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ABSTRACT 

This study examines the damping effects of two 
damping rings (DRs) applied on an offshore 
wind-turbine tower (a slender beam) subject to 
multiple external forces. The wind-turbine tower is 
simulated by a 3D nonlinear fixed-free elastic beam 
with a concentrated load applied on the beam tip. The 
multiple external forces include windward drag force, 
transverse induced force, the current force under the 
ocean surface, and the concentrated time-dependent 
load applied by the turbine on the free end of the 
tower. The Mindlin-Goodman method is applied to 
obtain the mode shape function of this beam. The 
method of multiple scales (MOMS) is employed to 
analyze the nonlinear problem. An 1:1 internal 
resonance was observed in this 3D elastic beam. The 
results indicate that in addition to placing one of the 
DRs at the maximum amplitude of the beam mode 
shape, adding the other set of DRs at the ocean 
currents and aerodynamic forces joint will produce 
better damping effects. 

INTRODUCTION 

Among the top 20 wind farm locations in the 
world selected by 4C Offshore (4C Offshore News 
2017), 16 are situated in the Taiwan Strait, which 
indicates that offshore wind power generation has 
great potentials for Taiwan. However, offshore wind 
power generation exerts a severe impact on the 
ecological environment and living creatures in the 
neighboring waters, which is caused by the noise of 
the wind turbines and the vibrations of the 
wind-turbine towers. Tower vibrations affect the 
structure of the towers themselves, and the noise that 
they produce adds to the negative influence on the 

 

 
 
 
 

nearby ecological environment. Finding a way to 
eliminate vibrations in wind-turbine towers thus 
became the motivation behind this study. 

Vibration reduction in wind-turbine towers has 
been studied for years; Enevoldsen and Mørk (1996) 
examined the influence of applying a tuned mass 
damper (TMD) to the top of a tower and performed 
optimization analysis using the first structural mode. 
Colwell and Basu  (2009) proposed the use of tuned 
liquid column dampers (TLCDs) to control the 
structural vibrations within wind-turbine towers. A 
TCLD is a U-shaped liquid damper that can 
effectively make use of the gravitational restoring 
force produced by displaced liquid to achieve 
vibration reduction. Moreover, the vibration 
frequency of the liquid within the TLCD can be used 
to adjust the natural frequency of the structure, which 
has been demonstrated to be an effective approach to 
prevent vibration. Brodersen and Høgsberg (2014) 
developed a stroke amplifying brace damper that can 
be installed at the base of a wind-turbine tower; they 
discovered that with suitable braces, the damper can 
increase the critical damping ratio of the two lowest 
modes by 1%. Zhang et al. (2014) provided a 
controllable active torque actuator model for 
wind-turbine tower vibrations and demonstrated that 
the proposed module can effectively mitigate the 
vibrations in wind turbines during operation.  
A comprehensive review of the studies above 
revealed that all of them regarded wind-turbine 
towers as linear structures. However, nonlinearity 
might be considered in elastic beams under the 
influence of extreme wind forces. In most nonlinear 
beam problems, the internal resonance (I.R.) is a 
major point of discussion. Due to nonlinearity, I.R. 
generally occurs in modes that are not being directly 
excited by external forces, and for this reason, it is 
often overlooked. What is interesting is that in 
common 3-D beams with symmetrical cross-sections, 
1:1 I.R. is the most likely to take place among the 
various degrees of freedom. As its resonant frequency 
is the same with each other, it is also called prime 
resonance. For instance, Pai (1990) analyzed the 1:1 
prime resonance in a 3D nonlinear composite rotating 
beam. Nayfeh and Pai (2004) established the linear 
and nonlinear equations of motion for beams, which 
encompass 2-D and 3-D; they also provided a 
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reference platform for future research on I.R. 
Oguamanam (2003) considered a beam equipped 
with a mass on the free end. The overall structural 
center of the mass is not situated at the point of 
contact between the mass and the beam. Assuming 
that the beam is subjected to warping and twisting 
stresses, Oguamanam discovered that the torque of 
the mass load with regard to the beam contact point 
has a certain degree of importance to the system 
natural frequency. Stoykov and Ribeiro (2011) 
examined the stability of a 3D nonlinear rotating 
beam based on Timoshenko’s theory and took into 
account the deformation caused by twists and warps. 
They used Floquet’s theory to analyze the stability of 
the system and determined that 1:1 prime resonance 
produces supercritical symmetry-breaking bifurcation 
in beams with a square cross-section. Recently, Wang 
and Lu (2017) proved that particular elastic 
foundations or suspension systems can cause 1:3 
internal resonance in a beam. Wang et al. (2018) gave 
analytical solutions for a nonlinear tuned mass 
damper (TMD) and showed better damping effects on 
beam vibrations. 

With regard to the damping effects of TMD or 
dynamic vibration absorber (DVA) location on a 
vibrating body, Wang and Lin (2013) examined a 
DVA system with two degrees of freedom, developed 
an internal resonance contour plot (IRCP) and a 
flutter speed contour plot (FSCP) to prevent I.R., and 
identified the optimal DVA location for vibration 
reduction. Wang and Wu (2016) examined vibrations 
in a nonlinear 3D-string fixed at both ends and rested 
on a nonlinear elastic foundation. A better damping 
effect was determined for an optimal range of TMD 
mass ratio and spring constant. Wang and Kuo (2016) 
examined the vibrations in a nonlinear beam resting 
on a nonlinear elastic foundation. They discovered 
that with a certain spring constant in the elastic 
foundation, 1:3 I.R. occurs in the 1st and 2nd modes of 
the system. They prevented I.R. and reduced 
vibrations by hanging a TMD from the beam. They 
also considered the damping effects of placing the 
TMD at the free end of the beam (time-dependent 
boundary conditions) and at other locations. Their 
results revealed the best damping effects when the 
TMD was placed between 0.25l and 0.5l from the 
fixed end of the beam. Wang and Liang (2015) 
observed the damping effects of a lumped-mass 
vibration absorber (LMVA) on a hinged-hinged 
nonlinear beam resting on a nonlinear elastic 
foundation. Using a 3D maximum amplitude contour 
plot (3D MACP), they identified the optimal LMVA 
parameter combination for vibration reduction. These 
studies demonstrate that changing the location, mass, 
spring constant, and damping coefficient of the TMD 
or DVA is a feasible approach to prevent I.R. and 
mitigate vibrations.  

This study considers a 3D nonlinear beam 
vertically inserted in a seabed. The bottom end is 

considered as a fixed support, whereas the top is a 
free end subject to the forces of the wind turbine. We 
also assumed that the bottom fourth of the beam is 
subject to the influence of ocean currents and that the 
rest of the beam is subject to the influence of wind. 
The wind turbine blades apply a force of FT to the top 
of the tower. The multiple forces applied to the 
wind-turbine tower are as shown in Fig. 1 (a). Note 
that this study merely focuses on tower vibrations; the 
general aerodynamic analysis of the wind-turbine 
blades was not included. We assumed that the flow of 
the ocean current only generates windward force FS. 
In contrast, the wind above the water surface is 
sufficient to produce a windward external force and 
transverse induced aerodynamic force (FD and FA). 
The windward and transverse aerodynamic forces (FD 
and FA) of the tower were assumed to be unsteady 
forces to examine the vibrations of fluid-structure 
interactions. Furthermore, we added two damping 
rings (DRs) to the tower. As shown in Fig. 1 (b), d1 
and d2 indicate the distances between the DRs and the 
top of the tower. The present work is focusing on the 
damping effects of DRs on the internal resonance 
modes. The damping effects of various DRs locations 
and various DRs mass and spring constant 
combinations were examined to obtain the optimal 
damping effects. 

 
 

MATHEMATICAL MODEL OF 
WIND-TURBINE TOWER WITH 
MULTIPLE EXTERNAL FORCES 

 
Equations of Motion 

This study simulated the vibrations in a 
wind-turbine tower using a straight 3D fixed-free 
nonlinear beam inserted in a seabed, as displayed in 
Fig. 1 (a), (b). The coordinate definitions of the 
wind-turbine tower and the relationships between the 
DRs and the various external forces are presented in 
Fig. 1 (b). We overlooked gravity effects and did not 
consider beam rotation. Based on Newton’s 2nd law, 
Euler’s angle transformation, and Taylor series 
expansion, the equations of motion of the nonlinear 
beam can be expressed as follows (Nayfeh and Pai, 
2004):   

yy Gvcvm ′=+                                (1) 

zz Gwcwm ′=+                                (2) 

xxx GcI =+ γγ                                (3)                

where m represents beam mass per unit length; xI  is 

the moment of inertia along x-axis; ( • ) denotes 

tdd / ; ( )’ represents xdd / ; yc  and zc  are the 
respective damping coefficients in the y and z 
directions; v, w , and γ  denote the displacement (or 
twisting angle) in the y, z, and x directions. For a 
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homogeneous and isotropic beam, Gy, Gz, and Gx are 
defined as  
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where Dxx = G xI ;  Dyy = E yI ; Dzz = E zI ; G is the 
shear modulus, and E is Young’s modulus. By 
substituting Eqs. (4~6) into Eqs. (1~3) and setting 
dimensionless coefficients lxx /= , ωtt = , 

4/ lmDyy=ω , 
yyyy mDlcc /2= , 

yyzz mDlcc /2= , 

yyxx mDlcc /2= , xyµ =Dxx/Dyy, zyµ =Dzz/Dyy , where 

l is beam length, the flexural-flexural vibration 
equation of the 3D homogeneous and isotropic beam 
can be written as 
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where ( • ) represents d/dt, and ( )’ denotes d/dx. To 
simplify the symbols, we used the same symbol to 
define the dimensionless displacements of the beam 
and the three axes. Thus, y and z denote the 
dimensionless displacement functions of windward (y 
= v/ l ) and transverse (z = w/ l ) directions of the 
beam, respectively. This does not affect the results of 
the theoretical model. In Eq. (9), we assumed that all 
time differential terms equaled 0 and that the 
boundary condition was 0),1(),0( =′= tt γγ . Thus, 
the twist angle relationship is 
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    Using Eq. (10) and Eqs. (7, 8), we can rewrite 
the equation of the 3D homogeneous and isotropic 
flexural-flexural beam to 

( )
( ) ( )

′





 ′′′′+′′′′−

″





 ′′′′′′

−

−
′





 ′′′′′′−′′′′′′−=++

∫ ∫

∫∫

zzyyydxdxzyz

dxzyzdxzyzyycy

zy

x x

xy

zy

xx

zy
iv

zyy

µ
µ
µ

µµ

0 1

2

01

1

1
 

y

xx
Fdxdxzy

t
y +

′













 ′+′

∂
∂′− ∫∫ 0

22

1 2

2

)(
2
1          (11) 

( )
( ) ( )

′





 ′′′′+′′′′−

″





 ′′′′′′

−
−

′





 ′′′′′′−′′′′′′−−=++

∫ ∫

∫∫

zzyyzdxdxzyy

dxyzydxzyyzzcz

x x

xy

zy

xx

zy
iv

z

0 1

2

01

1

1

µ
µ

µ
 

z

xx
Fdxdxzy

t
z +

′













 ′+′

∂
∂′− ∫∫ 0

22

1 2

2

)(
2
1

  
      (12) 

where Fy and Fz indicate the dimensionless 
distributed forces of the tower in the y and z 
directions. As for the windward forces and transverse 
induced aerodynamic forces of the tower, we referred 
to the unsteady aerodynamic force presented by van 
Horssen (1988): 
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Nondimensionalizing Eq. (13) gives 
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aerodynamic coefficients of the y direction, and 
yU  

denotes the wind speed in the y direction. 
Furthermore, the transverse induced aerodynamic 
force of the tower is 
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Nondimensionalizing Eq. (15) gives 
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aerodynamic coefficients of the z direction.
 

  
 The external forces applied by the ocean currents 

on the tower are expressed using an unsteady uniform 
distributed force:

 10
~~ TTi

S
ti

SS
ms eFeFF σω +Ω ==                  (17) 

Thus, Fy and Fz can be expressed as Fy =FD+FS and 
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Fz =FA, respectively. 
     As shown in Fig. 1 (b), FD and FA are applied 
to the tower between l/4 and l, whereas FS is the 
ocean current force applied to the tower between 0 
and l/4; FD represents the external force of the wind 
on the tower in the y direction (as the drag force). We 
further assumed that FA is the transverse induced 
force (in the z-direction, as the aerodynamic force) 
and is produced by the wind in the y direction. If yU  
is also in unsteady form, then UDa 0ˆ = ti

UD ea Ω2
0

~ , 
ti

UDUD eaa Ω= 11
~ˆ , UAa 0ˆ = ti

UA ea Ω2
0

~ , and 
ti

UAUA eaa Ω= 11
~ˆ . 

Two DRs were added on the beam in an attempt 
to prevent I.R. and reduce vibrations in the y and z 
directions. The DRs can be regarded as external 
forces produced by two TMDs in the y and z 
directions of the beam. They can therefore be directly 
added into the equations of motion during the system 
integration process. We will discuss the influence of 
the DRs on the system in a later section. As for the 
equation of motion of the DRs, we can derive the 
following based on Newton’s 2nd law: 
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Replacing the Dry  with Drz  in Eq. (18) produces 
the equation of motion for the z direction, where 

2,01m  denotes the mass of the first and second DRs; 

2,1Dy  (or 2,1Dz ) represents the displacement of the 
first and second DRs; 2,1d  indicates the location of 

the first and second DRs on the beam, and sf  and 

sg  are respectively the spring constant and damping 
coefficient of the DRs. Dividing Eq. (18) by lm  
and letting yDr= lyDr / , m01,2= lmm /2,01 , gs= 

ωlmgs / , and fs = 2/ ωlmf s  gives the 
dimensionless equation of motion for the DRs: 
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Using Newton’s 2nd law, we added the y-dir. and 

z-dir. equations of motion of the beam and the 
influence of the DRs on the beam in the y and z 
directions. The integrated dimensionless equation of 
motion of the nonlinear beam can thus be written as 
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(a) Schematic model of wind-turbine tower 

 
   (b) Schematic model of multiple forces and DRs. 
 
Fig.1 Schematic model of multiple forces applied to 

the wind-turbine tower 
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where ( )[ ] ( )[ ]{ } ( )1,, dxytdygytdyf DrrsDrrs −−+− δ , 
r =1,2, is the term for the DRs on the tower in the y 
direction, and ( )[ ] ( )[ ]{ }DrrsDrrs ztdzgztdzf  −+− ,,  
( )2dx −δ , r =1,2, is the term for the DRs on the tower 

in the z direction. The dimensionless boundary 
conditions of the tower are 

0),0( =ty , 0),0( =′ ty , 0),( =′′ tly , 0),( =′′′ tly                              

0),0( =tz , 0),0( =′ tz , 0),( =′′ tlz , 0),( =′′′ tlz      
(22) 
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Analysis by Using the Method of Multiple Scales 
(MOMS) 
   We adopted MOMS to analyze the frequency 
response and fixed points of the nonlinear equation, 
which involves dividing the time scale into fast and 
slow time scales. Suppose T0=τ  is the fast-time 
term, T1= τε 2  is the slow-time terms, and 

),,(),,( 100 TTxytxy εε =  ),,( 101
3 TTxyε+ , where 

ε  is the time scale of small disturbances and is a 
minimum value. We disregard the influence of 
high-order terms such as ..., 65 εε  on the system. 
Furthermore, we assumed that the cross-section of the 
beam is round, so the ratio of moment of inertia is 1. 
In other words, 1== zyxy µµ ; the structural damping 
is the same, so cy = cz = c. The method for the 
equation of motion in the z direction is identical to 
that for the y direction. We scale the dimensionless 
damping coefficient as c2ε . The damping and spring 
constant of the DRs are 

sg2ε  and sf3ε , 
respectively.  
      To facilitate our analysis, we only extracted 
the first two terms of the unsteady aerodynamic force 
for the external force applied to the tower and let the 
orders of UDa 0ˆ  and UDa 1ˆ  in the FD equation be 

3ε  and 2ε . Similarly, the orders of UAa 0ˆ  and 

UAa 1ˆ  in the FA equation were set as 3ε  and 2ε . 
The order of the other uniform distributed force term 
FS was set as 3ε . Thus, the order of 1ε  part in the 
equation of motion in the y direction is  
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Similarly, we can get the order of 1ε and 3ε  part 
equations of motion in the z direction and would not 
detail here. Assuming that there is a wind turbine at 
the free end of the beam, then the dimensionless 
boundary conditions are as follows: 

0),0(0 =ty , 0),0(0 =′ ty , 0),(0 =′′ tly , ti
T

meFtly Ω=′′′ ),(0  

0),0(0 =tz , 0),0(0 =′ tz , 0),(0 =′′ tlz , 0),(0 =′′′ tlz    (26) 
This becomes a time-dependent boundary condition 

problem (Mindlin-Goodman (1950)) and will be 
discussed in the next section. 
 
Analysis of Time Dependent Boundaries 

We assume that 0y , the displacement of the 
tower can be written as 

)()(),(),,( 00210 tFxhtxvTTxy T+=            (27) 
where v0(x,t) is the transformed displacement; h0(x) 
denotes the shifting function, and FT (t) represents the 
forcing function. Substituting Eq. (27) into the 
boundary conditions of the beam produces the 
following: 

)()0(),0( 00 tFhtv T−= , )()0(),0( 00 tFhtv T′−=′ , 
 )()(),( 00 tFlhtlv T′′−=′′ , ))(1)((),( 00 lhtFtlv T ′′′−=′′′ (28) 
    For Eq. (28) to become homogeneous boundary 
conditions, the right side of the equations in Eq. (28) 
must equal 0. Accordingly, we can obtain the 
following boundary conditions of the shifting 
function: 

0)0(0 =h , 0)0(0 =′h , 0)(0 =′′ lh , 1)(0 =′′′ lh       (29) 
Assuming that h0(x) is a high-order polynomial, 

3
3

2
2100 )( xxxxh αααα +++=               (30) 

After substituting Eq. (30) into Eq. (29), we can 
derive that ,010 ==αα  ,2/2 l−=α  6/13 =α  , so 

the shifting function becomes 32
0 6

1
2

)( xxlxh +−= . 

Furthermore, we assume that the generation solution 
to the transformed displacement (v0) 
is )(),( 00 xtxv y Φ= ξ , the boundary conditions of 

which are 0),0(0 =tv , 0),0(0 =′ tv , 0),(0 =′′ tlv , 
0),(0 =′′′ tlv . Also, let xExEx γγ sincos)( 21 +=Φ  

xExE γγ sinhcosh 43 ++ . We can obtain the 
characteristic equation: 

0)cosh(cos)sinhsin( 222 =+−+− rllll γγγ   (31) 
Using the numerical method, we can obtain the first 
three eigenvalues of Eq. (31): 1.8751, 4.6941, and 
7.7548. Then, based on the boundary conditions, we 
can derive the mode shape: 
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Finally, the solution to ),(0 txy  can be written as 
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where ny0ξ  is assumed to be 

ny0ξ 00 )()( 11
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ANALYSIS OF INTERNAL 

RESONANCE CONDITIONS 
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System Without DRs 
Before analyzing the influence of the DRs on tower 
vibrations, we must first discuss the nonlinear 
vibrations in the structure of the main body with no 
DRs and determine whether I.R. may take place. 
Thus, in this section, we removed the DR terms from 
Eqs. (20 and 21) and again adopted MOMS to derive 

1ε and 3ε part equations of motion in the y, and z 
directions, respectively. Similarly, using the approach 
in Section 2, we let )(),(

1
11 xtxy n

n
ny Φ=∑

∞

=

ξ  and 

applied orthogonal properties. As the wind-turbine 
tower is symmetrical in the y and z directions, their 
mode frequencies are the same in all directions (i.e., 

11 zy ωω = , 22 zy ωω = …). We verified that the 
eigen-values of the various modes in the same 
degree-of-freedom cannot form integer ratios in last 
Section. For this reason, the mode frequencies will 
not form integer ratios, either. In addition, the 1st 
mode is the fundamental mode of the tower, so we 
only consider the influence of the 1st mode here.  
 
System Frequency Analysis 

To examine the existence of I.R., we set the 
wind force function have a frequency of εσω +=Ω 1 , 

where 1ω  is the 1st mode's linear natural frequency 
and σ  is the tuned frequency around the beam's 
linear natural frequency. As a result, when the 
external force excites the 1st mode in the y direction, 
secular terms with the exponent 1ω  must be 
selected. To determine the frequency responses of the 
system at fixed points (Fig. 2), we used numerical 
methods to obtain the amplitudes (By and Bz). We 
discovered that even if the tower is only subject to 
forces in the y direction, the amplitudes in the z 
direction are still significantly greater than those in 
the y direction. This is a typical I.R. phenomenon, 
which means that I.R. occurs in the tower. Next, we 
considered the induced force in the z direction. The 
resulting frequency responses are as shown in Fig. 3. 
We thus found a 19% increase in the amplitudes in 
the z direction, which was caused by the greater 
external force in said direction. Furthermore, as the 
tower is subject to forces in both the y and z 
directions, I.R. does not take place. This implies that 
if the wind force generates a transverse induced force, 
then I.R. will not take place in the tower. 
Nevertheless, the problem of vibration remains. 

 
(a) 1st mode in y-dir. 

 
(b) 1st mode in z-dir. 

 
Fig. 2 Fixed points plots of the amplitudes, force 

applied in the y-dir., no DRs. 
 

 
(a) 1st mode in y-dir. 
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(b) 1st mode in z-dir. 

 
Fig. 3 Fixed points plots of the amplitudes, forces 

applied in the y- and z-dirs., no DRs. 
 
 

VIBRATION REDUCTION ANALYSIS 
OF SYSTEM WITH TMDs (DRs) 

 
   The results in last Section indicate that with no 
dampers and y-dir forces only, 1:1 I.R. occurs in the 
tower. We added the tower with two DRs in hopes of 
preventing I.R. and reducing to vibrations in the 
tower. The equations of motion of the two DRs are 
 

yfygyfygym ssDrsDrsDrr +=++ 0 ,  
zfzgzfzgzm ssDrsDrsDrr +=++ 0 , r=1,2  (34) 

 

where m01 and m02 respectively denote the mass ratios 
of the 1st and 2nd DRs; yD1 and yD2 (or zD1 and zD2) 
indicate the displacement of the 1st and 2nd DRs; y 
and z represent the displacement of the tower in the y 
and z directions; fs and gs are the spring constant and 
damping coefficient of the DRs. We assumed that the 
displacement of the 1st DR (r=1) is 

0
11

Tii
DD eeAy y ωζ−=  and 

0
11

Tii
DD eeBz z ωζ−= , 

which, substituted into Eq. (34) give 
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The analytical procedure for the 2nd DR (r=2) is the 
same, so we will not repeat it. 

    The method to obtain the y-dir and z-dir 
dynamic equations is identical to that used in the 
previous section for the tower with no DRs. After 
substituting Eqs. (35 and 36) into Eqs. (20 and 21), 
respectively, we applied orthogonal properties and 
multiplied both sides by jΦ . Integrating from 0 to 1 
then produces the y-dir and z-dir dynamic equations 
of the system with DRs.  
    We discuss the damping effects of the DRs on 
tower vibrations in two circumstances: when force is 
only applied in the y direction and when force is 
applied in the y and z directions, respectively. By 
drawing the frequency response plots (fixed points 
plots) for amplitudes By and Bz, the damping effects 
of the DRs can be observed. It is noted that the 
amplitude of the applied force on the tip (F(t)) does 
not have any effect on the system frequency. 
Therefore, the IR conditions will not be changed if 
we change the amplitude of the tip force. The 
amplitude of the tip force in the case we investigated 
was just an arbitrary chosen value. The effects of the 
DRs parameter combinations on the IR modes will 
not have much difference for a larger F(t) amplitude. 
The results are discussed in the next section. 
 
 

RESULTS AND DISCUSSION 
     

In this section, we will discuss the damping 
effects of the DRs. We examined the location (d1,2), 
mass ratio (m01,02 and let m01=m02), spring constant 
(fs), and damping coefficient (gs) of the DRs to 
identify the optimal parameter combination. We 
considered two circumstances when the 1st mode in 
the y direction is excited: when force is only applied 
in the y direction and when force is applied in the y 
and z directions. According to Eqs. (24) & (26) and 
MOMS, the linear modes of the beam in the y- and 
z-dir. are decoupled. The tip force applies in the y-dir. 
will not affect the z-dir. vibrations of the beam. In 
other words, we can apply the tip force on the y-dir., 
the vibration and the DRs damping effects are the 
same as the case the tip force applied on the z-dir. In 
the present work, only y-dir. was investigated, the 
damping effects on the IR modes in the z-dir. are 
similar and not considered in this stage. We 
experimented on various parameter combinations (M 
(mass ratio)=m01+m02= 0.001~0.01, d1=0.35~0.75, 
d2=0.1 (as shown in Fig. 1 (b)), fs=0.1~1.0, 
gs=0.1~1.0) and compiled the maximum amplitudes 
from their fixed points plots. Owing to the 
complexity of the data, only the results for gs=1.0, fs 
=0.1~1.0, M=0.001~0.01, d1=0.35~0.75, and d2=0.1 
are listed in Tables 1 through 5. Tables 1 displays the 
maximum amplitudes in the system with no DRs 
when the 1st mode in the y-direction and y- and 
z-directions are excited. Table 2 presents the 
maximum amplitudes of the 1st mode in the system 
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with DRs when force is applied in only the 
y-direction with gs=1.0 and fs=0.1. Table 3 shows the 
maximum amplitudes in the system with DRs when 
force is applied in the y- and z-directions with fs=0.1. 
Tables 4 and 5 are for the cases of DRs gs=1.0 and 
fs=1.0. The other combinations of fs <1 are not shown 
in tables, because they do not give better damping 
effects than the case of fs=1.0, gs=1.0. Due to space 
limitations, we only present the other combinations in 
graphs. 

 
Table 1. Max. Amplitudes of the 1st mode (No DRs) 

 

y-dir excited 
y z 

0.626923084 0.745899022 

y- and z-dir 
excited 

0.613293886 0.8885595202 

 
 
Table 2. Max. Amplitudes of the 1st mode when force 

is applied in the y-dir. (with DRs, fs=0.1, 
gs=1.0) 

 

M 
(m01=m02) 

d1 
position 

y z 

Mode 1 Mode 1 
0.001 

0.35 

0.379921913 0.00056942 

0.004 0.37092191 0.000532631 

0.007 0.369921923 0.000525594 

0.01 0.365531206 0.000505772 

0.001 

0.45 

0.370238215 0.000517836 

0.004 0.368042886 0.000506824 

0.007 0.364847571 0.000495962 

0.01 0.36379683 0.000496002 

0.001 

0.55 

0.372093707 0.000495581 

0.004 0.366093606 0.00048686 

0.007 0.364847601 0.000478319 

0.01 0.367796809 0.000467969 

0.001 

0.65 

0.360546827 0.000493559 

0.004 0.361156106 0.000476748 

0.007 0.360570192 0.000472615 

0.01 0.360374898 0.000455791 

0.001 

0.75 

0.357249886 0.000475417 

0.004 0.35143739 0.000469515 

0.007 0.34143737 0.000453933 

0.01 0.335874915 0.000421571 
 

Table 3. Max. Amplitudes of the 1st mode when 
forces are applied in the y- and z-dir. (with 
DRs, fs=0.1, gs=1.0) 

 

M 
(m01=m02) 

d1 
position 

y z 

Mode 1 Mode 1 

0.001 

0.35 

0.393807501 0.001597906 

0.004 0.381636798 0.001386892 

0.007 0.385346293 0.001389657 

0.01 0.366251886 0.001387213 

0.001 

0.45 

0.375650376 0.001435175 

0.004 0.388129801 0.001268477 

0.007 0.390076309 0.001280354 

0.01 0.368356288 0.00125496 

0.001 

0.55 

0.378174186 0.00137811 

0.004 0.382523298 0.001348645 

0.007 0.384702623 0.001319779 

0.01 0.368662149 0.001260816 

0.001 

0.65 

0.363228977 0.001383497 

0.004 0.361853898 0.001239452 

0.007 0.376315475 0.0012281 

0.01 0.342574596 0.00108157 

0.001 

0.75 

0.349812776 0.001296444 

0.004 0.338683188 0.001221694 

0.007 0.343617529 0.001234883 

0.01 0.325585216 0.001059456 
 
The results in Tables 1 through 3 reveal significantly 
smaller amplitudes in the y and z directions following 
the addition of the DRs. However, the vibration 
amplitudes in Tables 2 and 3 are for small values of 
gs. Tables 4 and 5 present the best combinations of 
the DRs damping effect when the 1st mode in the 
y-direction and y- and z-directions are excited, 
respectively. The damping effects can be seen by 
comparing Tables 1 and 4 & 5. For example, the 
vibration amplitudes in the y-dir. were reduced from 
0.626923084 (see Table 1, 1st row) to 0.325124413 
(see Table 4, M=0.01, d1=0.75) and 48.14% was 
reduced for the case of y-direction excited. And the 
vibration amplitudes in the y-dir. were reduced from 
0.613293886 (see Table 1, 2nd row) to 0.265911639 
(see Table 5, M=0.01, d1=0.75) and 56.64% was 
reduced for the case of y- and z-direction excited. As 
can be seen, the amplitudes in the y and z directions 
are smaller than those produced in circumstances 
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with no DRs (such as Fig. 3). Also, the amplitudes in 
the y direction are again greater. These results 
demonstrate that adding the DRs can effectively 
prevent I.R. 
 
 
Table 4. Max. Amplitudes of the 1st mode when 

forces are applied in the y- dir. (with DRs, 
fs=1.0, gs=1.0) 

 

M 
(m01=m02) 

d1 
position 

y z 

Mode 1 Mode 1 

0.001 

0.35 

0.360918194 0.00125036 

0.004 0.350178242 0.001176624 

0.007 0.354426414 0.001180026 

0.01 0.32983315 0.001145385 

0.001 

0.45 

0.358156204 0.000454637 

0.004 0.3579804 0.000435685 

0.007 0.357249886 0.000421628 

0.01 0.352562398 0.000419895 

0.001 

0.55 

0.355687499 0.000420353 

0.004 0.352562398 0.000408576 

0.007 0.349437386 0.000389419 

0.01 0.35087499 0.000388857 

0.001 

0.65 

0.344437391 0.000414367 

0.004 0.34787491 0.000393239 

0.007 0.347184509 0.000394132 

0.01 0.344359309 0.000378591 

0.001 

0.75 

0.342217296 0.000399739 

0.004 0.339153379 0.000380107 

0.007 0.328658193 0.000357777 

0.01 0.325124413 0.000338447 
 
 

In place of complex data tables for subsequent 
analysis, we drew the 3D plots for the various 
parameter combinations. Figure 4(a) and (b) are the 
3D plots resulting from when force is only applied in 
the y direction with fs = 0.1 ~ 1.0, and gs = 0.1 and 
1.0, respectively. Figure 5(a) and (b) are the 3D plots 
resulting from when force is applied in the y and z 
directions with fs = 0.1 ~ 1.0, and gs = 0.1 and 1.0, 
respectively. In these 3D plots, the x axis presents 
the mass ratio of the DRs; the y axis measures d1, the 
distance between the 1st DR and the top of the tower 
(d2 fixed at 0.1), and the z axis shows the 

corresponding maximum amplitudes in the y and z 
directions. 

 
 

Table 5. Max. Amplitudes of the 1st mode when 
forces are applied in the y- and z-dir. (with 
DRs, fs=1.0, gs=1.0) 

 

M 
(m01=m02) 

d1 
position 

y z 

Mode 1 Mode 1 

0.001 

0.35 

0.360918194 0.00125036 

0.004 0.350178242 0.001176624 

0.007 0.354426414 0.001180026 

0.01 0.32983315 0.001145385 

0.001 

0.45 

0.345383406 0.001132809 

0.004 0.353303701 0.001140665 

0.007 0.358975411 0.001115947 

0.01 0.328342259 0.0010778 

0.001 

0.55 

0.341809273 0.001120912 

0.004 0.345143884 0.001188768 

0.007 0.373813212 0.001177575 

0.01 0.327665627 0.001079769 

0.001 

0.65 

0.320011586 0.001147044 

0.004 0.331910402 0.001048723 

0.007 0.336176008 0.001017162 

0.01 0.285969913 0.000930821 

0.001 

0.75 

0.305324793 0.001081435 

0.004 0.287430674 0.000981702 

0.007 0.289814591 0.0010222 

0.01 0.265911639 0.000861141 
 
 
    In Figs. 4 and 5, different amplitude intervals are 
differentiated by color. For the mesh surface outlined 
in red, fs =0.1, whereas fs=0.4, 0.7 and 1.0 for the 
mesh surfaces outlined in blue, black and pink, 
respectively. The brown mesh surface presents the 
amplitudes in the tower not equipped with DRs. The 
graphs use different contour colors to differentiate the 
amplitudes; red indicates greater amplitudes and blue 
signifies smaller amplitudes associated with better 
damping effects. As the maximum amplitudes 
resulting the presence and absence of DRs differ 
considerably, it is difficult to make out the differences 
among different parameter combinations in 
circumstances with the DRs (such as in Fig. 4 (a)). 
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We therefore enlarged the lower portions of the 3D 
plots, as shown in Figs. 4 (b) and 5, and display the 
enlarged portions for the remainder of the figures. To 
facilitate result analysis, we selected the more 
representative figures for comparison. We first look 
at the vibrations in the tower in the y direction. When 
force is only applied in the y direction, Figs. 4 (a) and 
(b) show that a greater mass ratio and a greater 
distance between the two DRs result in smaller 
amplitudes in the y direction. Tower vibrations can be 
reduced regardless of fs (maximum amplitudes 
smaller than when no DRs are used). When force is 
applied in the y and z directions, Figs. 5 (a) and (b) 
indicate that a greater mass ratio and a greater 
distance between the two DRs also result in smaller 
amplitudes in the y direction. Furthermore, tower 
vibrations can be reduced regardless of fs. Following 
a comprehensive look at the entire tower, we 
discovered that the optimal damping effects in the y 
and z directions appeared when gs=1.0, fs=1.0, 
M=0.01, d2=0.1, and d1= 0.75, regardless of whether 
force is applied in only the y direction or in both the y 
and z directions (maximum amplitudes smaller than 
when no DRs are used). This shows that the DRs 
successfully prevent I.R. and can mitigate tower 
vibrations. 
    To further analysis of the damping effects of 
DRs' parameter combinations, we compiled a 3D 
maximum amplitude contour plot (3D MACP) for the 
DRs' parameters. Figure 6 is the 3D MACP for when 
force is applied in the y and z directions with gs=1.0 
and fs=1.0. To verify the accuracy of 3D MACPs, we 
used numerical analysis to analyze Fig. 6, in which 
appeared the best damping effects. Orthogonalizing 
the Eqs. (20 and 21) produces the dynamic equations 
in the y- and z- direction, respectively. We employ the 
Runge-Kutta (RK4) numerical method and compiled 
the time response plot. Figure 6 is the circumstances 
in which force is only applied in the y and z direction, 
respectively. The graph in the upper left corner of the 
former is the time response plot for M=0.01, gs=1.0, 
fs=1.0, d2=0.1, and d1= 0.75. Again, the convergence 
value of the time responses is identical to the 
amplitude value of the designated point in the 3D 
MACP.  
    Based on Fig. 6, we found that the optimal 
locations are 0.75l from the top of the tower for the 
first DR and 0.1l from the top of the tower for the 
second DR. Also, their optimal parameters are gs=1.0 
and fs=1.0. With the wind turbine situated at the top 
of the top, the maximum amplitude in the mode shape 
if the 1st mode of this free beam falls between 0.8l 
and l, which also means maximum displacement. 
Installing the TMD (or DR) where the displacement 
is greatest will have the best effects. This result is 
consistent with the inferences made by Wang and Tu 
(2016). We compared our results with the DRs 
actually applied to the Maokong Gondola towers in 
Taiwan, which are situated near the top and at 0.25l 

from the top of the towers to achieve damping where 
maximum displacement takes place (for details, 
please refer to Figure 7). The tower in this study is 
also subject to external force from the ocean current 
between 0 l and 1/4 l, which means that another TMD 
(or DR) is needed here. Thus, in addition to placing a 
DR near the top of the tower, we also suggest adding 
another set of DRs to the bottom fourth of the tower 
for even better damping effects.  
 
 

 
 

(a) gs=0.1 
 

 
 

(b) gs=1.0 
 

Fig. 4 3D plots of the y-dir. 1st mode amplitudes, 
force applied in the y-dir., with DRs. 
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(a) gs=0.1 

 

 
(b) gs=1.0 

 
Fig. 5 3D plots of the y-dir. 1st mode amplitudes, 

forces applied in the y- and z-dirs., with DRs. 
 
 

CONCLUSIONS 
     

The model established in this study is a 3D 
nonlinear wind-turbine tower with one fixed end and 
one free end. The symmetry of tower cross-section 
indicates the possibility of the 1:1 I.R. that is 
characteristic of nonlinear beams. We equipped the 
tower with two DRs and assumed that the bottom 
fourth of the tower is subject to the influence of 
ocean currents and that the rest of the beam is subject 
to the influence of wind. Furthermore, the wind 
turbine also applies force to the top of the tower. We 
examined the damping effects of the DRs and 
compared various combinations of mass, location, 
spring constant, and damping coefficient. The results 
were analyzed using MOMS, fixed point plots, and 
3D MACPs, the accuracy of which was verified using 
the 4th order Runge-Kutta (RK4) method. Finally, we 

arrived at the following conclusions based on the 
results of this study: 
1. As the wind-turbine tower is symmetrical in the y 

and z directions, their mode frequencies are the 
same in all directions (i.e., 11 zy ωω = , =2yω  

2zω …), and this creates the possibility for I.R. in 
the y and z directions. 

2. In addition to preventing I.R., the DRs can also 
reduce vibrations. 

3. We found the optimal damping effects being up to 
56.64% vibration reduction in the y-dir. with 
parameter combination gs=1.0, fs=1.0, and M=0.01, 
regardless of whether force is applied in only the y 
direction or in both the y and z directions. 

4. The wind-turbine tower system is subject to 
multiple external forces, including ocean currents, 
aerodynamic force, and the wind turbine at the top 
of the tower. The results indicate that in addition to 
placing the DRs where the maximum amplitude 
appears in the beam mode shape, adding another 
set of DRs where the ocean currents and 
aerodynamic forces meet will produce better 
damping effects. For example, the maximum 
amplitude in the mode shape of the 1st mode of the 
fixed-free beam appears between 0.8l and l, so one 
of the DRs should be placed between 0.8l and l; 
the ocean current applies force to the bottom 
fourth of the tower, so placing another DR at 0.25l 
will provide the best damping effects. 

 
 

 
 

Fig. 6 3D MACPs of the 1st mode in y-dir., gs=1.0, 
fs=1.0. 
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Fig. 7 An example of the damping rings (the red rings 
near the top of the tower) applied to the 
Maokong Gondola towers in Taiwan.  
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NOMENCLATURE 

UAa 3,2,1,0ˆ =dimensionless aerodynamic coefficients in 
the z direction 

UDa 3,2,1,0ˆ = dimensionless aerodynamic coefficients in 
the y direction 

UDAa 1,0,
~ = magnitude of 

UDAa 1,0,ˆ

cy and cz= dimensionless damping coefficients in the 
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y and z directions

d1,2= dimensionless location of the first and second 
DRs on the beam 

fs and gs= dimensionless spring constant and damping 
coefficient of the DRs 

m01,2= dimensionless mass of the first and second 
DRs 

yD1,2 (or zD1,2) = dimensionless displacement of the 1st 
and 2nd DRs 

nΦ = mode shape of the nth mode

Ω = wind force function frequency 

nω = nth mode's linear natural frequency

nξ = generalized coordinate of the nth mode

nζ = phase angle of the nth mode 

減振環對於 3D 非線性細長

樑受多重外力之減振效益

的探討

王怡仁
淡江大學航太工程學系

蕭宛琪 
雙鴻科技公司

摘要
本研究以一細長之非線性樑模擬近海風場風機塔

柱受多重外力時，產生振動之現象。吾人考慮的外

力為：迎風向的空氣阻力，側向的空氣力，以及迎

風向彈性樑自由端 (tip free end) 的風機所施予之

點受力；另外還考慮海面下的洋流外力。吾人將利

用 Mindlin-Goodman 及時間多尺度法 (method of 
multiple scales (MOMS)) 分析此時變性邊界條件

及非線性的氣體彈性問題，並使用兩減振環裝設於

風機塔柱上，達到避開內共振，並有最佳之減振效

果。
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