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ABSTRACT 
 

In machining process, the quality of surface 
finish is an important requirement for many turned 
workpieces. Thus the controlling of machining 
conditions is very important for improving surface 
quality. This paper proposes an in-process monitoring 
system of surface temperature and tool vibration and 
discusses on surface roughness prediction based on 
surface temperature and tool vibration. The authors 
incorporate a new training scheme to BP (back 
propagation) neural network, namely reinforced 
strategy of variable learning rate (RVLR), to predict 
surface roughness using cutting parameters and 
performance characteristics, surface temperature and 
tool vibration. Finally, the paper shows surface 
roughness prediction results. Compared with SD 
(steepest descent) update method and traditional 
strategy of variable learning rate (TVLR), the RVLR 
method required shorter processing time to converge 
to the global minimum of least mean squared error. 
SD update method lead neural network fall into local 
minimum, 26.18 m2/min2. With either the TVLR or 
the RVLR method, the network was able to avoid 
settling at the local minimum and reach the global 
minimum. However, their respective least mean 
square errors were 9.23 m2/min2 and 8.21 m2/min2 as 
the best-record. In addition, the new learning 
algorithm only required a quarter of the TVLR 
processing time to reach the “stable” region. This 
method would be helpful in selecting cutting 
parameters and controlling of surface temperature 
and tool vibration for the required surface quality. 
 
 
 
 
 
 
 
 

INTRODUCTION 
 

The quality of products has to be monitored in 
each production stage and immediate corrective 
actions have to be taken in case of deviation from 
desired trend. In machining process, surface 
roughness is one of the most important quality 
evaluation responses and a technical requirement for 
mechanical products in most cases. In actual practice, 
Surface roughness is harder to attain and track than 
physical dimensions is, because there are many 
factors which affect the surface roughness, i.e. tool 
variables, workpeice variables and cutting conditions. 
As the turning process involves large numbers of 
parameters, the process control becomes complex and 
it would be difficult to select the appropriate 
parameters for achieving the required quality. A 
considerable number of studies has studied the effects 
of the speed, feed rate, depth of cut and other factors 
on the surface roughness. Neural network models 
were utilized by Ozel and Karpat (2012) to predict 
surface roughness and tool flank wear for various 
different cutting conditions in turning process. 
Regression models were also developed, but the 
neural network models provided more accurate 
surface roughness and tool wear prediction than the 
regression models. Risbood et al. (2003) found that 
the neural network could predict surface roughness 
and dimensional deviation within a reasonable degree 
of accuracy if the cutting force and the acceleration 
of radial vibration of tool holder were taken as a 
feedback. The purpose of studying these factors in 
machining processes is to increase surface quality 
while decreasing cost and time of manufacture. 
Various researchers have developed the surface 
roughness predictive models. Regression analysis and 
neural network-based models were compared to 
investigate surface roughness for various cutting 
conditions in turning by Nalbant et al. (2007). The 
trained neural network models showed better 
predictive surface roughness than various regression 
models. Chien and Yao (1997) developed a neural 
network model for predicting the cutting forces and 
surface roughness under some specified cutting
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conditions. Then the genetic algorithm was adopted 
to find the optimum cutting conditions to obtain the 
maximum metal removal rate (MMRR) based on the 
constraint of surface roughness. An artificial neural 
network was developed by Assadi et al. (2004) to 
acquire the skilled of machinists on-line in turning 
process, and the intelligent system has been proven to 
predict the appropriate cutting parameters after the 
training. 

The cutting temperature and tool vibration are 
key factors which directly affects surface integrity 
according to the relative motion between the tool and 
workpiece. The combined effects of cutting 
parameters, including cutting speed, feed rate, depth 
of cut and cutting tool vibration on surface roughness 
were investigated while employing the analysis of 
variance (ANOVA) by Hessainia et al. (2013). 
ANOVA demonstrates that the feet rate and the 
cutting speed have the highest influence on the 
evolution of machined surface roughness. The 
quadratic model of RSM associated with response 
optimization technique and composite desirability 
was utilized to find optimum cutting parameters and 
tool vibration with respect to announced objectives 
which are the prediction of surface roughness. 
Abouelatta (2012) developed a mathematical model 
for the predicted roughness parameters, based on both 
cutting parameters and machine tool vibrations. The 
in-process monitoring of the cutting force and the 
cutting temperature is utilized by Tangjitsitcharoen 
(2013) to analyze the relation between the surface 
roughness and the cutting condition. Because no 
researcher previously used surface temperature and 
tool vibration as indicators of cutting performance, 
this research proposes an in-process monitoring 
system of surface temperature and tool vibration in 
order to improve surface roughness via the 
controlling of surface temperature and tool vibration 
during machining process. In this paper, the authors 
incorporate a new training scheme to BP neural 
network, namely reinforced strategy of variable 
learning rate (RVLR) to predict surface roughness 
based on cutting parameters and performance 
characteristics including surface temperature and tool 
vibration. Simulating with Ms Visual C++, a series of 
error curves of cutting parameters were required. The 
experimental results show the influence of surface 
temperature and tool vibration on surface roughness. 
Compared with TVLR, the RVLR algorithm also 
shows its advantages, faster convergence speed and 
greater accuracy. 
 
EXPERIMENTAL CONDITIONS AND 

PROCEDURES 
 

The workpiece material chosen for the test 
samples was medium carbon steel AISI 1020 (0.05 m 
diameter). Its chemical composition is shown as 
follows: C, 0.20; Si, 0.15; Mn, 0.72; P, 0.011; S, 

0.023. CNMG 432 TT5100 insert with Sandvik tool 
holder PCLNR 2525M/12 universal turning machine 
tool was used in the experiments. Cutting tool wear is 
an important factor affecting surface quality. In order 
to avoid the affection of cutting tool, the new insert 
with some material was used at each experiment.    

The machining tests were carried out on a lathe 
turning machine in dry condition. In general, changes 
in cutting speed, feed rate and depth of cut affect the 
signal generated during the turning process. Those 
parameters influence surface roughness by a large 
extent. Therefore, the effect of Cutting speed, feed 
rate and depth of cut were taken into consideration in 
order to study surface finishing. Table 1 presents the 
27 sets of cutting parameters chosen for the test 
samples. Among them, the cutting speed is set at 950, 
1150 and 1400 rpm; the feed rate is set at 0.05, 0.1, 
0.15 mm rev−1; the depth of cut is set at 0.5, 1.0 and 
1.5 mm.  

Data acquisition process consists of three 
different data collections which the first is the 
measurement of the tool vibration, the second is the 
temperature measurement on the working material 
and the third is the roughness measurement. 

The tool vibration on the working machine was 
measured with four accelerometers connected with 
NI 9234 USB Data Acquisition Module, and analyzed 
using S & V Measurement Suite Software in order to 
get the acceleration signal in time domain. The 
machining process can be simplified as a cutting 
process of up-and-down (radial) and a feeding 
process of right-and-left (feed). Hence four 
single-axis accelerometers were placed near the 
cutting tool and the workpiece to measure the 
vibration in the radial and feed directions. It was 
observed that there were no chips hitting these 
accelerometers during the machining process. The 
RMS values of the acceleration signal measured in 
two directions were averaged as the input vibration 
value.  

As the infrared thermometers have been used in 
more reports than any other method and there are 
many advantages in the use of infrared sensor. For 
surface temperature measurement, handheld infrared 
thermometer type (OS534E) with a built-in laser 
circle to dot switchable and RS-232 output was used 
and the measurements between cutting tool and 
workpiece surface are repeated three times while 
machining the workpiece.  

The amount of standard surface roughness 
parameter (Arithmetic average deviation from the 
mean line Ra) was carried out using the surface 
roughness tester model Mahr Perthometer (MarSurf 
PS1, produced by Mahr GMbH, Germany). Three 
measurements for surface roughness were made and 
averaged for each test sample. Table 1 shows 
measurement results of 27 sets of cutting parameters. 

Twenty seven (27) sets of data obtained in the 
experiment were used for the training and testing of 
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neural network model. All the data was separated into 
two parts - i) 21 group used to train the prediction 
model and ii) the remaining 6 group used to test the 
validity of models. Surface temperature and tool 
vibration were yielded while machining workpiece, 
whereas they have some influence on surface 
roughness as well as cutting parameters. The 
relationship between these traits and surface 
roughness would be analyzed by correlation 
coefficients.  
 

Table 1 Test samples and measurement results for 
training BP neural network models 

NO. S F D VEx TEx RaEx 

1 1120 0.05 0.5 0.961 62.34 0.856 

2 850 0.05 0.5 0.729 58.81 0.975 

3 630 0.05 0.5 0.692 55.86 1.036 

4 1120 0.10 0.5 1.031 63.01 0.789 

5 850 0.10 0.5 0.929 59.04 0.915 

6 630 0.10 0.5 0.890 56.12 1.004 

7 1120 0.15 0.5 1.172 64.04 0.754 

8 850 0.15 0.5 1.036 60.17 0.901 

9 630 0.15 0.5 0.945 56.76 0.981 

10 1120 0.05 1.0 1.003 63.81 1.245 

11 850 0.05 1.0 0.902 60.18 1.306 

12 630 0.05 1.0 0.861 57.16 1.481 

13 1120 0.10 1.0 1.261 64.05 1.123 

14 850 0.10 1.0 1.123 60.88 1.275 

15 630 0.10 1.0 0.968 57.83 1.304 

16 1120 0.15 1.0 1.293 65.78 0.942 

17 850 0.15 1.0 1.146 61.57 1.076 

18 630 0.15 1.0 1.056 58.17 1.291 

19 1120 0.05 1.5 1.121 67.34 1.472 

20 850 0.05 1.5 1.093 63.42 1.679 

21 630 0.05 1.5 0.993 60.14 1.848 

22 1120 0.10 1.5 1.359 68.34 1.437 

23 850 0.10 1.5 1.159 64.17 1.518 

24 630 0.10 1.5 1.005 60.79 1.766 

25 1120 0.15 1.5 1.577 68.65 1.335 

26 850 0.15 1.5 1.304 64.65 1.401 

27 630 0.15 1.5 1.166 61.32 1.623 

S: Cutting speed (r/min), F: Feed rate ( 310− m/rev), D: 
Depth of cut ( 310− m), VEx: Experimental tool 
vibration ( 2/ sm ), TEx: Experimental surface 
temperature (ºC), RaEx: Experimental surface 
roughness (um). 
 

BACK PROPAGATION (BP) 
NEURAL NETWORK METHODS 

 
In this research, the inputs are cutting 

parameters (cutting speed, feed rate and depth of cut) 
and cutting responses (surface temperature or tool 
vibration), while the output is the surface roughness. 
Gomm et al. (1996) pointed out that BP neural 
network of three layers, namely the neural network 
only contains one hidden layer could be used to 
approximate almost any non-linear function with any 
accuracy if there are enough neurons in the hidden 
layer. Thus one hidden layer was used to constitute a 
three-layer BP neural network for roughness 
prediction. 
 
The Back Propagation Algorithm 

BP neural network’s learning process consist of 
forward propagation and back propagation. In the 
forward process, input signals from input layer pass 
hidden layer and transmit to the output layer. If there 
is a difference which is defined as error value 
between the actual output values and known-correct 
output values, then BP network turns to the process 
of error back propagation. The error value is 
propagated backwards through the network, and the 
sensitivity of each neuron is calculated from the most 
outer layer. The neuron sensitivities of last layer are 
calculated with the following equation in matrix 
form. 

( )( )atnFs −−= MMM 2 ,                   (1) 

Matrix t consists of all target outputs. ( )MM nF  is 
the sensitivity function of respective neuron and is 
expressed as the following. 
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where Sm is the number of neurons in layer m. The 
following equation is used for other layers. 

( )( ) 1T1 ++= mmmmm sWnFs  .                  (3) 

Finally, the weight and bias changes in each 
layer are calculated to reduce the error signal with 
selected update method, which may be referred as 
learning algorithm. 
 
Drawback of Approximate Steepest Descent 
Method 

In Approximate Steepest Descent (SD) method, 
momentum is used to smooth out the oscillations in 
the trajectory towards the optimum location. The 
weights and biases are updated with Approximate 
Steepest Descent method according to the learning 
rate and the momentum coefficient. However, there 
are some disadvantages: 
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(1) BP network is easy to get into the local 
least value, but cannot reach the global optimal 
circumstance. 

(2) Learning speed is slow and network’s 
training takes a long time. 

(3) The network structure is forward 
structure not a nonlinear dynamics system. It is only a 
nonlinear mapping system. 

(4) The selection of iterative step and inertial 
factor is determined by experiences. It maybe brings 
about network oscillation and stop learning 
convergent if it was not selected correct. 
 
Traditional Strategy of Variable Learning Rate 
(TVLR) 

Wong and Hamouda (2003) applied TVLR 
method during BP neural network training process for 
machinability data representation. The strategy was 
concluded as follows. 

a) If the entire squared error increases by 
more than percentage ζ after a weight and bias update, 
then the update is discarded, the learning rate α is 
multiplied by factor ρ (< 1), and the momentum 
coefficient γ is set to zero. 

b) If the entire squared error decreases after 
a weight and bias update, then the weight update is 
accepted and the learning rate is multiplied by factor 
η (>1). If momentum coefficient has been previously 
set to zero, it is reset to its original value. 

c) If the entire squared error increases by 
less than ζ, then the weight and bias update is 
accepted but the learning rate and the momentum 
coefficient are unchanged. 
 
Reinforced Strategy of Variable Learning Rate 
(RVLR) 

The learning rate change coefficient ρ or η is 
chosen according to the entire squared error change 
in traditional strategy of variable learning rate and 
they are decisive factors in regard to the size of the 
weight adjustments made in each cycle. If the chosen 
value of ρ or η is too small, the descent will progress 
in very small steps, significantly increasing the total 
convergent time. In contrast, if the chosen value of ρ 
or η is too large, the searching path will oscillate 
about the ideal path and converges more slowly than 
a direct descent. Moreover, the factor ρ or η should 
be considered in each cycle iteration and the value 
cannot be changed during the training process. The 
authors proposed that the value of ρ or the value of η 
at each training cycle should be under different value 
in accordance with the increment of the entire 
squared error in order to improve the learning rate 
better. The factor ρ is calculated with the following 
equation. 

 

,                      (4) 

Where )(kρ is the value of ρ in the kth training 
cycle and )(kd  represents the increment of the 

entire squared error in the kth training cycle. initialr  

and endr  are the user defined values which indicate 
the entire squared error limit at the initial and the end 
of the training respectively. As general practice, the 

value of initialr  should be larger than endr . 
If the entire squared error decreases after a 

weight and bias update, the learning rate is multiplied 
by factor η(>1). The factor η is calculated with the 
following equation. 

                    

,                       (5)                                                        

Where )(kη  is the value of η in the kth training 
cycle and )(kd  represents the decrement of the 
entire squared error in the kth training cycle.  

The above mentioned strategy required less 
quantity of computational resources. Because the 
values of )(kρ and )(kη are applied to reduce 
training circles. 
 

MODELING AND PREDICTION OF 
SURFACE ROUGHNESS 

 
Simple correlation coefficients between studied 

parameters illustrated in Table 2. Surface roughness 
showed strong and positive association with depth of 
cut (r=0.8869), whereas it exhibited moderate and 
negative correlation with cutting speed (r=-0.3583) 
and feed rate (r=-0.2409). After these traits, surface 
roughness recorded weak and positive association 
with experimental vibration (r=0.1871) and very 
weak and negative relationship with experimental 
temperature (r=-0.0379). Experimental vibration was 
significantly and positively associated with cutting 
speed (r=0.5332), feed rate (r=0.5632) and depth of 
cut (r=0.5757). Experimental temperature was 
strongly and positively correlated with cutting speed 
(r=0.8817) and experimental vibration (r=0.8378), 
but moderately and positively with depth of cut 
(r=0.3849) and feed rate (r=0.2486). From the data 
analysis, it is known that the depth of cut has the 
greatest direct effect on surface quality. Increasing 
cutting speed caused an great increase in surface 
temperature and consequently an decrease in surface 
roughness. And increasing feed rate also caused an 
decrease in surface roughness, but less than cutting 
speed. Results also showed that three different cutting 
parameters have almost same effect on experimental 
vibration. Surface temperature and tool vibration 
were measured as cutting responses while machining 
workpiece, whereas they have some influence on 
surface roughness as well as cutting parameters and 
are namely secondary parameters. In this study, these 

( ) ( )
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two secondary parameters were included as input 
with cutting parameters. 

The experimental data (from NO.1 to NO. 21) 
listed in Table 1 were utilized to train the BP neural 
network. The purpose of network training is to find 
weight values with the least mean square errors. 
Surface temperature and tool vibration have some 
influence on surface roughness and are considered 
secondary parameters as neural network input. In 
order to find their affection on predicted surface 
roughness, three different models were trained with 
TVLR learning algorithm. The 1st model has four 
input variables, including three cutting parameters 
and tool vibration. The 2nd model also has four 
variables, but they are cutting parameters and surface 
temperature. In the 3rd model, both tool vibration and 
surface temperature were used to identify surface 
finish as indicators of cutting performance with 
cutting parameters. After training finished, other 
experimental data was used to test the above models. 
Figure 1 shows the effect of the measured surface 
roughness versus the predicted surface roughness 
with 1st model based on cutting parameters and 
surface temperature. Figure 2 shows the effect of the 
measured surface roughness versus the predicted 
surface roughness with 2nd model based on cutting 
parameters and tool vibration. It is seen that most 
points in Fig. 2 lie closer to the line than Fig. 1. 
Comparing Fig. 1 and Fig. 2, it is known that 1st 
model based on tool vibration had better prediction 
on surface roughness than 2nd model based on surface 
temperature. The effect of measured surface 
roughness versus the predicted surface roughness is 
shown in Figure 3. It is seen that most points lie very 
close to the line. The proposed in-process monitoring 
system of surface temperature and tool vibration is 
more useful to accurately predicted surface 
roughness. 

 
Table 2 Correlation coefficients of studied traits 

S: Cutting speed (r/min), F: Feed rate ( 310− m/rev), D: 
Depth of cut ( 310− m), VEx: Experimental tool 
vibration ( 2/ sm ), TEx: Experimental surface 
temperature (ºC), RaEx: Experimental surface 
roughness (um). 

 

 
Fig. 1 Effect of measured Ra versus predicted Ra 
based on surface temperature 

 

  
Fig. 2 Effect of measured Ra versus predicted Ra 
based on tool vibration  

 

 
Fig. 3 Effect of measured Ra versus predicted Ra 
based on surface temperature and tool vibration  
 

The trained model establishes the relationship 
between cutting parameters (S, F and D) and surface 
finish based on cutting responses (secondary 
parameters). Once cutting parameters and secondary 
parameters are inputted, the predicted surface 
roughness Ra can be easily outputted. Three different 
BP neural networks were utilized to train the 
experimental data listed in Table 1. They were 
approximate steepest descent with momentum (SD), 
traditional strategy of variable learning rate (TVLR) 
and reinforced strategy of variable learning rate 
(RVLR). For consistency, three-layer structure and 

Trait 
name 

S F D VEx TEx RaEx 

S 1      
F ___ 1     
D ___ ___ 1    
VEx 0.5332 0.5632 0.5757 1   
TEx 0.8115 0.1545 0.5471 0.8325 1  
RaEx -0.3583 -0.2409 0.8869 0.1871 0.1558 1 
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the same nodes were used to train the experimental 
data in neural network models. The learning 
condition with ρ =0.95, η =1.05 was chosen to 
predict surface roughness in TVLR. For convenience, 
an adaptive function of the error and the error 
increment on consecutive updates was used as the 
value of ρ  or η  in RVLR. 

The RVLR method has a wider scale selection 
of parameters which shows a higher convergence 
speed with a lower error result for every learning case. 
Besides, the learning scheme of RVLR makes the 
learning process converge almost to the same value
—the global minimum despite the occurrence of a 
small oscillating phenomenon. Figure 4 shows the 
least mean square error of the new learning algorithm 
compared to the recommendation. The SD method 
has led the neural network towards a local minimum, 
around 26.18 m2/min2 mean square error. With the 
best trained- network, the maximum squared errors 
among the data sets with the SD method were 
recorded as 269.14 m2/min2. TVLR and RVLR were 
proven capable of exciting the learning of the 
network towards a new minimal point, if exists. The 
results show that the convergence iterations of TVLR 
were 6750000, but the convergence iterations of 
RVLR were reduced to 2800000. With either TVLR 
or RVLR, the network was able to avoid settling at 
the local minima and converge into its global 
minimum, around 9.0 m2/min2 as the best-record 
mean square error. But their respective least mean 
square errors of two well-trained networks were 9.23 
m2/min2 and 8.21 m2/min2. The maximum squared 
errors were recorded as 287.55 m2/min2 and 269.14 
m2/min2 for the TVLR and RVLR methods 
respectively. In RVLR, when 500000 learning cycles 
were completed (seen in Fig. 4) the learning error 
decreased sharply to 36.08 m2/min2 and kept 
unalterable until 1750000 iterations. Then the error 
converged slowly but continuously and finally to  
8.21 m2/min2.  

In term of processing rate, the RVLR method 
converged into its global minimal point at a faster 
speed compared to the TVLR method. Figure 5 
shows that the RVLR method only required a quarter 
of the TVLR processing time to reach the “stable” 
region. At the begging of training, the entire squared 
error decreasing sharply, the learning rate in TVLR is 
multiplied by factor η =1.05, while RVLR’s learning 
rate multiplied by factor )(kη  (k<500000) between 
1.1 and 1.2. It made the learning error decrease very 
fast to 36.08 m2/min2, but got into the local or weak 
minima. After 1750000 learning cycles, the value of 

)(kη made the solution away from the local or weak 
minima first, finally converged to the global 
minimum, 8.21 m2/min2, only with 600 second time. 
With either TVLR or RVLR, the network was able to 
avoid settling at the local minima and reach the close 

global minimum, but the RVLR method is always 
preferred provided having a reasonable processing 
time consideration. 
 

 
Fig. 4 Least mean square error in training history 

 

 
Fig. 5 Least mean square error in time history 
 

Table 3 Results summary of SD, TVLR and RVLR 
Model error 

of NO. 
22 (%) 

error 
of NO. 
23 (%) 

error 
of NO. 
24 (%) 

error 
of NO.  
25 (%) 

error 
of NO.  
26 (%) 

error 
of NO. 
27 (%) 

SD 8.34 8.29 8.26 8.17 8.23 8.21 
TVLR 4.58 4.62 4.56 4.52 4.53 4.54 
RVLR 4.06 4.10 4.08 3.99 4.03 4.01 

 
The implemented neural network algorithm 

was used to test the remaining data after the training 
procedures. Table 3 shows a summary of the results 
by different methods. It shows the TVLR model’s 
prediction was as good, but the RVLR neural network 
gave the best prediction compared to the others. 
 

CONCLUSIONS 
 

This research proposes a new monitoring 
system to predict surface roughness based on tool 
vibration and surface temperature acquired during 
machining process. The correlation coefficients of 
cutting traits help in estimating the degree of 
relationship which could be used for predicting 
surface roughness. The experimental results show 
that surface temperature and tool vibration can be 



D.-G. Wang et al.: Surface Roughness Prediction Based on Surface Temperature and Tool Vibration. 

-621- 
 

considered as secondary parameters and effectively 
used as indicators of cutting performance. The model 
based on cutting parameters and cutting responses 
(surface temperature and tool vibration) can identify 
surface roughness better than the model only based 
on cutting parameters.  

Traditional strategy of variable learning rate 
(TVLR) was improved by introducing the self-help 
function to the learning algorithm and the RVLR 
method was proved to give better surface roughness 
prediction than SD method and TVLR. With SD 
method, the initial weights and biases have led the 
neural network towards a local minimum, but with 
either TVLR or RVLR, the network was able to avoid 
settling at the local minima effectively and reach the 
global minimum. The learning results showed that the 
RVLR method could predict the surface roughness 
with greater accuracy than TVLR. During simulation 
processes, it was also found that the new learning 
algorithm could accelerate the convergence speed 
helpfully. This method would be helpful in selecting 
cutting parameters and controlling of surface 
temperature and tool vibration for the required 
surface quality. This can also be used for optimization 
of machining conditions. 
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摘要 

機械加工中，許多車削工件對表面品質要求很

高。因此機械加工條件的控制對改善表面品質顯得

非常重要。本文介紹了一個加工過程中表面溫度和

刀具振動的監控系統，並且基於表面溫度和刀具振

動討論了表面粗糙度的預測。作者本文提出了一個

新的BP神經網路學習規則，基於切削參數和切削性

能來預測表面粗糙度，被稱為學習率變數加強方法

（RVLR）。最後，本文給出表面粗糙度的預測結果。

與最速下降法（SD）和學習率變數傳統方法（TVLR）

相比，學習率變數加強方法（RVLR）需要更短的處
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理時間收斂到全域最小值。最速下降法使神經網路

模型陷入局部最小值，26.18 m
2
/min

2
。TVLR或者

RVLR都使網路避免陷入局部最小值而達到全域最

小值。然而，它們各自的最小均方差為9.23 m
2
/min

2

和8.21 m
2
/min

2
。此外，新的學習演算法只需要TVLR

處理時間的1/4達到“穩定”的區域。為了達到表

面品質要求，可以應用此方法選擇切削參數和控制

表面溫度及刀具振動。 

 


