HHE R TAZ 2 SE MU -G S5 PUHASE 327~339 H(REI—HZ/\HF)
Journal of the Chinese Society of Mechanical Engineers, Vol.40, No.4, pp 327~339 (2019)

Vibration Reduction of Damping Rings on
3D Nonlinear Multi-loaded Slender Beams

Yi-Ren Wang* and Wan-Chi Hsiao**

Nonlinear beam, Internal resonance,
Vibration reduction, Aeroelasticity.

Keywords :

ABSTRACT

This study examines the damping effects of two
damping rings (DRs) applied on an offshore
wind-turbine tower (a slender beam) subject to
multiple external forces. The wind-turbine tower is
simulated by a 3D nonlinear fixed-free elastic beam
with a concentrated load applied on the beam tip. The
multiple external forces include windward drag force,
transverse induced force, the current force under the
ocean surface, and the concentrated time-dependent
load applied by the turbine on the free end of the
tower. The Mindlin-Goodman method is applied to
obtain the mode shape function of this beam. The
method of multiple scales (MOMS) is employed to
analyze the nonlinear problem. An 1:1 internal
resonance was observed in this 3D elastic beam. The
results indicate that in addition to placing one of the
DRs at the maximum amplitude of the beam mode
shape, adding the other set of DRs at the ocean
currents and aerodynamic forces joint will produce
better damping effects.

INTRODUCTION

Among the top 20 wind farm locations in the
world selected by 4C Offshore (4C Offshore News
2017), 16 are situated in the Taiwan Strait, which
indicates that offshore wind power generation has
great potentials for Taiwan. However, offshore wind
power generation exerts a severe impact on the
ecological environment and living creatures in the
neighboring waters, which is caused by the noise of
the wind turbines and the vibrations of the
wind-turbine towers. Tower vibrations affect the
structure of the towers themselves, and the noise that
they produce adds to the negative influence on the
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nearby ecological environment. Finding a way to
eliminate vibrations in wind-turbine towers thus
became the motivation behind this study.

Vibration reduction in wind-turbine towers has
been studied for years; Enevoldsen and Mgrk (1996)
examined the influence of applying a tuned mass
damper (TMD) to the top of a tower and performed
optimization analysis using the first structural mode.
Colwell and Basu (2009) proposed the use of tuned
liqguid column dampers (TLCDs) to control the
structural vibrations within wind-turbine towers. A
TCLD is a U-shaped liquid damper that can
effectively make use of the gravitational restoring
force produced by displaced liquid to achieve
vibration reduction. Moreover, the vibration
frequency of the liquid within the TLCD can be used
to adjust the natural frequency of the structure, which
has been demonstrated to be an effective approach to
prevent vibration. Brodersen and Hggsberg (2014)
developed a stroke amplifying brace damper that can
be installed at the base of a wind-turbine tower; they
discovered that with suitable braces, the damper can
increase the critical damping ratio of the two lowest
modes by 1%. Zhang et al. (2014) provided a
controllable active torque actuator model for
wind-turbine tower vibrations and demonstrated that
the proposed module can effectively mitigate the
vibrations in wind turbines during operation.
A comprehensive review of the studies above
revealed that all of them regarded wind-turbine
towers as linear structures. However, nonlinearity
might be considered in elastic beams under the
influence of extreme wind forces. In most nonlinear
beam problems, the internal resonance (I.R.) is a
major point of discussion. Due to nonlinearity, |.R.
generally occurs in modes that are not being directly
excited by external forces, and for this reason, it is
often overlooked. What is interesting is that in
common 3-D beams with symmetrical cross-sections,
1:1 I.R. is the most likely to take place among the
various degrees of freedom. As its resonant frequency
is the same with each other, it is also called prime
resonance. For instance, Pai (1990) analyzed the 1:1
prime resonance in a 3D nonlinear composite rotating
beam. Nayfeh and Pai (2004) established the linear
and nonlinear equations of motion for beams, which
encompass 2-D and 3-D; they also provided a
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reference platform for future research on ILR.
Oguamanam (2003) considered a beam equipped
with a mass on the free end. The overall structural
center of the mass is not situated at the point of
contact between the mass and the beam. Assuming
that the beam is subjected to warping and twisting
stresses, Oguamanam discovered that the torque of
the mass load with regard to the beam contact point
has a certain degree of importance to the system
natural frequency. Stoykov and Ribeiro (2011)
examined the stability of a 3D nonlinear rotating
beam based on Timoshenko’s theory and took into
account the deformation caused by twists and warps.
They used Floquet’s theory to analyze the stability of
the system and determined that 1:1 prime resonance
produces supercritical symmetry-breaking bifurcation
in beams with a square cross-section. Recently, Wang
and Lu (2017) proved that particular elastic
foundations or suspension systems can cause 1:3
internal resonance in a beam. Wang et al. (2018) gave
analytical solutions for a nonlinear tuned mass
damper (TMD) and showed better damping effects on
beam vibrations.

With regard to the damping effects of TMD or
dynamic vibration absorber (DVA) location on a
vibrating body, Wang and Lin (2013) examined a
DVA system with two degrees of freedom, developed
an internal resonance contour plot (IRCP) and a
flutter speed contour plot (FSCP) to prevent I.R., and
identified the optimal DVA location for vibration
reduction. Wang and Wu (2016) examined vibrations
in a nonlinear 3D-string fixed at both ends and rested
on a nonlinear elastic foundation. A better damping
effect was determined for an optimal range of TMD
mass ratio and spring constant. Wang and Kuo (2016)
examined the vibrations in a nonlinear beam resting
on a nonlinear elastic foundation. They discovered
that with a certain spring constant in the elastic
foundation, 1:3 I.R. occurs in the 1%t and 2" modes of
the system. They prevented I.R. and reduced
vibrations by hanging a TMD from the beam. They
also considered the damping effects of placing the
TMD at the free end of the beam (time-dependent
boundary conditions) and at other locations. Their
results revealed the best damping effects when the
TMD was placed between 0.25] and 0.51 from the
fixed end of the beam. Wang and Liang (2015)
observed the damping effects of a lumped-mass
vibration absorber (LMVA) on a hinged-hinged
nonlinear beam resting on a nonlinear elastic
foundation. Using a 3D maximum amplitude contour
plot (3D MACP), they identified the optimal LMVA
parameter combination for vibration reduction. These
studies demonstrate that changing the location, mass,
spring constant, and damping coefficient of the TMD
or DVA is a feasible approach to prevent I.R. and
mitigate vibrations.

This study considers a 3D nonlinear beam
vertically inserted in a seabed. The bottom end is
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considered as a fixed support, whereas the top is a
free end subject to the forces of the wind turbine. We
also assumed that the bottom fourth of the beam is
subject to the influence of ocean currents and that the
rest of the beam is subject to the influence of wind.
The wind turbine blades apply a force of Fr to the top
of the tower. The multiple forces applied to the
wind-turbine tower are as shown in Fig. 1 (a). Note
that this study merely focuses on tower vibrations; the
general aerodynamic analysis of the wind-turbine
blades was not included. We assumed that the flow of
the ocean current only generates windward force Fs.
In contrast, the wind above the water surface is
sufficient to produce a windward external force and
transverse induced aerodynamic force (Fp and Fa).
The windward and transverse aerodynamic forces (Fp
and Fa) of the tower were assumed to be unsteady
forces to examine the vibrations of fluid-structure
interactions. Furthermore, we added two damping
rings (DRs) to the tower. As shown in Fig. 1 (b), di
and d. indicate the distances between the DRs and the
top of the tower. The present work is focusing on the
damping effects of DRs on the internal resonance
modes. The damping effects of various DRs locations
and various DRs mass and spring constant
combinations were examined to obtain the optimal
damping effects.

MATHEMATICAL MODEL OF
WIND-TURBINE TOWER WITH
MULTIPLE EXTERNAL FORCES

Equations of Motion

This study simulated the vibrations in a
wind-turbine tower using a straight 3D fixed-free
nonlinear beam inserted in a seabed, as displayed in
Fig. 1 (a), (b). The coordinate definitions of the
wind-turbine tower and the relationships between the
DRs and the various external forces are presented in
Fig. 1 (b). We overlooked gravity effects and did not
consider beam rotation. Based on Newton’s 2™ law,
Euler’s angle transformation, and Taylor series
expansion, the equations of motion of the nonlinear
beam can be expressed as follows (Nayfeh and Pai,
2004):

mv +C,v =G, (1)
mW +C,W =G/ )
i +C7 =G, ©)

where m represents beam mass per unit length; I is
the moment of inertia along x-axis; (") denotes
d/dt; () represents d/dX; Ey and C, are the

respective damping coefficients in the y and z
directions; v, w, and y denote the displacement (or

twisting angle) in the y, z, and x directions. For a
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homogeneous and isotropic beam, Gy, G;, and Gy are
defined as

G, =—(D,V") =D, (yW") =D, V'(vV" + w'w")’

+ (Dyy - Dzz )[(W”}/ - V"}/Z)' — W’"L V"W'd)?]

~@2v['m
G, =—(D,W") +D, (y¥") =D, W (V" +ww")

0% x 12 P —
?(L (Vv'2 +w?)dR)dX + F, (4)

+ (Dyy _ DZZ )[(V”}/ + W”]/Z)' +VWJ?W”V'd¥]
% 0°

—@/ 2w jl m

G, =(Dys)'+ (D, =D )I(v"* ~w™?)y -v'w]  (6)

where D= G I_X; Dyy = El_y; Dz = EI_Z; G is the

shear modulus, and E is Young’s modulus. By
substituting Egs. (4~6) into Egs. (1~3) and setting
dimensionless coefficients x =X/I t=tw ,

\/W: ¢, =c,I*/,/mD,, =c,I?/,jmD,, »
/\/ﬁi ,uxy_DXX/Dyy; ILlZy —Dzz/Dyy,Where

| is beam length, the flexural-flexural vibration
equation of the 3D homogeneous and isotropic beam
can be written as

y + ny + :uzyyiv =—Hy (7W”)’
— (1 quy)[(vv 2 W”]/)’ + ZmJ'OX yuz!dx];
=ty LY’ (Y'Y" +27")T
12
—f{ J; o [J. Y2+ 22 dxJdxy + F, ()

i+ci+7"= o, (V)

(jj W% +W?)dR)dx + F, (5)

U= Iy + W)+ y" [y 2o -2 (Y 22)T
{ Lat [I y’2+z’2)dx]dx}+F (8)

7/ + Cx}/ - (;uxy / Ix)7/ = (/uzy _l)/ Ix(ynzy - 2”27_ y”Z") (9)
where (") represents d/dt, and ()’ denotes d/dx. To

simplify the symbols, we used the same symbol to
define the dimensionless displacements of the beam
and the three axes. Thus, y and z denote the
dimensionless displacement functions of windward (y

= v/l ) and transverse (z = w/l ) directions of the
beam, respectively. This does not affect the results of
the theoretical model. In Eq. (9), we assumed that all
time differential terms equaled 0 and that the
boundary condition was »(0,t) = y'(1,t)=0. Thus,
the twist angle relationship is

:uzy_l X% o 10
7;@ J'O(Lyzdx)dx (10)

Using Eq. (10) and Egs. (7, 8), we can rewrite
the equation of the 3D homogeneous and isotropic
flexural-flexural beam to

y+c,y+u,y" = (- yzy{z”f y"z"dx —ZMJOX y”z’dx} -

(]-_;uzy)2 I:Z//J'XJAX "Z"dXdXi|” _ |: ;( 1, "+Z'Z") jl'
17k y | Y'Yy

’

l X 62 X 2 2 11
—Z{y ) E[J‘o (y“+z )dx}dx} +F, (11)
— _(1_ ,ley {y"-[l-x y"Z”dX _me.OX ley!dx]

(1_'Llly )2 " XX "y n ’ ’ L4 ! ”’
—7[y IOJ; Yz dxdx} —[z (yy"+272 ):l

H Xy

i+c,2+12"

r

’

—;{ L pe U (y'2+z’2)dx}dx} +F, (12)

where Fy, and F, indicate the dimensionless
distributed forces of the tower in the y and z
directions. As for the windward forces and transverse
induced aerodynamic forces of the tower, we referred
to the unsteady aerodynamic force presented by van
Horssen (1988):

3y V(K1) | Ao ¥*(X0)

apou + -
pUdl ™ U, o e |(13)
D= 3, -
2 + Bow 6y3(x,t)+m
U’ ot

y
Nondimensionalizing Eq. (13) gives

FD = é-|:>ou + é-Dlu y+ é-Dzu yz + aA-Dsu y3 (14)

_ .
where g _Pa8Uy % 5 Pa0U80y
Doy ma? DU oM’
. da
ap,y =Pa"%2  gpg . :& are the
2maw 2mo” U,

aerodynamic coefficients of the y dlrectlon, and Uy

denotes the wind speed in the vy direction.
Furthermore, the transverse induced aerodynamic
force of the tower is

Ay OZ(RE) | By OZ°(X,5)

a +—= — —
= p Ul ™ U, & 07 a  |(19)
2| A D,
U’ ot

Nondimensionalizing Eq. (15) gives
F - aAOU + aAlU Z + a'A2U Z + a'A3U Z (16)
where 5 _ 29U, 3 o _pudUau,

Aou 2me’ Y 2ma’
ap = M, and 54 _ Pal24y  are the

2me’ " omarU,

aerodynamic coefficients of the z direction.

The external forces applied by the ocean currents
on the tower are expressed using an unsteady uniform
distributed force:

FS _ ﬁseiQst _ ﬁsei(umT°+5T1 (17)
Thus, Fy and F, can be expressed as Fy=Fp+Fs and
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F;: =Fa, resgectivgly. ) )
As shown in Fig. 1 (b), Fp and Fx are applied
to the tower between 1/4 and |, whereas Fs is the
ocean current force applied to the tower between 0
and 1/4; Fp represents the external force of the wind
on the tower in the y direction (as the drag force). We
further assumed that Fa is the transverse induced
force (in the z-direction, as the aerodynamic force)

and is produced by the wind in the y direction. If U,
is also in unsteady form, then & =37, e*",
Qo = B Auy Ape?® ,  and
éAlU = aA1ueiQt :

Two DRs were added on the beam in an attempt
to prevent I.R. and reduce vibrations in the y and z
directions. The DRs can be regarded as external
forces produced by two TMDs in the y and z
directions of the beam. They can therefore be directly
added into the equations of motion during the system
integration process. We will discuss the influence of
the DRs on the system in a later section. As for the
equation of motion of the DRs, we can derive the
following based on Newton’s 2" law:

LY@ D~ Yo ®)+ ], r=12 (18)
gs [7(ar’f)_ yDr (f)]

Replacing the Y, with Z, in Eq. (18) produces
the equation of motion for the z direction, where
My, , denotes the mass of the first and second DRs;

mOr VDr (t) -

Yp12 (0r Zp,,) represents the displacement of the
first and second DRs; CTl,Z indicates the location of

the first and second DRs on the beam, and f_S and
0, are respectively the spring constant and damping
coefficient of the DRs. Dividing Eq. (18) by ml
and letting ypr= )7Dr/|_ , Mog2= ﬁOI,zlmf, gs=
g./mlew , and f = f/mie® gives the
dimensionless equation of motion for the DRs:

2

d - _
mOl,Z $_ gs(y_ yDr) - fs(y_ yD,) =0, r_112
(19)

Using Newton’s 2" law, we added the y-dir. and
z-dir. equations of motion of the beam and the
influence of the DRs on the beam in the y and z
directions. The integrated dimensionless equation of
motion of the nonlinear beam can thus be written as

!

YHC, Y+, y" - (1— Hyy {z”f y"z"dx — z’"J'OX y”z'dx}

(l—yz )2 n 50X a '
+,nyy[z _[OL y"z dxdx}
+ ﬂzy[y'(y'w + Z'Z")'} + ;{y"[:s;“:(y’z + z’z)dx}dx}
+ {fs[y(dllt)_ yD1]+ gs[Y(dllt)_ YDl]}é(X - dl)

+{,Iv(d,t) = Yoo |+ 0. [¥(d,, 1) - Vo, Jo(x —d,) = F,
(20)

’

'
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(a) Schematic model of wind-turbine tower
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(b) Schematic model of multiple forces and DRs.

Fig.1 Schematic model of multiple forces applied to
the wind-turbine tower

’

14+c,2+2" +(1- yzy{y"f y"z"dx — y”’J‘ox z”y’dx}

A e [y
Hyy Yy

+;{z' 1X%UOX (y/z + Z'z)jx}jx}, +{ f[2(d, ) - 20, ]+

gs[z(dl’t)_ ZDlr] }5()( - dl)

+ {fs [Z(d21t)_ ZD2]+ gs[z(dzvt)_ ZDZ]}d(X _dz)= F,
(21)

where {fs [y(dﬂt)_ yDr]+ gs[Y(dﬂt)_ yDr]}é‘(X - dl) !

r =1,2, is the term for the DRs on the tower in the y

direction, and {f [z(d,,t)-zp, ]+ g,[2(d,,t)~ 2, ]}

8(x—d,), r =1,2, is the term for the DRs on the tower

in the z direction. The dimensionless boundary
conditions of the tower are

y(0,t) =0,y'(0,t)=0,y"(1,t) =0, y"(l,t) =0
2 (0,t)=0,z'(0,t)=0,2"(1,t)=0,2"(1,t) =0 (22)

!
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Analysis by Using the Method of Multiple Scales
(MOMS)

We adopted MOMS to analyze the frequency
response and fixed points of the nonlinear equation,
which involves dividing the time scale into fast and
slow time scales. Suppose To=7 is the fast-time
term, Ti= g% is the slow-time terms, and
y(X,t,g):éyo(X,To,T1~-‘) +53y1(X1T0’T1”')' where
¢ is the time scale of small disturbances and is a
minimum value. We disregard the influence of
high-order terms such as ¢° £°.. on the system.
Furthermore, we assumed that the cross-section of the
beam is round, so the ratio of moment of inertia is 1.
In other words, = u, =1; the structural damping

is the same, so ¢y = ¢; = ¢. The method for the
equation of motion in the z direction is identical to
that for the y direction. We scale the dimensionless
damping coefficient as ¢°c. The damping and spring
constant of the DRs are &9, and &° fs

respectively.

To facilitate our analysis, we only extracted
the first two terms of the unsteady aerodynamic force
for the external force applied to the tower and let the
orders of &,,, and &, in the Fp equation be

3

g® and &£*. Similarly, the orders of &,,, and

a,,, in the Fa equation were set as g and &£°.
The order of the other uniform distributed force term

Fs was setas &°. Thus, the order of &' part in the
equation of motion in the y direction is

%Yy o
+yy =0 (24)
T2 Yo
and &% is
2 2
0 y21+y1iv:_2 a yo _ y%_
T, oT,oT, YT,
1
{YO | U (y2+2, )dx}dx}
{yn3 +4y(/)ygygr+ y(rJZyE)v + yg "2
+3Y520Zg + y(',z’z'V + Y0202,

- {fs[yl(dl’t)_ yD1]+ gs[yl(dl't)_ yDl]}é‘(X _dl)
- {fs[yz(dz’t)_ y02]+ gs[yz(dzlt)_ yoz]}é‘(x - dz)
+ 85, + &%8py, 07} (25)
oT,

+ Fge'st
Similarly, we can get the order of g'and &° part
equations of motion in the z direction and would not
detail here. Assuming that there is a wind turbine at
the free end of the beam, then the dimensionless
boundary conditions are as follows:

¥o(0,) =0, y,(0,)=0, Yo (I,t) =0, y7(1,t) = F.e"
2,(0,t)=0,2,0,t)=0,2/(,)=0,Z,(1,t)=0  (26)
This becomes a time-dependent boundary condition
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problem (Mindlin-Goodman (1950)) and will be
discussed in the next section.

Analysis of Time Dependent Boundaries
We assume that Y, the displacement of the

tower can be written as
yO(X,Tl,Tz)=V0(X,t)+h0(X)FT(t) (27)
where vo(x,t) is the transformed displacement; ho(x)
denotes the shifting function, and F+ (t) represents the
forcing function. Substituting Eq. (27) into the
boundary conditions of the beam produces the
following:

v, (0,t) = =hy (0)F; (1), V(0,t) = —h/(0)F; (1),
vo(l,t) =—hy(NF (1) Vo (1, 1) = Fr ()2 - hg(1)) (28)

For Eqg. (28) to become homogeneous boundary
conditions, the right side of the equations in Eq. (28)
must equal 0. Accordingly, we can obtain the
following boundary conditions of the shifting
function:

hy(0)=0, hy(0)=0, hiay=0,hy(l) =1 (29)
Assuming that ho(x) is a high-order polynomial,
ho (X) = & + & X + @, X* + X (30)

After substituting Eqg. (30) into Eq. (29), we can
derive that ¢y =, =0, «@,=-1/2, @,=1/6 , SO

the shifting function becomesh, (x) :_l X2 +1x3-

Furthermore, we assume that the generation solution
to the transformed displacement (vo)
IS vy (x,t) = &,,@(x) . the boundary conditions of

which are v,(0,t)=0 , v;(0,t)=0, vi(l,t)=0,
vi(l,t)y=0 . Also, let @(x)=E,cosyx+E,sinx
+ E; cosh yx + E, sinh yx We can obtain the

characteristic equation:

(=sin® A +sinh? 1) — (cos A +coshrl)> =0 (31)
Using the numerical method, we can obtain the first
three eigenvalues of Eq. (31): 1.8751, 4.6941, and
7.7548. Then, based on the boundary conditions, we
can derive the mode shape:

@, (x) = (coshy,x—cosy,X) -

cosy,l +coshy,l (sinh
siny,l +sinhy,| "

(32)
X—siny,x)

Finally, the solutionto Y, (X,t) can be written as
yO(X!t) = zgyDn(Dn (X) + hO(X) FT
n=1

where &g,

§y0n — Bn (I-l)efié'neia)nTo + §n (Tl)eig’nefiwnTO .

(33)

is assumed to be

ANALYSIS OF INTERNAL
RESONANCE CONDITIONS



System Without DRs

Before analyzing the influence of the DRs on tower
vibrations, we must first discuss the nonlinear
vibrations in the structure of the main body with no
DRs and determine whether I.R. may take place.
Thus, in this section, we removed the DR terms from
Egs. (20 and 21) and again adopted MOMS to derive

grand g3part equations of motion in the y, and z
directions, respectively. Similarly, using the approach

in Section 2, we let y(xt)=¢ @ (x) and
n=1

applied orthogonal properties. As the wind-turbine
tower is symmetrical in the y and z directions, their
mode frequencies are the same in all directions (i.e.,

0, =0, . OpH=0, ...). We verified that the

eigen-values of the various modes in the same
degree-of-freedom cannot form integer ratios in last
Section. For this reason, the mode frequencies will
not form integer ratios, either. In addition, the 1%
mode is the fundamental mode of the tower, so we
only consider the influence of the 1% mode here.

System Frequency Analysis
To examine the existence of L.R., we set the
wind force function have a frequency of Q=¢ +¢0,

where @, is the 1% mode's linear natural frequency

and o is the tuned frequency around the beam's
linear natural frequency. As a result, when the
external force excites the 1%t mode in the y direction,

secular terms with the exponent @, must be

selected. To determine the frequency responses of the
system at fixed points (Fig. 2), we used numerical
methods to obtain the amplitudes (By and B;). We
discovered that even if the tower is only subject to
forces in the y direction, the amplitudes in the z
direction are still significantly greater than those in
the y direction. This is a typical I.R. phenomenon,
which means that I.R. occurs in the tower. Next, we
considered the induced force in the z direction. The
resulting frequency responses are as shown in Fig. 3.
We thus found a 19% increase in the amplitudes in
the z direction, which was caused by the greater
external force in said direction. Furthermore, as the
tower is subject to forces in both the y and z
directions, I.R. does not take place. This implies that
if the wind force generates a transverse induced force,
then LR. will not take place in the tower.
Nevertheless, the problem of vibration remains.
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(a) 1%t mode in y-dir.

08

(b) 1% mode in z-dir.

Fig. 2 Fixed points plots of the amplitudes, force

applied in the y-dir., no DRs.
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(a) 1%t mode in y-dir.
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Amp

(b) 1% mode in z-dir.

Fig. 3 Fixed points plots of the amplitudes, forces
applied in the y- and z-dirs., no DRs.

VIBRATION REDUCTION ANALYSIS
OF SYSTEM WITH TMDs (DRs)

The results in last Section indicate that with no
dampers and y-dir forces only, 1:1 I.R. occurs in the
tower. We added the tower with two DRs in hopes of
preventing I.R. and reducing to vibrations in the
tower. The equations of motion of the two DRs are

mOryDr + ngDr + fsyDr = gsy+ fsy’
My, Zp, + 9.2, + fzp, = 0,2+ fz, =12 (34)

where mo; and mo; respectively denote the mass ratios
of the 1 and 2" DRs; yp1 and yp2 (or zp; and zpy)
indicate the displacement of the 1% and 2" DRs; y
and z represent the displacement of the tower in the y
and z directions; fs and gs are the spring constant and
damping coefficient of the DRs. We assumed that the

displacement of the 1% DR (r=1) s
yDl _ ADle—lé'Yei(uTO and ZDl — BDle—igzeino
which,  substituted into Eq. (34) give

_ fB, + f.hy(X)F +ieB,g, +ich,(X)F 9,  and
—my,0® + f, +iag,
f.B, +i®wB,0g
- mma)l2 + f, +im 0,
of the DRs can be written as

1

B,, = . Thus, the displacements

— fsBy + fsho(x)lf‘r +inygs +ia)hO(X)|ngs efi’/ye

il

D1 .
—my,0” + T, +iog,

35)
_ fsBz +i6(]lBng e—igzeimlTo

7. = (36)
- mma)l2 +f +iog,

The analytical procedure for the 2" DR (r=2) is the
same, so we will not repeat it.

The method to obtain the y-dir and z-dir
dynamic equations is identical to that used in the
previous section for the tower with no DRs. After
substituting Egs. (35 and 36) into Egs. (20 and 21),
respectively, we applied orthogonal properties and
multiplied both sides by @, . Integrating from 0 to 1

then produces the y-dir and z-dir dynamic equations
of the system with DRs.

We discuss the damping effects of the DRs on
tower vibrations in two circumstances: when force is
only applied in the y direction and when force is
applied in the y and z directions, respectively. By
drawing the frequency response plots (fixed points
plots) for amplitudes By and B, the damping effects
of the DRs can be observed. It is noted that the
amplitude of the applied force on the tip (F(t)) does
not have any effect on the system frequency.
Therefore, the IR conditions will not be changed if
we change the amplitude of the tip force. The
amplitude of the tip force in the case we investigated
was just an arbitrary chosen value. The effects of the
DRs parameter combinations on the IR modes will
not have much difference for a larger F(t) amplitude.
The results are discussed in the next section.

RESULTS AND DISCUSSION

In this section, we will discuss the damping
effects of the DRs. We examined the location (d1,2),
mass ratio (mo102 and let moi=mqy), Spring constant
(fs), and damping coefficient (gs) of the DRs to
identify the optimal parameter combination. We
considered two circumstances when the 1% mode in
the y direction is excited: when force is only applied
in the y direction and when force is applied in the y
and z directions. According to Egs. (24) & (26) and
MOMS, the linear modes of the beam in the y- and
z-dir. are decoupled. The tip force applies in the y-dir.
will not affect the z-dir. vibrations of the beam. In
other words, we can apply the tip force on the y-dir.,
the vibration and the DRs damping effects are the
same as the case the tip force applied on the z-dir. In
the present work, only y-dir. was investigated, the
damping effects on the IR modes in the z-dir. are
similar and not considered in this stage. We
experimented on various parameter combinations (M
(mass ratio)=mp+mg,= 0.001~0.01, d1=0.35~0.75,
d>=0.1 (as shown in Fig. 1 (b)), f=0.1~1.0,
0s=0.1~1.0) and compiled the maximum amplitudes
from their fixed points plots. Owing to the
complexity of the data, only the results for gs=1.0, fs
=0.1~1.0, M=0.001~0.01, d1=0.35~0.75, and d,=0.1
are listed in Tables 1 through 5. Tables 1 displays the
maximum amplitudes in the system with no DRs
when the 1% mode in the y-direction and y- and
z-directions are excited. Table 2 presents the
maximum amplitudes of the 1% mode in the system
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with DRs when force is applied in only the
y-direction with gs=1.0 and f;=0.1. Table 3 shows the
maximum amplitudes in the system with DRs when
force is applied in the y- and z-directions with f;=0.1.
Tables 4 and 5 are for the cases of DRs gs=1.0 and
fs=1.0. The other combinations of f; <1 are not shown
in tables, because they do not give better damping
effects than the case of f:=1.0, gs=1.0. Due to space
limitations, we only present the other combinations in
graphs.

Table 1. Max. Amplitudes of the 1% mode (No DRs)

y z
y-direxcited == - 973084 | 0.745809022
y-and z-dir | 0.613293886 | 0.8885595202
excited

Table 2. Max. Amplitudes of the 1%t mode when force
is applied in the y-dir. (with DRs, f=0.1,

0s=1.0)
M ds y z
(mo1=moy)| position
Mode 1 Mode 1
0.001 0.379921913| 0.00056942
0.004 0.37092191 | 0.000532631
0.007 035 0.369921923 | 0.000525594
0.01 0.365531206 | 0.000505772
0.001 0.370238215( 0.000517836
0.004 0.368042886 | 0.000506824
0.007 045 0.364847571 | 0.000495962
0.01 0.36379683 | 0.000496002
0.001 0.372093707 | 0.000495581
0.004 0.366093606 | 0.00048686
0.007 055 0.364847601 | 0.000478319
0.01 0.367796809 | 0.000467969
0.001 0.360546827 | 0.000493559
0.004 0.361156106 | 0.000476748
0.007 065 0.360570192 | 0.000472615
0.01 0.360374898 | 0.000455791
0.001 0.357249886 | 0.000475417
0.004 0.35143739 | 0.000469515
0.007 075 0.34143737 | 0.000453933
0.01 0.335874915( 0.000421571
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Table 3. Max. Amplitudes of the 1 mode when
forces are applied in the y- and z-dir. (with
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DRs, f:=0.1, gs=1.0)

M dq y z
(Mo1=mgz)| position
Mode 1 Mode 1

0.001 0.393807501 | 0.001597906
0.004 0.381636798 | 0.001386892
0.007 035 0.385346293 | 0.001389657
0.01 0.366251886 | 0.001387213
0.001 0.375650376 | 0.001435175
0.004 0.388129801 | 0.001268477
0.007 045 0.390076309 | 0.001280354
0.01 0.368356288 | 0.00125496
0.001 0.378174186 | 0.00137811
0.004 0.382523298 | 0.001348645
0.007 055 0.384702623 | 0.001319779
0.01 0.368662149 | 0.001260816
0.001 0.363228977 | 0.001383497
0.004 0.361853898 | 0.001239452
0.007 065 0.376315475 | 0.0012281
0.01 0.342574596 | 0.00108157
0.001 0.349812776 | 0.001296444
0.004 0.338683188 | 0.001221694
0.007 075 0.343617529 | 0.001234883
0.01 0.325585216 | 0.001059456

The results in Tables 1 through 3 reveal significantly
smaller amplitudes in the y and z directions following
the addition of the DRs. However, the vibration
amplitudes in Tables 2 and 3 are for small values of
gs- Tables 4 and 5 present the best combinations of
the DRs damping effect when the 1% mode in the
y-direction and y- and z-directions are excited,
respectively. The damping effects can be seen by
comparing Tables 1 and 4 & 5. For example, the
vibration amplitudes in the y-dir. were reduced from
0.626923084 (see Table 1, 1% row) to 0.325124413
(see Table 4, M=0.01, d;=0.75) and 48.14% was
reduced for the case of y-direction excited. And the
vibration amplitudes in the y-dir. were reduced from
0.613293886 (see Table 1, 2" row) to 0.265911639
(see Table 5, M=0.01, d;=0.75) and 56.64% was
reduced for the case of y- and z-direction excited. As
can be seen, the amplitudes in the y and z directions
are smaller than those produced in circumstances
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with no DRs (such as Fig. 3). Also, the amplitudes in
the y direction are again greater. These results
demonstrate that adding the DRs can effectively
prevent I.R.

Table 4. Max. Amplitudes of the 1% mode when
forces are applied in the y- dir. (with DRs,

f=1.0, gs=1.0)
M ds y z
(Mmo1=moy) |position
Mode 1 Mode 1

0.001 0.360918194 (0.00125036
0.004 0.350178242 [{0.001176624
0.007 035 0.354426414 (0.001180026
0.01 0.32983315 [0.001145385
0.001 0.358156204 [0.000454637
0.004 0.3579804  [0.000435685
0.007 045 0.357249886 (0.000421628
0.01 0.352562398 (0.000419895
0.001 0.355687499 (0.000420353
0.004 0.352562398 (0.000408576
0.007 055 0.349437386 ({0.000389419
0.01 0.35087499 (0.000388857
0.001 0.344437391 (0.000414367
0.004 0.34787491 (0.000393239
0.007 065 0.347184509 (0.000394132
0.01 0.344359309 (0.000378591
0.001 0.342217296 [{0.000399739
0.004 0.339153379 (0.000380107
0.007 075 0.328658193 (0.000357777
0.01 0.325124413 (0.000338447

In place of complex data tables for subsequent
analysis, we drew the 3D plots for the various
parameter combinations. Figure 4(a) and (b) are the
3D plots resulting from when force is only applied in
the y direction with f;= 0.1 ~ 1.0, and gs = 0.1 and
1.0, respectively. Figure 5(a) and (b) are the 3D plots
resulting from when force is applied in the y and z
directions with f;= 0.1 ~ 1.0, and gs = 0.1 and 1.0,
respectively. In these 3D plots, the x axis presents
the mass ratio of the DRs; the y axis measures ds, the
distance between the 1% DR and the top of the tower
(d2 fixed at 0.1), and the z axis shows the
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corresponding maximum amplitudes in the y and z
directions.

Table 5. Max. Amplitudes of the 1% mode when
forces are applied in the y- and z-dir. (with
DRs, f:=1.0, gs=1.0)

M ds y z
(Mo1=mqy) | position
Mode 1 Mode 1

0.001 0.360918194 | 0.00125036
0.004 0.350178242| 0.001176624
0.007 035 0.354426414 | 0.001180026
0.01 0.32983315 | 0.001145385
0.001 0.345383406 | 0.001132809
0.004 0.353303701 | 0.001140665
0.007 045 0.358975411 | 0.001115947
0.01 0.328342259| 0.0010778
0.001 0.341809273 | 0.001120912
0.004 0.345143884 | 0.001188768
0.007 055 0.373813212| 0.001177575
0.01 0.327665627 | 0.001079769
0.001 0.320011586 | 0.001147044
0.004 0.331910402 | 0.001048723
0.007 065 0.336176008 | 0.001017162
0.01 0.285969913 | 0.000930821
0.001 0.305324793 | 0.001081435
0.004 0.287430674 | 0.000981702
0.007 075 0.289814591| 0.0010222
0.01 0.265911639 | 0.000861141

In Figs. 4 and 5, different amplitude intervals are
differentiated by color. For the mesh surface outlined
in red, f; =0.1, whereas f;=0.4, 0.7 and 1.0 for the
mesh surfaces outlined in blue, black and pink,
respectively. The brown mesh surface presents the
amplitudes in the tower not equipped with DRs. The
graphs use different contour colors to differentiate the
amplitudes; red indicates greater amplitudes and blue
signifies smaller amplitudes associated with better
damping effects. As the maximum amplitudes
resulting the presence and absence of DRs differ
considerably, it is difficult to make out the differences
among different parameter combinations in
circumstances with the DRs (such as in Fig. 4 (a)).



We therefore enlarged the lower portions of the 3D
plots, as shown in Figs. 4 (b) and 5, and display the
enlarged portions for the remainder of the figures. To
facilitate result analysis, we selected the more
representative figures for comparison. We first look
at the vibrations in the tower in the y direction. When
force is only applied in the y direction, Figs. 4 (a) and
(b) show that a greater mass ratio and a greater
distance between the two DRs result in smaller
amplitudes in the y direction. Tower vibrations can be
reduced regardless of f; (maximum amplitudes
smaller than when no DRs are used). When force is
applied in the y and z directions, Figs. 5 (a) and (b)
indicate that a greater mass ratio and a greater
distance between the two DRs also result in smaller
amplitudes in the y direction. Furthermore, tower
vibrations can be reduced regardless of fs. Following
a comprehensive look at the entire tower, we
discovered that the optimal damping effects in the y
and z directions appeared when gs=1.0, f=1.0,
M=0.01, d>=0.1, and di= 0.75, regardless of whether
force is applied in only the y direction or in both the y
and z directions (maximum amplitudes smaller than
when no DRs are used). This shows that the DRs
successfully prevent I.R. and can mitigate tower
vibrations.

To further analysis of the damping effects of
DRs' parameter combinations, we compiled a 3D
maximum amplitude contour plot (3D MACP) for the
DRs' parameters. Figure 6 is the 3D MACP for when
force is applied in the y and z directions with gs=1.0
and f=1.0. To verify the accuracy of 3D MACPs, we
used numerical analysis to analyze Fig. 6, in which
appeared the best damping effects. Orthogonalizing
the Egs. (20 and 21) produces the dynamic equations
in the y- and z- direction, respectively. We employ the
Runge-Kutta (RK4) numerical method and compiled
the time response plot. Figure 6 is the circumstances
in which force is only applied in the y and z direction,
respectively. The graph in the upper left corner of the
former is the time response plot for M=0.01, gs=1.0,
f=1.0, d»=0.1, and d;= 0.75. Again, the convergence
value of the time responses is identical to the
amplitude value of the designated point in the 3D
MACP.

Based on Fig. 6, we found that the optimal
locations are 0.751 from the top of the tower for the
first DR and 0.1l from the top of the tower for the
second DR. Also, their optimal parameters are gs=1.0
and f;=1.0. With the wind turbine situated at the top
of the top, the maximum amplitude in the mode shape
if the 1% mode of this free beam falls between 0.8l
and I, which also means maximum displacement.
Installing the TMD (or DR) where the displacement
is greatest will have the best effects. This result is
consistent with the inferences made by Wang and Tu
(2016). We compared our results with the DRs
actually applied to the Maokong Gondola towers in
Taiwan, which are situated near the top and at 0.25I
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from the top of the towers to achieve damping where
maximum displacement takes place (for details,
please refer to Figure 7). The tower in this study is
also subject to external force from the ocean current
between 0 | and 1/4 |, which means that another TMD
(or DR) is needed here. Thus, in addition to placing a
DR near the top of the tower, we also suggest adding
another set of DRs to the bottom fourth of the tower
for even better damping effects.

z — L |
= /’——""'
g os e
k-l
__,--"'/-____ —— 1 |
fs=0.1 04 e e r:
fs=0.4/

fs=0.7
fs=1.0

0004 .00

. 0008
Mass Ratio

(a) gs:O.l

(b) gs=1.0

Fig. 4 3D plots of the y-dir. 1% mode amplitudes,
force applied in the y-dir., with DRs.
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Fig. 5 3D plots of the y-dir. 1%t mode amplitudes,
forces applied in the y- and z-dirs., with DRs.

CONCLUSIONS

The model established in this study is a 3D
nonlinear wind-turbine tower with one fixed end and
one free end. The symmetry of tower cross-section
indicates the possibility of the 1:1 I.R. that is
characteristic of nonlinear beams. We equipped the
tower with two DRs and assumed that the bottom
fourth of the tower is subject to the influence of
ocean currents and that the rest of the beam is subject
to the influence of wind. Furthermore, the wind
turbine also applies force to the top of the tower. We
examined the damping effects of the DRs and
compared various combinations of mass, location,
spring constant, and damping coefficient. The results
were analyzed using MOMS, fixed point plots, and
3D MACPs, the accuracy of which was verified using
the 4" order Runge-Kutta (RK4) method. Finally, we

arrived at the following conclusions based on the

results of this study:

1. As the wind-turbine tower is symmetrical in the y
and z directions, their mode frequencies are the
same in all directions (i.e., o,=0,, ®,=
w,, ...), and this creates the possibility for I.R. in
the'y and z directions.

2. In addition to preventing I.R., the DRs can also
reduce vibrations.

3. We found the optimal damping effects being up to
56.64% vibration reduction in the y-dir. with
parameter combination gs=1.0, f=1.0, and M=0.01,
regardless of whether force is applied in only the y
direction or in both the y and z directions.

4. The wind-turbine tower system is subject to
multiple external forces, including ocean currents,
aerodynamic force, and the wind turbine at the top
of the tower. The results indicate that in addition to
placing the DRs where the maximum amplitude
appears in the beam mode shape, adding another
set of DRs where the ocean currents and
aerodynamic forces meet will produce better
damping effects. For example, the maximum
amplitude in the mode shape of the 1% mode of the
fixed-free beam appears between 0.81 and 1, so one
of the DRs should be placed between 0.8 and I;
the ocean current applies force to the bottom
fourth of the tower, so placing another DR at 0.25I
will provide the best damping effects.

]
0.002 0004 0006 0008 0.01

Fig. 6 3D MACPs of the 1% mode in y-dir., gs=1.0,
f=1.0.
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Fig. 7 An example of the damping rings (the red rings
near the top of the tower) applied to the
Maokong Gondola towers in Taiwan.
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NOMENCLATURE

8,01, 4 =dimensionless aerodynamic coefficients in

the z direction
é\'DO,1,2,3U
the y direction

= dimensionless aerodynamic coefficients in

= magnitude of 3

aA,DO,lU A,DO,1U

¢y and c;= dimensionless damping coefficients in the
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y and z directions

di,= dimensionless location of the first and second
DRs on the beam

fs and gs= dimensionless spring constant and damping
coefficient of the DRs

Moy 2= dimensionless mass of the first and second
DRs

Yo1.2 (Or Zp1,2) = dimensionless displacement of the 1%
and 2" DRs

@, = mode shape of the n™ mode

Q= wind force function frequency

w,= n" mode's linear natural frequency
& = generalized coordinate of the n" mode

¢, = phase angle of the n" mode
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