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ABSTRACT 

 
    The Revolute-Spherical-Spherical-Revolute- 
Spherical-Spherical joint or RSSR-SS linkage is one 
of the most basic spatial multi-loop linkages in terms 
of its construction and its kinematics.  In the 
authors’ original work, a small-scale optimization 
model was presented and demonstrated for 
defect-free RSSR-SS linkage motion generation.  
By small-scale, we mean that the optimization model 
does not incorporate a general RSSR-SS kinematic 
displacement model and therefore, no function to 
explicitly minimize precision position error.  In this 
work, a general RSSR-SS displacement model is 
fully incorporated in an optimization model to 
produce, for the first time, a large-scale optimization 
model with explicit precision position error 
minimization.  This optimization model also 
includes constraints to eliminate order, branch and 
circuit defects-defects that are often encountered in 
classical dyad-based motion generation.  With this 
large-scale optimization model, the dimensions of 
defect-free RSSR-SS linkages required to 
approximate precision positions with minimum error 
are calculated.  Therefore, the novelty of this work 
is the first-time development of an RSSR-SS motion 
generation model with a minimum error function that 
simultaneously considers order, branch and circuit 
defect elimination. In addition to presenting and 
demonstrating the large-scale optimization model, 
this work also conveys both the benefits and 
drawbacks realized when implementing the RSSR-SS 
optimization model on a personal computer using the 

commercial mathematical analysis software package 
Matlab. 

INTRODUCTION 
 
The RSSR-SS Linkage 
    The Revolute-Spherical-Spherical-Revolute- 
Spherical-Spherical joint or RSSR-SS linkage 
(Figure 1) is a particular type of spatial multi-loop 
linkage.  Because this linkage is comprised of three 
link pairs or dyads (2 R-S dyads and 1 S-S dyad) it is 
more structurally sound in caparison to single-loop 
four-bar spatial linkages and therefore more capable 
of supporting loads. Because single loop spatial 
linkages are comprised of only two dyads, they 
cannot match the structural stability of multi-loop 
linkages.   
     The RSSR-SS linkage is one of the most basic 
spatial multi-loop linkages in terms of construction 
and kinematics.  Regarding basic construction, the 
RSSR-SS linkage is comprised of only 6 rigid links 
interconnected by 2 revolute joints and 4 spherical 
joints.   In addition, this linkage requires no specific 
construction schemes for assembly (unlike spherical 
linkages or Bennett’s linkage for example).  
Regarding basic kinematics, fully-controlled coupler 
link motion (the coupler link is the link that includes 

1p  in Fig. 1) of the RSSR-SS linkage is achieved by 
controlling the rotation of a single revolute joint.  
The RSSR-SS linkage is a simple, low-cost 
alternative to the six degrees of freedom robotic 
Stewart platform manipulator (Dasgupta and 
Mruthyunjaya, 2000).  
 
Developments in RSSR-SS Linkage Design and 
Analysis 
    Contributions in the areas of RSSR-SS linkage 
design and analysis include a computer-aided method 
to design order and branch defect-free RSSR-SS 
linkages to achieve four partially exact and partially 
approximate coupler positions (Sandor  et al.,1986).  
A dyad-based optimization model was presented for 
the kinematic analysis and design of adjustable 
RSSR-SS linkages to approximate combinations of 
prescribed coupler positions, velocities and 
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accelerations (Russell and Sodhi, 2003a).  A 
dyad-based small-scale optimization model was 
presented for RSSR-SS motion generation (Shen et 
al., 2014).  A combined analytical-numerical model 
was developed for the kinematic displacement 
analysis of RSSR-SS linkages (Russell and Sodhi, 
2003b).   Also, a fully analytical model was 
developed for the kinematic displacement and 
velocity analysis of RSSR-SS linkages (Shen et al., 
2012).   
    While the noted works all address various 
important design or analysis aspects of the RSSR-SS 
linkage, they each have particular limitations that 
make the contribution of this work relevant.  For 
example, the work of Sandor et. al. presents a method 
that requires computer-aided design software for 
implementation (Sandor  et al.,1986).  The works 
of Shen et al. and Russell and Sodhi do not include 
constraints to explicitly minimize precision position 
error or ensure the elimination of order, branch and 
circuit defects (Shen et al., 2014; Russell and Sodhi, 
2003a).  The works of Russell and Sodhi and Shen 
et al. were not developed to calculate the dimensions 
of RSSR-SS linkages.  Rather, being kinematic 
analysis models, they are used to analyze RSSR-SS 
linkages of known dimensions (Russell and Sodhi, 
2003b; Shen et al., 2012). 
 
Scope of Work 
    The novelty of this work is the first-time 
development of an optimization model for RSSR-SS 
motion generation that simultaneously considers 
precision position error minimization and order, 
branch and circuit defect elimination.  This work 
also conveys both the benefits and drawbacks 
realized when implementing the RSSR-SS 
optimization model on a personal computer using the 
commercial mathematical analysis software package 
Matlab. 

 

Figure 1 RSSR-SS linkage (left) with joint 
descriptions and (right) with displacement variables 

 
 

GENERAL KINEMATIC 
DISPLACEMENT MODEL FOR THE 

RSSR-SS LINKAGE 
 

     A fully-analytical kinematic displacement 
model was presented for the RSSR-SS linkage (Shen 
et al., 2012).  The displacements of moving pivots 

1a  and 1b  result from the rotation of links 0 1-a a  
and 0 1-b b  about their fixed-pivot joint axes by 
displacement angles θ  and φ  (Fig. 1).   The 
displacements of 1a  and 1b  are given by 

( )
0, 1 0 0Rθ

 = − + aua a a a  (1) 

( )
0, 1 0 0Rφ

 = − + bub b b b  (2) 

In these two equations, 
0,Rθ

 
 au  and 

0,Rφ
 
 bu  are 

3x3 spatial rotation matrices about the fixed pivot 
axis vectors 

0au  and 
0bu  respectively (Fig. 1).   

The general form of the spatial rotation matrix 
(considering a rotation axis vector u  and a 
displacement angle δ ) is 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

2

2
,

2

cos sin sin
sin cos sin
sin sin cos

x x y z x z y

x y z y y z x

x z y y z x z

u v u u v u u u v u
R u u v u u v u u v u

u u v u u u v u u v
δ

δ δ δ δ δ δ
δ δ δ δ δ δ
δ δ δ δ δ δ

 + − +
   = + + −   
 − − + 

u

  (3) 
where ( ) ( )1 cosv δ δ= − . 
     The RSSR-SS kinematic displacement model is 
completed by including equations for the 
displacements of RSSR-SS moving pivot 1c  and 
coupler point 1p  (Fig. 1) (Shen et al., 2012).  
These equations are 

( )( )0, , , 1 0 0R R Rγ ω θ
    = − + − +    a au w uc c a a a a  (4) 

( )( )0, , , 1 0 0R R Rγ ω θ
    = − + − +    a au w up p a a a a  (5) 

It can be observed from the given spatial rotation 

matrices 
0,Rθ

 
 au , ,Rω  w  and  ,Rγ  au  that 

three distinct and simultaneous rotations comprise a 
single coupler link displacement in the RSSR-SS 
linkage (Shen et al., 2012).  These rotations and 
their corresponding rotation axis vectors are 
illustrated in Figure 2.  The coupler link rotates 
about the driving link fixed pivot axis vector 

0au  

by the driving link displacement angle θ .  This 
rotation displaces the moving pivot 1a  and the axis 

1au  to a  and 
1
′au  respectively (Fig 2a).  The 

coupler link also rotates about a vector w  by a 
displacement angle ω . Vector w  is a unit vector 
orthogonal to the plane including vectors 

1au  and 

1
′au .   This rotation achieves the final moving pivot 

location b  and displaces the axis 
1
′au  to 

1au  (Fig 

2b).  Lastly, the coupler rotates about a vector au  
by a displacement angle γ .  This rotation achieves 
the final moving pivot location c  and coupler point 
location p  (Fig 2c).        
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     Vector au  is produced by the displaced 
moving pivots a  and b (therefore 

( )= − −au b a b a ).  Additionally, vector w  (a 
coupler rotation axis vector formed by the cross 
product 

1
′ ×a au u ) is  

defined as   

1

1

′ ×
=

′ ×
a a

a a

u u
w

u u
                            (6) 

where 

1 10,Rθ
 ′ =  aa u au u  (7) 

Vector 
1au  is produced by the initial moving pivots 

1a  and 1b  (therefore ( )
1 1 1 1 1= − −au b a b a ).  

Being spatial rotation matrices, both ,Rω  w  and 

,Rγ  au  are identical in form to Equation (3).   

     The RSSR-SS variables 0a , 1a , 
0au , 0b , 

1b , 
0bu , 0c , 1c  and 1p  are all 3x1 vectors 

containing natural coordinates-spatial Cartesian x, y 
and z-components. 
 

 
Figure 2 RSSR-SS (a) 

0
-θ au , (b) -ω w  and (c) -γ au  coupler rotations 

 
 

LARGE-SCALE OPTIMIZATION 
MODEL FOR DEFECT-FREE RSSR-SS 

MOTION GENERATION 
 
What makes the optimization model in this work a 
large-scale model is that the entire general 
displacement model presented in the previous section 
is incorporated in it.  This optimization model 
includes the objective function 

( ) { }2 2 2* * *

2

N

j j j j j j
j

f
=

= − + − + −∑X p p q q r r  (8) 

In Equation (8), 
( )0 00 1 0 1 0 1 1 2 1 1 2 1 1 2 1= , , , , , , , , , ,N N Nθ θ φ φ γ γ− − − − − −a bX a a u b b u c c   

which are all of the design variables for the RSSR-SS 
linkage (Fig. 1).  Variables *

jp , *
jq  and *

jr  in 
Equation (8) represent the precision position 
coordinates and variables jp , jq  and jr   include 
the coupler position coordinates achieved by the 
calculated RSSR-SS linkage design. The equations 
for the displaced coupler points jq  and jr  are 

identical in form to Equation (5) where p  and 1p  
are replaced with q  and 1q  respectively (or r  

and 1r ). 
Equation (8) allows for the direct minimization 

of the error between the precision positions and the 
coupler positions achieved by the calculated 
RSSR-SS linkage design.  An objective function 
having this capability is ideal since the linkage design 
should approximate the precision positions as closely 
as possible.  As noted earlier, the authors’ prior 
RSSR-SS optimization models do not incorporate the 
general RSSR-SS kinematic displacement model and 
therefore include no function to explicitly minimize 
precision position error (Shen et al., 2014; Russell 
and Sodhi, 2003a). 

Along with the objective function, the 
optimization model includes three kinds of equality 
constraints.  Equations (9) and (10) are unit vector 
constraints for joint axis vectors 

0au  and 
0bu  (Fig. 

1).   

( ) ( )0 0

T
1 0− =a au u   (9) 

( ) ( )0 0

T
1 0− =b bu u   (10) 

Equations (11) and (12) are orthogonality constraints 
to ensure that links 1 0-a a  and 1 0-b b  are 
orthogonal to joint axis vectors 

0au  and 
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0bu respectively throughout RSSR-SS motion (Fig. 
1).   

( ) ( )
0 0 0, 2

T

j j N− = =au a a    (11) 

( ) ( )
0 0 0, 2

T

j j N− = =bu b b    (12) 

Equations (13) through (18) are constant length 
constraints for links 1 0-a a , 1 0-b b , 1 0-c c  and 
coupler link distances 1 1-a b , 1 1-a c  and 1 1-b c   
respectively (Fig. 1).  The displaced moving pivots 

ja , jb  and jc  are calculated using Equations (1), 
(2) and (4) from the RSSR-SS kinematic 
displacement model.   

( ) ( ) ( ) ( )0 0 1 0 1 0 0, 2
T T

j j j N− − − − − = =a a a a a a a a 

 (13) 
( ) ( ) ( ) ( )0 0 1 0 1 0 0, 2

T T
j j j N− − − − − = =b b b b b b b b 

 (14) 

( ) ( ) ( ) ( )1 1 1 1 0, 2
T T

j j j j j N− − − − − = =a b a b a b a b   

 (15) 

( ) ( ) ( ) ( )0 0 1 0 1 0 0, 2
T T

j j j N− − − − − = =c c c c c c c c 

 (16) 

( ) ( ) ( ) ( )1 1 1 1 0, 2
T T

j j j j j N− − − − − = =a c a c a c a c 

 (17) 

( ) ( ) ( ) ( )1 1 1 1 0, 2
T T

j j j j j N− − − − − = =b c b c b c b c 
 

 (18) 
  The RSSR-SS optimization model also includes 
three kinds of inequality constraints.  Inequality (19) 
eliminates branch defects in the RSSR-SS linkage 
loop 0 1 1 0- - -a a b b  because it ensures a constant 
cross product of link 0b - b  and distance 0b - a  
(Balli and Chand, 2002; Mallik and Ghosh, 1994).    
A change in branch would result in a change in sign 
of the cross-products.  Likewise, Inequality (20) 
eliminates branch defects in the RSSR-SS linkage 
loop ( ) ( )0 1 1 1 0 0- - 0.5 - 0.5c c a + b a + b .  Inequality 
(21) eliminates order defects (Balli and Chand, 2002; 
Mallik and Ghosh, 1994) because it ensures constant 
counter-clockwise crank rotation (or clockwise 
rotation if 1j jθ θ −<  is used).  

( ) ( ) ( ) ( )0 0 1 0 1 0 0, 2j j j N − × − ⋅  − × −  > =  b b a b b b a b 

 (19) 

( ) ( ) 1 1
0 0 1 0 0

+ + 0, 2
2 2

j j
j j N

     − × − ⋅ − × − > =         

a b a bc c c c c c 

 (20) 
1 2

2
j j

N

j N
θ θ
θ π

−>
= <



 (21) 
This combination of objective function and 

inequality constraints allows for the direct 
minimization of precision position error while 

simultaneously mitigating order and branch defects.  
And by including the entire closed-loop RSSR-SS 
kinematic displacement model in the optimization 
model, circuit defects are also mitigated (Balli and 
Chand, 2002; Mallik and Ghosh, 1994).  In 
comparison, defect elimination cannot be ensured in 
RSSR-SS design methods where individual dyads are 
calculated and then assembled to produce the 
RSSR-SS linkage (Russell and Sodhi, 2003a; Sandor 
et al.,1986).   For this work, this large-scale 
RSSR-SS optimization was implemented in the 
commercial mathematical analysis software Matlab. 
 

OPTIMIZATION MODEL FILE SIZE 
COMPARISON IN MATLAB 

     
     The RSSR-SS optimization model presented in 
this work was codified in the commercial 
mathematical analysis software package Matlab and 
solved using the interior-point algorithm for 
constrained nonlinear optimization problems 
(Mathworks, 2018).  While the RSSR-SS kinematic 
model and optimization model are given in matrix 
form, the full algebraic expansion of these models is 
required prior to solution calculation in Matlab. 

The interior-point algorithm requires both the 
gradient and the Hessian of a constrained 
optimization model’s objective function and 
nonlinear constraints (Mathworks, 2018).  If the 
gradients and Hessians are not explicitly provided by 
the user, they will be estimated in Matlab.  But as 
with any estimation, there is a possibility that it will 
poorly reflect reality.  This possibility becomes 
more probable as the scale of the optimization model 
grows. Therefore, the best optimization model 
gradient and Hessian formulations would be algebraic 
formulations provided by the user (Mathworks, 2018).  
However, it is when algebraic gradients and Hessians 
are included in the RSSR-SS optimization model that 
implementation challenges become evident.  

Table 1 includes the files sizes in Matlab of the 
fully-expanded RSSR-SS optimization model, its 
gradients and its Hessians formulated for 4 precision 
positions.  The total file size of the fully-expanded 
optimization model (the ( )f X  column in Table 1) 
is 22.262 megabytes.  An optimization model of this 
size is very manageable in Matlab on a 64-bit 
personal computer in terms of the memory required 
for solution calculation.  The total size of the 
fully-expanded optimization model and gradients (the 

f∇  column in Table 1) is 7.3 gigabytes.  An 
optimization model of this size remains manageable 
in Matlab on a 64-bit personal computer.  However, 
the total size of the fully-expanded optimization 
model and gradients and Hessians (the ( )fH  
column in Table 1) is 141 gigabytes-a size that makes 
the complete optimization impractical for use in 
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Matlab on even high-end personal computers.  
Therefore, balancing the need to produce a robust 

but pc-manageable large-scale RSSR-SS optimization 
model resulted in the development of a 4-position 
RSSR-SS optimization model that includes gradients 
(but no Hessians) for a demonstration in this work. 
 
Table 1 Equation, gradient and Hessian file sizes (in 
MB for 4N =  coupler positions) in Matlab  

Eq. No. ( )f X  f∇  ( )fH  

8  7.692 2796 *62542 
9 0.001 0.001 0.004 

10 0.001 0.001 0.004 

11 0.003 0.045 0.219 

12 0.003 0.051 0.240 

13 0.003 0.093 1.212 

14 0.004 0.102 1.320 

15 0.006 0.162 3.624 

16 2.565 773.262 *17298  

17 2.562 773.175 *17295 

18 2.565 773.175 *17295 

19 0.009 0.339 5.703 

20 6.848 2170 *27363 

sum 22.262 7286 *141805 
* estimated minimum file size 

 
EXAMPLE 

 
     Because the large-scale RSSR-SS optimization 
model has been formulated for only 4 precision 
positions (for the reasons explained in the previous 
section), an RSSR-SS linkage was designed to 
approximate the 4 positions in Figure 3.  The 
(dimensionless) coordinates for these positions 
appear in Table 2.  The objective in this example is 
to design a branch, order and circuit defect-free 
RSSR-SS linkage to approximate these positions. 

     Table 3 includes the initial values and 
calculated values for the RSSR-SS linkage 
dimensions.  The initial values were not determined 
arbitrarily, but judiciously by graphically visualizing 
the precision positions in 3D space.  By graphically 
visualizing the precision position in 3D space using 
Computer Aided Design (CAD) software, one can 
sketch spatial RSSR-SS linkages from which initial 
values are selected.  Using this approach, the initial 
RSSR-SS dimension values for the optimization 
model are specified far more judiciously than they 
would by random guessing. 
     Table 4 includes the coupler positions achieved 
by the RSSR-SS linkage design (Figure 4).  Table 5 
includes the scalar differences between the precision 
positions and the coupler positions achieved by the 
RSSR-SS linkage design. Figure 5 includes plots of 
displacement angles φ   and γ  with respect to the 
driving link displacement angle θ .  As shown by 
the continuity of the displacement angle plots in Fig. 
5 and the coupler positions achieved by the RSSR-SS 
linkage design in Fig. 4 and Table 4, it is free of order, 
branch and circuit defects over the calculated driving 
link rotation range. 

 
Figure 3 RSSR-SS precision positions 

 
Table 2 Precision position coordinates 

Pos. # *p   *q   *r  

1 0, 0, 0 5, 0, 0 0, 0, 5 
2 1.416, −1.677, 0.881 6.374, −2.173, 1.290 0.952, −2.227, 5.828 
3 2.388, −5.007, 2.165 6.918, −6.756, 3.356 1.088, −5.087, 6.992 
4 0.196, −9.195, 3.184 3.081, −12.902, 4.898 −0.174, −7.342, 7.813 
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Table 3 Initial and calculated RSSR-SS linkage variable values 
variable initial values calculated values 

0a  −5, −10, 10 −1.814, −7.936, 7.795 

1a  5, −5, 5 4.144, −6.723, 4.593 

0au  −0.5, −0.5, −0.5 −0.428, −0.216, −0.878 

0b  −10, −5, 5 −9.308, −4.335, 4.491 

1b  −5, 5, 5 −3.784, 0.323, 4.593 

0bu  0.5, 0.5, 0.5 −0.136, 0.233, 0.963 

0c  −5, −10, −5 −4.794, −8.798, −2.924 

1c  −5, −5, −5 −0.628, −4.109, −0.569 

1 2θ − , 1 3θ − , 1 4θ −  40º, 80º,120º 21.501º, 57.992º, 118.746º 

1 2φ − , 1 3φ − , 1 4φ −  −20º,−30º,−40º −16.303º, −35.327.º, −43.095º 

1 2γ − , 1 3γ − , 1 4γ −  −10º,−15º,−20º −10.762º, −21.344º, −12.970º 

Number of Iterations: 253       Elapsed Time: 8867 seconds 

 

 
Figure 4 RSSR-SS linkage design at the achieved coupler positions 1 through 4 (Figs. 4a through 4d 
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respectively) 
Table 4 Coupler position coordinates achieved by the RSSR-SS linkage design  

Pos. # p   q   r  

1 0, 0, 0 5, 0, 0 0, 0, 5 
2 1.420, −1.681, 0.876 6.369, −2.256, 1.294 0.948, −2.136, 5.833 
3 2.379, −4.995, 2.173 6.940, −6.685, 3.333 1.083, −5.181, 6.998 
4 0.188, −9.234, −3.176 3.137, −12.859, 4.955 −0.215, −7.307, −7.772 

 
Table 5 Scalar differences between he prescribed and achieved coupler positions  

Pos. # * −p p  * −q q  * −r r   

1 0, 0, 0 0, 0, 0 0, 0, 0 
2 0.004, 0.004, 0.005 0.005, 0.083, 0.004 0.004, 0.091, 0.005 
3 0.008, 0.012, 0.008 0.021, 0.071, 0.022 0.005, 0.095, 0.006 
4 0.007, 0.039, 0.008 0.056, 0.043, 0.057 0.041, 0.035, 0.040 

 

 
Figure 5 Driven link displacement angles (versus driving link rotation) for RSSR-SS linkage design 

 
DISCUSSION 

 
     While the authors formulated an optimization 
model where all of the linkage dimensions are 
calculated, the user is free to exclude any dimension 
from among those to be calculated and prescribe 
them instead (e.g., fixed pivots 0a , 0b  and 0c ).  
Any excluded dimension will reduce the size of the 
gradients and Hessians of the optimization model. 
     The particular computing platform used to 
develop and run the 3-position RSSR-SS 
optimization model was a 64-bit Windows laptop 
with 16 gigabytes of memory and a 2.1 GHz 
processor.  The amount of memory required to run a 
constrained optimization model is largely dependent 
on the number of variables included in the model.  
While there are only 33 specific types of variables in 
the optimization model used in Section 5, these 
variables appear over 1.5 million times in Equations 

(8) through (20) (for N=4) alone.   
     From Table 1, it can be observed that the 
largest equations, gradients and Hessians include 
either the displaced moving pivot c  from Equation 
(4) or the displaced coupler point p  from Equation 
(5). Both equations include the coupler rotation 
matrix ,Rω  w  which includes the rotation axis 
vector w  from Equation (6).  The chief contributor 
to the sizes of Equations (8), (16) through (18) and 
Inequality (20) is the inclusion of the rotation axis 
vector w . If an alternate analytical kinematic 
RSSR-SS displacement model could be formulated 
that does not require this coupler rotation, then it is 
possible that a much smaller and subsequently more 
manageable RSSR-SS optimization model could be 
produced.  

Another possible option is to consider an 
alternate solution algorithm.  Evolutionary 
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Algorithms are algorithms based on a natural 
selection process that mimics biological evolution. In 
the context of planar linkage design, the evolutionary 
algorithm method has been noted to offer the 
simplicity of implementation and fast convergence to 
the optimal solution with no need of a substantial 
knowledge of the solution space (Acharyya and 
Mandal, 2009; Cabrera et al., 2002).  Perhaps the 
large-scale RSSR-SS optimization model would be a 
more manageable problem when solved using these 
algorithms.  

CONCLUSION 
     For the first time, a large-scale optimization 
model for defect-free RSSR-SS linkage design to 
approximate precision positions was implemented in 
this work. With this optimization model, the 
dimensions of an order, branch and circuit defect-free 
RSSR-SS linkage with minimum precision position 
error were calculated.  The primary drawbacks of 
the optimization model (in Matlab on a personal 
computer) are the large file sizes of the optimization 
model’s algebraic gradients and Hessians. 
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APPENDIX 
Notation 

0a , 0b , 0c  RSSR-SS fixed pivots 

1a , 1b , 1c  RSSR-SS moving pivots 
a , b , c  displaced RSSR-SS moving pivots 

0au
, 0bu

 fixed pivot joint axes vectors 

1au
, w  coupler link rotation axis vectors 

au  displaced coupler link rotation axis 
vector 

θ  crank link angular displacement  
λ  coupler link angular displacement  
φ  angular displacement for follower link 

0 1-b b   
1p , p  coupler point and displaced coupler 

point respectively 

0,Rθ
 
 au  rotation matrix about fixed pivot joint 

axis vector 0au
 

,Rω  w  rotation matrix about coupler rotation 
axis vector w  

,Rγ  au  rotation matrix about displaced coupler 
rotation axis vector au  

0,Rφ
 
 bu  rotation matrix about fixed pivot joint 

axis vector 
0bu  
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摘 要 

     RSSR-SS 連桿是基本的空間多迴路連桿機構

之一。在作者的前著作中，曾示範小規模的最佳

化模型、無缺陷的運動合成連桿設計。對於小規

模的最佳化模型，其最佳化模型並不包含一般的

RSSR-SS運動位移方程式，並且不包括計算預定位

置與合成位置之間的最小化誤差的函數。但是在

本研究中， RSSR-SS 位移方程式將包含於最佳化

模型中，這是首次設計一個具有位移誤差最小化

的無缺陷 RSSR-SS 運動合成機構。利用此最佳化

模型，計算出趨近預先規劃位置最小誤差所需的

RSSR-SS 合成機構。該最佳化模型亦包括降低順

序，分支和迴路缺陷的約束方程式。除了示範最

佳化模型之外，本研究亦討論使用數學分析軟件

Matlab 在個人電腦上實現 RSSR-SS 優化模型時的

利弊。 

 


