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ABSTRACT 

 
This study deals with the dynamic problem of 

axially functionally graded (AFG) fluid conveying 
cantilevered pipes (FCCPs) aiming at improving 
stability of such fluid structure interaction systems. 
The model presented in the current paper also 
involves the effects of gravity. All material properties 
of the pipe assumed to be power-law functions of 
axial coordinate by incorporating a gradient index 
parameter. By choosing an appropriate value of 
gradient index different material distribution profiles 
such as homogeneous, linear, and nonlinear can be 
achieved. The model, comprised of equation of 
motion and boundary conditions, is solved by 
adopting Galerkin method. The influences of gravity, 
which is related to the mounting orientation of the 
pipe, longitudinal phase distribution profile, and flow 
velocity upon dynamics and stability of AFG-FCCPs 
are discussed in detail through generated numerical 
results. A special focus is also devoted to 
determination of critical flow velocity at which the 
instability occurs. 
 

INTRODUCTION 
 

Along with rapid growth of industrial and 
technological applications of pipes as fundamental 
devices for liquid and gas transportations, the 
mechanical behavior of these elements has been the 
subject of wide number of researches. Nowadays, the 
applications of fluid conveying pipes (FCPs) spread 
from oil exploitation and piping, heat exchanges and 
hydraulic pipelines to micro- and nano-fluidic 
devices (ElNajjar and Daneshmand, 2020; 
Sadeghi-Goughari et al., 2020; Schwengber et al., 
2015). 

 
 
 

 
 Stability analysis of FCPs play an important 
role in preventing possible failures such as leakages, 
fatigue failures and explosions (Sadeghi and 
Karimi-Dona, 2011). Dynamical problem of FCPs, 
which has a fluid structure interaction (FSI) nature, 
aims mainly at finding critical velocities of internal 
flow at which instability occurs. 

It is known that a FCP loses its stability when 
the flow velocity within it reaches a certain critical 
value. The instability behaviors of FCPs are 
significantly influenced by the type of boundary 
conditions used to support them. A pipe supported at 
both ends is a conservative system in which static 
form of instability, called divergence, is expected 
which leads to buckling of the pipe. A 
non-conservative cantilever FCP exhibits dynamic 
type of instability, called flutter, which results in 
large amplitude transverse vibrations. Although 
investigation of pipes containing internal flow has a 
long historical background, most of the recent studies 
are inspired by Paidoussis (1998). A number of 
studies deal with linear (Lee and Park, 2006; Xu et al., 
2010) and nonlinear (Li et al., 2021; Peng et al., 2018; 
Tang, Zhen, et al., 2018; Zhang et al., 2016; Zhen et 
al., 2021) free vibration problems of FCPs. These 
studies focus on computing natural frequencies of 
conservative and non-conservative fluid contained 
pipes with different types of internal flow to 
investigate the stability of the system. In order to 
enhance the stability of FCPs, in a study by ElNajjar 
and Daneshmand (2020) the effects of addition of 
point masses and springs at different locations along 
the pipe on the dynamics of vertically and 
horizontally oriented FCPs are examined. Dagli and 
Ergut (2019) used Rayleigh theory to investigate 
mechanics of fluid contained pipes with different 
non-classical boundary conditions. In studies by 
Abdollahi et al. (2021) and Jiang et al. (2020) effort 
is made to address stability and flexural vibration 
problems of pipes undergoing external and internal 
fluid loadings simultaneously. Szmidt et al. (2019) 
used eddy-current damper to stabilize FCPs with 
fluid flowing with critical velocity within them. On 
the basis of Green function, closed form solutions are 
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proposed for forced vibration problem of pipe 
conveying fluid in a paper by Li and Yang (2014). 
Tang et al. (2020) studied the thermal effects on wave 
propagation characteristics of viscoelastic carbon 
nanotubes conveying fluid with spinning and 
longitudinal motions. In a study by Tang, Yang, et al. 
(2018) the fractional dynamics of FCPs made of 
polymer-like materials which are subjected to the 
supporting foundation excitation is investigated. 

In recent years, along with advances in 
manufacturing technologies, functionally graded 
materials (FGMs) have been put forward as an 
excellent candidate to be used in various engineering 
applications (Mahamood and Akinlabi, 2017; Petit et 
al., 2018). Owing to their superior features such as 
their ability to withstand severe environmental and 
thermal conditions and low stress concentrations, 
FGMs have become more preferred choice than 
traditional homogeneous and laminated composites to 
be employed in industrial and technological 
applications in various forms such as beams, plates 
and shells (Aghazadeh et al., 2018). FGMs can be 
considered as a modern class of composite materials 
in which the volume fractions of constituents vary 
spatially in continuous and smooth manner. Due to 
these outstanding properties of FGMs, the demand 
for these materials to be utilized for piping purposes 
has been raised and consequently much attention has 
been paid to structural analyses of these elements in 
the recent decades. A large number of studies 
regarding dynamics and stability problems of FCPs 
made of FGMs are devoted to the pipes with 
through-the-thickness, i.e. radial, variations in 
material properties (Dehrouyeh-Semnani et al., 2019; 
Deng et al., 2017; Khodabakhsh et al., 2020; Liu et 
al., 2019; Reddy et al., 2020; Tang and Yang, 2018b; 
Zhu et al., 2021; Zhu et al., 2020). Although wide 
variety of studies pertaining to pure structural 
problem of axially functionally graded (AFG) beams 
in absence of fluid flow can be found in the literature 
(Abo-bakr et al., 2021; Ghayesh, 2018; Li et al., 
2017), there is not sufficient effort dealing with AFG 
pipes conveying fluid. It is worth noting that 
AFG-FCPs are more suitable for optimization and 
control purposes in complicated engineering and 
industrial applications. Moreover, AFG-FCPs require 
somewhat different modeling and analysis procedures 
compared to radially functionally graded pipes 
containing internal flow. To clarify this fact, it can be 
mentioned that, unlike radially functionally graded 
pipes, the through-the-length changes of inertia and 
stiffness coefficients which appear in system of 
equations of AFG-FCPs must be taken into account 
when implementing the solution technique. Also, due 
to lengthwise derivatives of these coefficients, new 
terms appear in the system of governing equations 
and boundary conditions. In researches conducted by 
An and Su (2017) and Zhou et al. (2018) linear 
dynamics of AFG-FCPs is addressed. Lu et al. (2020) 

investigated the effects of dynamic nonlinearities on 
the fatigue life of FCPs composed of AFG materials. 
The studies by Ebrahimi-Mamaghani et al. (2020) 
and Dai et al. (2019) are devoted to stability analysis 
of AFG-FCPs undergoing thermal loads. Mirtalebi et 
al. (2019) utilized design flexibility of FGMs for 
vibration control and manufacturing of AFG fluid 
contained pipes. Zhao et al. (2021) examined 
dynamics of AFG-FCPs with conical form. 
Aghazadeh (2021) developed a new model for 
dynamic analysis of conservative fluid contained 
AFG pipes based on a higher order shear deformable 
pipe theory which properly estimates transverse shear 
stress distribution. A novel type of FGM structures 
with improved functionality and design flexibility are 
recently put forward which possess continuous 
change in material properties along two different 
directions (Aghazadeh, 2020; Tang et al., 2019; Tang, 
Ma, et al., 2021; Tang, Wang, et al., 2021). A study 
by Tang and Yang (2018a) focused on the 
examination of dynamics and stability behaviors of 
FCPs made of bi-directional FGMs. 

One of the significant aspects that should be 
considered in modeling and analysis of FCPs, 
especially when it is oriented vertically, is forces due 
to gravity. The effect of gravity is more pronounced 
for long pipes made of materials with low stiffness. 
There are numerous studies in the literature 
addressing influences of gravitational forces on the 
stability of FCPs (Chen et al., 2020; 
Ebrahimi-Mamaghani et al., 2019; ElNajjar and 
Daneshmand, 2020; Ge et al., 2019; 
Rivero-Rodriguez and Pérez-Saborid, 2015) all of 
which, to the best of author’s knowledge, are 
conducted for homogeneous pipes. In the current 
study, the terms which appear in the equation of 
motion of FCPs are retreated and modified to be 
applicable for AFG pipes. 

The motivation of the present study is to put 
forward a dynamical model for predicting stability 
characteristics of AFG-FCPs by taking the gravity 
effects into account. A power-law function, 
employing a gradient index, is used to capture the 
lengthwise variations of material properties. The 
system including equation of motion and boundary 
conditions is derived and then solved by adopting 
Galerkin method. The parametric analyses are carried 
out for a cantilevered metal-ceramic pipe which 
displays flutter type of instability. Detailed numerical 
analyses are conducted to delineate the influences of 
phase distribution profile, gravitational force, and 
flow velocity upon stability and vibrational features 
of axially functionally graded fluid conveying 
cantilevered pipes (AFG-FCCPs). Moreover, a 
special focus is made on estimating critical values of 
the flow velocities at which the system loses its 
stability. 
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FORMULATION 
 

Figure 1 illustrates an AFG-FCCP with length 
L, inner and outer radii ri and ro, in three different 
oriented configurations, i.e., horizontal, vertically 
upward and vertically downward. A fluid with 
velocity Γ flows within the pipe. A gradient color 
scale is used to indicate the smooth material 
gradation through the AFG pipe length. In absence of 
pressurization, gravity, internal damping and external 
tension, the model for homogeneous fluid contained 
pipe which is proposed by Paidoussis (1998) can be 
rewritten for AFG pipes by considering the material 
properties as functions of x1-direction, as follows 

( )

( )

2 2 2
2

2 2 2
1 1 1

2 2 2

1 2 2
1

1

2 0

f

f f

w wI m
x x x

w w wx A m m
x tt

E x

t
ρ

 
+ 

∂ ∂ ∂
Γ

∂ ∂ ∂

∂ ∂ ∂
+ Γ


 

+ + =
∂ ∂∂ ∂

 (1) 

where t is the time, and w denotes transverse 
displacement of the pipe. The modulus of elasticity 
and density of pipe material are denoted by E and ρ, 

respectively. f f fm Aρ=  designates the fluid mass 

per unit length with fA  and fρ  representing the 
flow cross section and fluid density, respectively. A is 
the cross-sectional area and I stands for moment of 
inertia of the pipe. In addition to equation of motion 
given by Eq. (1), the following boundary conditions 
must be satisfied for a cantilevered pipe 
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The governing equation expressed by Eq. (1) 

can be derived by Newtonian or Hamiltonian 
approaches. In the present study, the term associated 
with gravity will be derived using Hamilton’s 
principle which, in absence of work done by external 
forces, postulates that 
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Figure 1. Schematic of axially functionally graded fluid conveying cantilevered pipe oriented (a) horizontally, (b) 
vertically upward and (c) vertically downward. 
 
 
 

where K and U are kinetic and potential energies, 
respectively. K is comprised of kinetic energies 
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associated with motions of both pipe and fluid. U 
involves strain energy of the pipe and potential 
energy due to gravity. Note that, the terms regarding 
kinetic strain energies have already appeared in Eq 
(1). For an AFG-pipe with nonuniform lengthwise 
material distribution, the gravitational potential 
energy Ug can be written as 
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Taking the variation of Ug, applying integration 

by parts, and introducing the resulted term into Eq. 
(3), one can obtain the term pertaining to gravity 
effects. Consequently, governing equation given by 
Eq. (1) can be rewritten to comprise gravitational 
forces as follows 
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Eq. (5) is converted to the one derived by 

Paidoussis (1998) once the variation of material 
constants in axial direction is disregarded. 
Introducing the following dimensionless parameters 
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yields dimensionless form of Eq. (5): 
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where the constituent at the left side of the pipe, x1 = 
0, is indicated by subscript ‘0’. 
 
 

NUMERICAL SOLUTION 
 

In the present study, Galerkin method, which is 
one of the powerful techniques in analyzing 
continuous systems, is adopted to solve governing 
equation expressed by Eq. (7). Using this method, the 
dependent variable ( ),η ξ τ  is approximated as sum 
of separated functions of space and time variables: 
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( )rq τ  here designate generalized coordinates 

of the discretized system and ( )rϕ ξ  are 
dimensionless eigenfunctions of the pipe under 
consideration which must satisfy the corresponding 
boundary conditions. Substituting Eq. (8) into Eq. (7), 
followed by multiplying the results by ( )sϕ ξ  and 
then integrating over the domain [0,1] yields 
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where λr are the rth dimensionless eigenvalues of the 
pipe and a dot denotes differentiation with respect to 
dimensionless time τ. The set of constants appearing 
in Eq. (9) are defined as follows 
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where Z represents a typical material property such as 
E and ρ, and a prime stands for differentiation with 
respect to dimensionless spatial coordinate ξ . From 
the first relation of Eq. (10) for srδ  being 
Kronecker’s delta, it can obviously be seen that 
eigenfunctions satisfy orthogonality conditions. It is 
worth noting that, except bsr, csr, and dsr whose 
evaluation procedures are provided by Paidoussis 
(1998), the other constants are new and exist due to 
dependency of material properties to axial coordinate, 
and can be evaluated in a similar manner. 

By defining vector q containing the unknown 
generalized coordinates, Eq. (9) is recast into the 
following standard form 
Mq + Cq + Kq = 0   (11) 

K, C, and M here are stiffness, damping, and 
mass matrices, respectively, and are given by the 
following expressions 
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where I is the identity matrix, ΛE contains the 
components of E

srδ  with its elements on rth column 

multiplied by 4
rλ  and Iρ, B, Bρ, Bρ’, C, Cρ, CE”, D, 

Dρ, EE’ and Fρ’ are matrices with elements sr
ρδ , srb , 

srbρ , '
srbρ , src , srcρ , ''E

src , srd , srd ρ , 'E
sre  and '

srf ρ , 
respectively. 

For a self-excited motion the unknown 
generalized coordinates q can be defined as 
{ } { } { }* *e e ,iq q qωτ τΩ= =  (13) 

where ω  and Ω are dimensionless eigenfrequencies 
and eigenvalues, respectively, and { }*q  denotes 

corresponding vibration amplitudes or eigenvectors. 
Substitution of Eq. (13) into Eq.(11), leads to the 

following standard generalized eigenvalue problem 

{ } { }* qΩ Ω =2K + C + M 0.  (14) 

Letting determinant of the coefficient matrix of 
eigenvalue problem equal to zero, one can achieve 
the nontrivial solution of Eq. (14) 

{ }det Ω Ω =2K + C + M 0.  (15) 

The eigenfrequencies obtained by 
implementing the abovementioned procedures, are 
complex values due to the damping introduced by 
fluid flow. Imaginary and real parts of ω, denoted by 

( )Im ω  and ( )Re ω , represent decaying rate and 
oscillation frequency of the system, respectively. 
When flow velocity reaches a certain critical value at 
which ( )Im 0ω < , the FCP exhibits unstable 
behavior. 

For a cantilevered pipe, which is studied in the 
current research, eigenfunctions are given as 
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λr are dimensionless eigenvalues of a cantilever 
beam and are computed as the solution of the 
following characteristic equation 
cos cosh 1 0r rλ λ + =  (17) 
 
 

NUMERICAL RESULTS 
 

In this section, based on Galerkin solution 
technique, numerical results pertaining to dynamic 
problem of a metal-ceramic AFG-FCCP are reported. 
Axial variations of AFG pipe constituents are 
captured by assuming it to be made of stainless steel 
(SUS304) at upstream, x1 = 0, and silicon nitride 
(Si3N4) at downstream, x1 = L; with following 
material properties: E0 = 201 GPa, EL = 348 GPa, ρ0 
= 8166 kg/m3, ρL = 2370 kg/m3, where subscripts ‘0’ 
and ‘L’ are used to indicate properties at x1 = 0 and x1 
= L, respectively. The effective typical material 
property denoted by Z, including E and ρ smoothly 
varies according to a power-law function of axial 
coordinate 
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where α is a non-negative parameter called 
power-law index which prescribes through-the-length 
material distribution pattern. A fully ceramic pipe can 
be modeled by letting α = 0 whereas α = 1 implies a 
linear lengthwise change of properties, from metal to 
ceramic. Choosing a value other than 0 and 1 as 
power-law index yields a nonlinear gradation pattern. 
The variations of E and ρ along the pipe length for 
different values of α are illustrated in Figure 2. 
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Figure 2. Longitudinal variations of material 
properties (a) modulus of elasticity E and (b) density 
ρ along AFG-FCP 
 

The convergence and verification analyses of 
the numerical results generated based on the 
procedures developed in the current study is 
conducted by providing critical flow velocities for 
homogeneous and axially functionally graded FCCPs 
in Table 1. Excellent agreement can be seen between 
the results computed by utilizing the techniques 
presented in this study with those provided by 
Paidoussis (1998). The results produced by 
employing different numbers of Galerkin terms N 
suggest that the convergences can be achieved with N 

= 3 for homogeneous and N = 5 for AFG pipes. 
Figure 3 illustrates the influences of 

dimensionless mass ratio βf upon dimensionless 
critical flow velocity ucr in different values of 
gradient index α. Note that the ucr-values for the 
current non-conservative cantilevered system 
corresponds to flutter type of instability which occurs 
when ( )Im 0ω <  and ( )Re 0ω > . Further, it 
should be mentioned that various industrial piping 
systems are recognized by their βf-values; e. g. for a 
carbon steel pipe used in crude oil and natural gas 
pipelines, βf is approximately equal to 0.165 and 
0.0001, respectively (ElNajjar and Daneshmand, 
2020). κp and κf are dimensionless terms associated 
with gravity effects due to pipe and fluid weights, 
respectively. In the current study, for the sake of 
avoiding complexity, κp and κf are assumed to be 
equal, κp = κf = κ. In a pipe mounted horizontally, as 
depicted in Figure 1.a, the gravity effect is neglected 
and hence κ is taken as zero. When the pipe is 
oriented vertically upward as depicted in Figure 1.b, 
the flow velocity and gravity are in opposite 
directions and the gravitational forces induce 
compression on pipe, and consequently κ < 0 for this 
system. κ > 0 represents a pipe with a vertically 
downward orientation, see Figure 1.c, meaning that 
the flow velocity is in the same direction as gravity, 
and the pipe is acted by gravity-induced tension. 
Inspecting Figure 3 it can be found that ucr is an 
increasing function of βf. Moreover, increase in the 
value of κ leads to corresponding increase in ucr, 
postulating that the system is more stabilized in 
higher values of κ. This fact can be justified by 
knowing that as κ gets larger the restoring force 
becomes higher and hence stabilizes the system. In an 
upstanding pipe where κ < 0 the restoring force 
diminishes, and the system loses stability. Comparing 
the results obtained for different values of 
dimensionless gravity parameter κ, it can be 
understood that, in a certain value of power-law index, 
the trend is preserved and the increase in ucr as a 
result of increase in βf takes place in a similar 
manner. 

 
 

Table 1. Critical flow velocities of horizontal AFG-FCCPs with βf = 0.2, and κp = κf = 0. 

Gradient index α  Present, 
N = 2 

Present, 
N = 3 

Present, 
N = 4 

Present, 
N = 5 

Present, 
N = 6 

Paidoussis 
(1998) 

α = ∞ (fully metal)  5.42 5.60 5.60 5.60 5.60 5.60 
α = 2.0  8.80 7.05 6.87 6.86 6.86 - 
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Figure 3. Critical flow velocities of AFG-FCCPs with (a) α = 0 (fully ceramic), (b) α = 0.5, (c) α = 1, (d) α = 2, 
(e) α = ∞ (fully metal). 
 

In order to investigate the dynamic and stability 
behaviors of an AFG-FCCP in different values of 
gradient index α, the curves of Figure 3 belonging to 
horizontal pipe are replotted in Figure 4. Generally, 
smaller values of α indicate a ceramic-dominant pipe 
and hence yield enhanced stability. However, an 
exception can be seen at a certain value of βf, in this 
case at βf ≈ 0.3, where the pure metal pipe starts to 
display more stabilized behavior compared to other 
pipes with 0α ≠ . In addition to above-mentioned 

findings, it can be observed that in some cases 
S-shaped segments exist in ucr-βf curves at which at 
certain values of βf three corresponding values of ucr 
are seen. One of the examples of this phenomena is 
shown by a vertical dashed line drawn at βf = 0.67 in 
Figure 3.e which intersects the curve for horizontal 
pipe, κp = κf = 0, at three points. The S-shaped 
regions imply destabilization – restabilization – 
destabilization (D-R-D) behavior meaning that the 
system gains stability at u > ucr and then, by further 



 
J. CSME Vol.43, No.2 (2022) 

-160- 
 

increasing the flow velocity, it loses its stability 
again. 
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Figure 4. Critical flow velocity of AFG-FCCP with κp 
= κf = 0. 
 

Depicted in Figure 5 are the Argand diagrams 
for horizontally mounted AFG cantilevered pipes 
with different α-values which are generated by taking 
βf = 0.67. For the sake of clarity, the flow velocity 
values are specified close to the corresponding data 
points, and some regions are magnified. Argand 
diagrams are useful for analyzing the effects of 
velocity on vibrational features of systems such as 
eigenfrequencies and instability. The critical flow 
velocity can be found from Argand diagrams by 

determining the velocities at which the curves 
intersect ( )Re ω -axis and hence ( )Im ω  gets 
negative. From Figure 5 it can be understood that in 
all values of power-law index, the smallest ucr is seen 
to belong to the first mode, and at a higher value of 
flow velocity than critical one, an AFG-FCCP 
experiences instability in its second mode of 
vibration. Further, it can be clearly observed that all 
curves start from ( )Im 0ω = , i. e. ( )Re ω -axis, 
when u = 0, which can be justified by the fact that 
damping of the system originates from the term 

22 /fu β ξ τη∂ ∂ ∂  in Eq. (7) and in absence a flow it 
becomes zero, representing an undamped system. For 
nonzero values of u the damping exists and 
consequently ( )Im ω becomes nonzero. Moreover, 
the D-R-D region discussed in the foregoing 
paragraph can also be seen in Figure 5.e, where the 
Argand curve for the first mode intersects the 
horizontal axis three times. For the purpose of 
investigating gravity effects, the results of Figure 5.d 
for α = 2 is regenerated in Figure 6 for upstanding 
AFG-FCCP with κ = -3. The critical flow velocities 
for these two cases can be read from Argand 
diagrams which also are the same as those of Figure 
3.d. Comparing the Argand diagrams of horizontally 
and vertically oriented AFG-FCCPs, one can figure 
out that the trend is preserved in both cases.
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Figure 5. Argand diagrams for AFG-FCCPs with βf = 0.67, κp = κf = 0, and (a) α = 0 (fully ceramic), (b) α = 0.5, 
(c) α = 1, (d) α = 2, (e) α = ∞ (fully metal).
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Figure 6. Argand diagram for an AFG-FCCP with βf 
= 0.67, κp = κf = -3, and α = 2. 
 
 

CONCLUSION 
 

The current study aims at putting forward a 
new model and analysis procedure for dynamic and 
stability problems of AFG-FCCPs in presence of 
gravity effects. After derivation of the system of 
governing equation and boundary conditions, it is 

solved by employing Galerkin method which 
necessitates the evaluation of new integrals due to 
axial variation of material constants. 
Through-the-length phase distribution pattern is 
assigned using a power-law-function incorporating a 
power-law index which delineates the form of 
material variation. ucr-βf plots as well as Argand 
diagrams in different values of dimensionless gravity 
term κ and gradient index α are provided to 
investigate the effects of material gradation and 
gravity on the dynamics of AFG-FCCPs including 
critical flow velocities and frequencies of such FSI 
systems. 

The numerical results reveal that power-law 
index α has a significant effect on stability behavior 
of the AFG pipes which make functionally graded 
materials to be considered as a promising choice for 
fluid conveying applications, especially for control 
and optimization purposes. The variations of ucr with 
respect to α depends on the constituents used to 
fabricate the AFG pipe at its left and right ends. For 
the current metal-ceramic AFG pipe better stability 
performance is observed in smaller α-values with 
ceramic phase being dominant. The exception for this 
trend is seen to occur at some values of 
dimensionless mass βf at which a homogeneous metal 
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pipe exhibits more stabilized behavior than other 
pipes with nonzero values of power-law index. 

The gravity effect is studied by generating 
results at different values of dimensionless gravity 
parameter κ. This parameter is a measure of weight of 
pipe and fluid and has negative, zero and positive 
values for upstanding, horizontal and down standing 
pipes, respectively. The results suggest that critical 
flow velocity is an increasing function of κ. To justify 
this fact, it should be mentioned that higher κ-value 
results in larger restoring force which 
correspondingly yields more stabilized system. 
Moreover, the presented Argand diagrams show that 
the variations in eigenfrequencies in different modes 
preserve the trend as α, κ or both change. 

The D-R-D behavior represented by S-shaped 
regions in ucr-βf plots implies that the system 
restabilizes at velocities beyond ucr and then 
destabilizes again with further increase in velocity. 
This behavior is also identifiable from Argand 
diagrams when a curve intersects ( )Re ω  axis at 
three points. Inspecting the D-R-D regions, it can be 
concluded that these regions are formed as the 
composition of the pipe becomes or gets close to 
homogeneous. D-R-D regions are clearly be seen in 
all values of κ in the plots related to fully ceramic or 
fully metal pipes and also at α = 0.5 and 1 at certain 
values of κ. 
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