.4 
2.8 

β (deg) 

Section 12 MC 4 
3 
2 
1 

β (deg) 

0 90 180 270 360 
2.4 

2.6 

2.8 

3.0 
Section 13 

MC 

4 
3 

2 
1 

0 90 180 270 360 
1.8 
2.0 
2.2 
2.4 
2.6 
2.8 

β (deg) 

Section 14 MC 

4 
3 2 1 

0 90 180 270 360 
1.6 
1.8 
2.0 
2.2 
2.4 

β (deg) 

Section 15 MC 
4 

3 
2 

1 

1 

0 90 180 270 360 1.8 
2.0 
2.2 

β (deg) 
Section 16 

MC 

4 3 2 

0 90 180 270 360 
0 

15 

30 

45 

β (deg) 

Section 12 

θC (°) 

1 
2 

0 90 180 270 360 
0 

15 
30 
45 
60 

β (deg) 

Section 12 

θS (°) 

3 
4 

ψ (°) 

0 90 180 270 360 
0 

10 
20 
30 
40 

β (deg) 

Section 12 
4 
3 
2 
1 

0 90 180 270 360 
1 
2 
3 
4 
5 
6 

β (deg) 

Section 12 M2 

0 90 180 270 360 
1 
2 
3 
4 
5 

β (deg) 

Section 12 4 
3 
2 
1 

T2/T1 

ρ2/ρ1 

β (deg) 

0 90 180 270 360 
1 
2 
3 
4 
5 
6 

Section 12 
4 
3 
2 
1 

0 90 180 270 360 

10 

20 

30 

β (deg) 

Section 12 4 
3 
2 
1 

P2/P1 

0 

0 90 180 270 360 
0.0 
0.2 
0.4 
0.6 
0.8 
1.0 

β (deg) 

Section 12 

1 
2 
3 
4 

P02/P01 

1 
2 
3 
4 

T2/T0 

0 90 180 270 360 
0.0 
0.2 
0.4 
0.6 
0.8 

β (deg) 

Section 12 

4 
3 
2 
1 



 
J. CSME Vol.42, No.4 (2021) 

 -432- 

 

 
 

 
 

 
 

 
 

 
 

 
 

T0=2000 K, αx=90°, αy=90°, αz=0°. 
Curve 1 : M1=3.00. Curve 2 : M1=4.00. 
Curve 3 : M1=5.00. Curve 4 : M1=6.00. 

 

Fig. 7 Effect of M1 on the variation of the flow parameters 
around the cone of section 12 versus β. 

 
Among all the flow parameters, it has been 

chosen to present in the figure 8 the effect of M1 and 
the shape of the cross-section on MC as a function of 
β. The results are chosen for T0=2000 K, αx=90°, 
αy=90°and αz=0°. The 4 curves show respectively the 
variation of MC for M1=3.00 (curve 1), M1=4.00 
(curve 2), M1=5.00 (curve 3) and M1=6.00 (curve 4). 
It is noteworthy that M1 mainly influences MC in 
addition to the effect of T0, αx, αy and αz. The results 
presented are for the weak shock. The curve 1 in 
figure 8 represents the curve 3 in figure 6. On the 
circular section 16, it is clearly seen that the MC does 
not depend on β. This result demonstrates that there 
exists only a single value of MC on the cone surface, 
which is not the case for any other sections whatever 
its geometric shape. The variation shown in section 
16 is the purpose of (Elaichi and Zebbiche, 2018). 
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T0=2000 K, αx=90°, αy=90°, αz=0°. 
Curve 1 : M1=3.00. Curve 2 : M1=4.00. 
Curve 3 : M1=5.00. Curve 4 : M1=6.00 

 

Fig. 8 Effect of M1 on the MC variation of the different 
sections as a function of β. 

 
Figure 9 represents the angle incidence effect, and 

the shape of the cross section on the variation of the 
physical parameters of the section 12 as a function of 
β. The results are chosen for M1=3.00 and T0=2000 K. 
The 4 curves respectively show the variation for 
(αx=90°, αy=90°, αz=0°) (blue curve), (αx=89°, αy=89°, 
αz=1°) (red curve), (αx=85°, αy=85°, αz=3°) (black 
curve) and (αx=80°, αy=80°, αz=12°) (purple curve). It 
is noted that the incidence angle influences mainly all 
the physical parameters. The results are presented for 
the weak shock. The blue curve in figure 9 represents 
the curve 1 in the figure 7. 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

M1=3.00, T0=2000 K. 
: αx=90°, αy=90°, αz=0° 
: αx=89°, αy=89°, αz=1° 
 : αx=85°, αy=85°, αz=3° 

  : αx=80°, αy=80°, αz= 12° 
 

Fig. 9 Effect of incidence angle on the variation of the flow 
parameters around the cone of section 12 versus β. 

 
Figure 10 shows the incidence angle and the 

shape of the cone cross-section effect on the MC as a 
function of β when M1=3.00 and T0=2000 K. The 

0 90 180 270 360 
1 
2 
3 
4 
5 

β (deg) Section 14 

MC 3 2 1 
4 

1 

0 90 180 270 360 
1 

2 

3 

4 

β (deg) Section 15 

MC 3 2 
4 

0 90 180 270 360 
1 

2 

3 

4 

β (deg) Section 16 

MC 

3 2 1 
4 

θC (°) 

β (deg) 

0 90 180 270 360 
0 

10 
20 
30 
40 
50 

Section 12 

0 90 180 270 360 
0 

15 
30 
45 
60 
75 

Section 12 
θS (°) 

β (deg) 

β (deg) 

0 90 180 270 360 
0 

10 
20 
30 
40 

Section 12 
ψ (°) 

0 90 180 270 360 
1 

2 

3 

β (deg) 

Section 12 
M2  

0 90 180 270 360 
1.0 

1.4 

1.8 

2.2 

β (deg) 

Section 12 
T2/T1  

ρ2/ρ1  

β (deg) 

0 90 180 270 360 
1 

2 

3 

4 
Section 12 

0 90 180 270 360 

2 

4 

6 

8 

β (deg) 

Section 12 
P2/P1  

P02/P01  

0 90 180 270 360 
0.4 

0.6 

0.8 

1.0 

β (deg) 

Section 12 

T2/T0  

0 90 180 270 360 
0.3 

0.6 

0.9 

β (deg) 

Section 12 

0 90 180 270 360 
0.0 

0.2 

0.4 

0.6 

β (deg) 

Section 12 ρ2/ρ02  

0 90 180 270 360 
0.0 
0.1 
0.2 
0.3 
0.4 
0.5 

β (deg) 

Section 12 
P2/P02  

MC 

0 90 180 270 360 
1 

2 

3 

β (deg) 

Section 12 

0 90 180 270 360 
0.3 

0.6 

0.9 

β (deg) 

Section 12 
TC/T0  

β (deg) 

0 90 180 270 360 
0.0 

0.2 

0.4 

0.6 
Section 12 

ρC/ρ02  

β (deg) 

0 90 180 270 360 
0.0 
0.1 
0.2 
0.3 
0.4 
0.5 

Section 12 
PC/P02  



 
J. CSME Vol.42, No.4 (2021) 

 -434- 

figure contains 4 curves. The curve in blue shows the 
variation of MC when αx=90°, αy=90°, αz=0°. The 
curve in red is for αx=89°, αy=89°, αz=1°. The curve 
in black is for αx=85°, αy=85°, αz=3°. The purple 
curve is for αx=80°, αy=80°, αz=12°. The infiuence of 
α and the shape of the cross-section on MC variation 
are clearly noticeable. For the circular section 16, one 
always notices that the MC does not depend on β 
when αx=90°, αy=90 °, αz=0°, which is the aim of 
(Elaichi and Zebbiche, 2018). But when α changes 
value, we notice that there is a variation of MC with β 
for all sections including the section 16, and 
consequently all the other physical parameters vary 
with β. The blue curve in the figure 10 shows the 
curve 1 in the figure 8 for comparison. 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 
 

M1=3.00, T0=2000 K. 
: αx=90°, αy=90°, αz=0° 
: αx=89°, αy=89°, αz=1° 
 : αx=85°, αy=85°, αz=3° 

  : αx=80°, αy=80°, αz= 12° 
 

Fig. 10 Effect of α on MC variation for the different 
sections as a function of β. 

 
Given the present work is done for the calculation 

of the supersonic flow parameters, it is very 
important to complete it by the calculating the 
variation of the aerodynamic coefficients. The shape 
of the cross section has shown that there are 6 
aerodynamic coefficients along the 3 axes of flight. 
Three are designed for the aerodynamic force and 
three for the aerodynamic moment. 

The results on the tables 1, 2 and 3 are shown 
only for the section 12 as a typical example of a 
complex 3D section. 

In the table 4, we presented the effect of M1, T0 
and α on the 6 aerodynamic coefficients of all the 
sections chosen in this study. 

On the table 1, we clearly see the T0 effect to HT 
on the 6 coefficients. Likewise, in the tables 2 and 3, 
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the effect of M1 and α on the aerodynamic 
coefficients are respectively noted. 

 
Table 1 :  T0 effect on the 6 aerodynamic oefficients 

of section 12 for M1=3.00 and αx=85°, 
αy=85°, αz=3° 

 PG 
(γ=1.402) 

HT 
T0=1000 K 

HT 
T0=2000 K 

HT 
T0=3000 K 

CT -0.00139 -0.00127 -0.00106 -0.00097 
CL 0.01023 0.00968 0.00878 0.00849 
CD 0.09399 0.08901 0.08098 0.07840 
DP -0.01177 -0.01114 -0.01011 -0.00977 
DT 0.00200 0.00194 0.00184 0.00183 
DR 0.00024 0.00019 0.00014 0.00011 

 
Table 2 : M1 effect on the 6 aerodynamic coefficients 

of section 12 for T0=2000 K, αx=85°, 
αy=85°, αz=3° 

 M1=2.00 M1=3.00 M1=4.00 M1=5.00 M1=6.00 
CT 0.00073 -0.00106 -0.00068 -0.00035 -0.00018 
CL 0.02633 0.00878 0.00313 0.00129 0.00060 
CD 0.25595 0.08098 0.02803 0.01135 0.00524 
DP -0.03027 -0.01011 -0.00360 -0.00148 -0.00069 
DT 0.00882 0.00184 0.00040 0.00010 0.00003 
DR 0.00038 0.00014 0.00011 0.00006 0.00003 

 
Table 3 : Effect of (αx, αy, αz) on the 6 aerodynamic 

coefficients of section 12 for M1=3.00, 
T0=2000 K. 

 
αx=90° 
αy=90° 
αz=0°    

αx=87° 
αy=87° 
αz=2°    

αx=85° 
αy=85° 
αz=3°    

αx=80° 
αy=75°  
αz= 12°    

CT -0.00432 0.00349 -0.00106 -0.00386 
CL -0.01171 0.00937 0.00878 -0.00512 
CD 0.08440 0.08149 0.08098 0.08750 
DP 0.02441 -0.01137 -0.01011 0.01539 
DT -0.01262 0.01133 0.00184 -0.01539 
DR 0.00000 -0.00034 0.00012 0.00101 

 
Table 4 : Aerodynamic coefficients of the 16 sections 

when M1=3.00, T0=2000 K, (αx=85°, 
αy=85°, αz=3°) 

S CT CL CD DP DT DR 
1 -0.0110 -0.0036 0.0403 0.0053 -0.0111 0.0004 
2 -0.0087 -0.0036 0.0304 0.0040 -0.0088 0.0004 
3 -0.0062 -0.0046 0.0224 0.0052 -0.0055 0.0002 
4 -0.0134 -0.0039 0.0517 0.0065 -0.0142 0.0006 
5 -0.0136 -0.0043 0.0584 0.0075 -0.0148 0.0006 
6 -0.0141 -0.0038 0.0632 0.0073 -0.0158 0.0006 
7 -0.0144 -0.0039 0.0662 0.0077 -0.0164 0.0007 
8 0.0078 -0.0080 0.0206 0.0085 0.0081 0.0003 
9 -0.0082 -0.0028 0.0257 0.0037 -0.0077 0.0003 

10 -0.0139 -0.0029 0.0698 0.0067 -0.0162 0.0007 
11 -0.0072 -0.0062 0.0159 0.0058 -0.0064 0.0003 
12 -0.0010 0.0087 0.0809 -0.0101 0.0018 0.0001 
13 -0.0038 -0.0037 0.0061 0.0033 -0.0031 0.0001 
14 -0.0049 -0.0100 0.0303 0.0113 -0.0040 0.0001 
15 -0.0076 -0.0032 0.0222 0.0033 -0.0072 0.0003 
16 -0.0023 0.0019 0.0028 -0.0016 -0.0019 0.0001 

 
Table 4 shows a typical example of the 

calculation of the 6 aerodynamic coefficients of the 
16 selected sections when T0=2000, M1=3.00 and 

(αx=85°, αy=85° and αz=3°). This table presents the 
effect of the 3D cross-section on the 6 coefficients. 
One can choose consequently the suitable form 
according to our need. 

Table 1 represents the difference between the PG 
and HT model on the variation of the 6 aerodynamic 
coefficients. The variation is made as a function of T0 
when M1=3.00 and αx=90°, αy=90°, αz=0°. The PG 
model does not depend on T0 and can be assimilated 
as HT model for low T0<240 K. We note again that 
the HT model is destined to make corrections to the 
PG model when T0>240 K. We can say that our HT 
model is a generalization of the PG model when T0 
will be raised. 

Tables 1, 2, 3 and 4 clearly represent the effect of 
M1, T0, α and the shape of the transeversal cone 
section on the values of the 6 aerodynamic 
coefficients which demonstrate that there is a strong 
maneuverability during the flight according to the 3 
directions since the 6 coefficients are not zero. 
 

CONCLUSIONS 
 

From this study, we can quote the following 
conclusions: 
1. The developed program can process any cross 

section of the 3D cone. Te presentation is limited 
by 16 cross-sections. 

2. T0 is an essential parameter of our HT model. The 
PG model results do not depend on T0. 

3. T0 degrades the parameters θS, T2/T1, P2/P1, ρ2/ρ02, 
P2/P02, ρC/ρ02, PC/P02 and increases the parameters 
M2, ψ, ρ2/ρ1, P02/P01, T2/T0, MC, TC/T0 with respect 
to the results of the PG model and this difference 
increases with the increase of T0. 

4. The flow around a cone of circular cross section 
really depends on one space variable (1D) which 
is θ and does not depend on β. While the flow 
around an arbitrary 3D cross section cone depends 
on two space variables (2D) that are θ and β. The 
presentation is only 3D. 

5. The flow around a cone of circular cross section 
with zero incidences becomes a particular case of 
our modest work. 

6. The PG model gives good results if M1<2.00, 
T0<240 K and θC<20°. 

7. If M1>2.00 or T0> 240 K or θC>20°, the correction 
of the PG model results is necessary, which gives 
the needs to use our HT model. 

8. The supersonic flow around a cone of arbitrary 
cross section is characterized by strong flight 
maneuverability, since there are 6 aerodynamic 
coefficients in the 3 flight directions. 

9. The 6 aerodynamic coefficients presented in this 
work are only those given by the shock wave. 

10. For low M1 approaching to unity, there is the limit 
of having a detached shock wave. This size 
depends on the shape of the cone (that is to say of 
θC) as well as on the values of T0, αx, αy and αz. 
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As a perspective, the supersonic flow around a cone 
of arbitrary cross section and curved with the 
longitudinal direction at HT can be studied. In this 
case one will have the birth of a progressive shock 
and or a progressive Prandtl Meyer expansion. The 
flow in this case is actually of three-dimensional 
calculation, where it depends on three space variables 
(θ, β, z). 
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NOMENCLATURE 

 
M  Mach number. 
V Velocity 
ρ Density 
P Pressure 
T Temperature 
ψ Flow deflection just after the shock  
a Sound velocity 
H Enthalpy 
R Thermodynamic constant of air 
γ Specific heats ratio 
θC Cone surface deviation 
θS Conical shock deviation 
αx Angle of incidence between M1 and the Ox axis 
αy Angle of incidence between M1 and the Oy axis 
αx Angle of incidence between M1 and the Oz axis 
νx Angle of incidence around the Ox axis 
νy Angle of incidence around the Oy axis 
νx Angle of incidence around the Oz axis 
F Aerodynamic force in the Oxyz mark 
X Aerodynamic force along the Ox axis 
Y Aerodynamic force along the Oy axis 
Z Aerodynamic force along the Oz axis 
F’ Aerodynamic force in the Ox'y'z ' mark 
X’ Aerodynamic force along the Ox’ axis 
Y’ Aerodynamic force along the Oy’ axis 
Z’ Aerodynamic force along the Oz’ axis 
G Center of gravity of an elemental triangle  
N Number of points of the cone cross section. 
m Aerodynamic moment relative to the cone leading 

edge in the Oxyz mark 
mx Aerodynamic moment around the Ox axis 
my Aerodynamic moment around the Oy axis 
mz Aerodynamic moment around the Oz axis 
m' Aerodynamic moment relative to the cone leading 

edge in the Ox’y’z’ mark  
m’x Aerodynamic moment around the Ox’ axis 
m’y Aerodynamic moment around the Oy’ axis 
m’z Aerodynamic moment around the Oz’ axis  
CT Trigger force coefficient 
CL Lift force coefficient 
CD Drag force coefficient 
DP Pitchnig moment coefficient 
DY Yaw moment coefficient 
DR Roullette moment coefficient 
[A] Matrix of passage 
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β Polar deviation of the cone cross section surface.  
r Polar Ray  
z Longitudinal abscissa of cone 
x, y Position of a point in the cone cross-section.  
θ Flow angle deviation. 
l Normal unit vector to the cone surface 
L  Longitudinal length of the cone   
HT High Temperature 
PG Perfect Gas 
CP Specific heat at constant pressure 
f1, f2, f3 Nonlinear equations 
i, j, k Angles for calculating f1, f2 and f3 
l To divide 360 degrees into 4 quadrants 
 
Subscripts 
 

1  Upstream shock condition 
2  Downstream shock condition 
0  Stagnation condition 
C  Cone surface parameter 
θ  Cross-sectional component 
r  Radial component 
O  Benchmark position 
S  Shock 
Oij  Triangular elementary surface 
x  Ox axis 
y  Oy axis 
z  Oz axis  
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