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ABSTRACT

The performance assessment of time series
with unknown distributions, which belongs to the
category of problems with poor information, is a
key challenge for modern statistics. On the basis
of modern statistics, the fusion method of
histograms and a normality test to judge the
robustness and the direction of unsteady data of
time series, and the fusion method combines the
median estimate and Huber (M) estimate obtains
robust data, unsteady data and the significance
level of the time series. These methods are used
in the vibration analysis of rolling bearings to
verify their effectiveness, and the results show
that unsteady data exist in time series at both
ends of the order statistics. The reliability reflects
the significance level of the rolling bearing
vibration data and avoids error due to artificial
factors. The intrinsic interval and the variation
ratio accurately represent the working
performance of rolling bearings, even in cases of

complex and diverse running states. Additionally,

the above fusion method provides a valuable
solution to robustness problem for unknown
distribution, the significance level test data and
the boundary value of the Huber (M) estimate in
modern statistical methods.
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rolling bearing; the fusion method combining the
median estimate and Huber (M) estimate of the

Introduction

Research Status

The working performance of a mechanical
system has an important influence on the safe
and reliable operation of equipment (Chen C, et
al., 2007; Sun S H, et al., 2007). The working
performance of a rolling bearing, a key part of a
mechanical system, may directly influence the
reliability and lifetime of a mechanical product.

Vibration can reflect errors in bearing
manufacturing, installation, and lubrication,
affect the  bearing’s  noise,  dynamic
characteristics, time-life and reliability and

represents a topic of wide concern to modern
engineering and theory (Xia X, et al., 2007).
Many studies have proposed various methods for
assessing the vibration performance of rolling
bearings. Time domain features, neural networks
and spectral analysis (Srividya A, et al., 2009;
Castejon C, et al., 2010; Antoni J, 2007) of
vibration signals are used in bearing fault
diagnosis. The grey bootstrap method is
proposed and used in the dynamic assessment
and diagnosis of bearing vibration data (Xia X, et
al., 2007; Tzu-Li Tien, 2005; Efron B, 1979;
Reeves J J, 2005; Yatracos Y, 2002; Deng J,
1989). The Hilbert Huang method is used in the
analysis of the vibration properties of rolling
bearings (Xiong W, et al., 2006). The phase
space method is proposed to analyse the
characteristic parameters of rolling bearing
vibration (Xia X, et al., 2007). The relationship
of vibration and noise and measurements of
decreasing vibration and reducing noise are also
studied (Banda N, 2003; Wang P, et al., 2005;
Arenas J P, 2005; Estocq P, et al., 2006; Xia X, et
al., 2005).

The above methods show that the vibration
performance of rolling bearings is complex and
diverse; does not follow a single distribution
function and thus belongs to the category of
problems with poor information. However, these
methods focus on attaining information from
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vibration data and do not consider the robust
performance of vibration data. In modern
statistics, robust performance of test data is a
premise of data analysis, and not considering the
robustness of time series can lead to serious
results. Therefore, this paper provides a fusion
method to analyse the working performance of
time series with unknown distributions based on
robust theory and fusion theory.
Fusion Theory

Fusion theory originates from the tale of
the blind man and the elephant. The tale shows
that different conclusions result from different
methods, that is, different methods provide
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different ways of observing an object. Therefore,
the combination of results of multiple methods
can more fully represent the characteristics of an
object. This theory is named fusion theory, the
principle of fusion theory is shown in Fig. 1.
However, in practice application, due to the
limitations of the adopted method, obtaining the
characteristic of the object can lead to error in
the data analysis results. A fusion method that
alleviates the limitations of some methods is
used to process time series according to the
characteristics of various methods. The principle
of the fusion method is shown in Fig. 2.
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Fig. 1. Principle of fusion theory
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Fig. 2. Principle of the fusion method

Selection of the Fusion Method

Based on modern statistics theory, Fusion

Method of Histogram and Normality Test and

combining median estimate and Huber (M) estimate
were proposed to analyse working performance of
rolling bearings, the flow chart of the working
performance of time series are shown in Fig. 3.
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Fig. 3. Flow chart of the working performance of time series

Mathematical Model

Basic Definition

According to the above method analysis,
the mathematical model of the fusion method is
as follows:

(1) In the real-time monitoring process,
suppose that the original time series, which can
be represented as a vector X, output by the
measurement system is given by

X ={x(t)}; t=12---N 1)

where X is the vector of the time series, x (1) is
the vibration value at time interval t, t is the time
order, and N is the total number of time intervals.
(2) The data of the it set in X constitute the
vector at moment t, and X; is given by
X =) t=12---N; i=12---m )
where i is the order number of bearings, X; is the
vector of the it set, xi(t) is the vibration data of
time interval t in set i, i is the order of the
bearing set, and m is the total number of bearings,
and m is the total number of sets.

(3) According to the order from the
smallest to the largest data of time series X;,
order statistic Y; is given by
Y, ={y,(n)} 1=42,---,m, n=12--N (3)
where Y; is the order statistics of X, yi(n) is the
n" data of the i" set.

Mathematical Model of the Fusion Method of
Histogram and Normality Test
Frequency of data series X;
(1) Calculating poor d; of data series X;,
according to order statistics Yi.

dizyi(N)_yi(l); i=12,---,m 4)

where d; is poor of data series Xi, yi (N) is the N
value of the order statistic of the i set of rolling
bearings, yi (1) is the 1%t value of order statistic of
the i set of rolling bearings.

(2) Group number k of data series X;

Based on the N value of data series Xi, the
group number k of X; is determined according to
N.

(3) Group width p; of data series X;

The group width p; of data series X; is as
follows:

d _ Yi(N)k_ yi(l); i=12---m (5

pi:?_

(4) Group interval of data series X;

a is the lower boundary value, which is
slightly smaller than yi(1), and b is the upper
boundary value, which is slightly larger than
yi(N); thus, [a, b] of data series X; is attained
according to a, b.

According to statistics, the group interval
of data series X; is (a, a+ pil, (a+ pi, a+2py], ...,
(a+(k-1)pi.

(5) The frequency i of data series X is
given by
o, ={o()}; i=12,-,m; 1=12,---.k (6)
Where, wiis the frequency of the data series, wi(l)
is the frequency of the I™ group interval of the
data series, i is the order number of bearings, m
is the total number of bearings, | is the order of
the group interval of the data series, and k is the
total number of group intervals.

(6) Histogram of data series X;

According to the frequency w; of data
series X;, a histogram of data series Xi can be
obtained.

The robust of data series X; can be judged
according to whether the histogram follows a
normal distribution. If the histogram of data
series X; follows a normal distribution, then X; is
robust; otherwise, X; is not robust, and a
normality test is needed.

A normality test can identify data that do

not follow a normal distribution; these data are
named non-robust data. The normality test of
data series Xi can judge the direction of
non-robust data.
Mathematical Model of the Fusion Method
Combining the Median Estimate and Huber
(M) Estimate

(1) Median g of Y;

yi[Nerl), N is odd

Bi=
;[yl(';j +y, (EHD , N iseven

i=12,--,m @)
where i is the median of the it set.

(2) New data series Z; (n1, ny)

Suppose that y;i (b) and yi (e) are two data
points of ;,

yi(b)< g i=120m (®)

B <yle) 1=12,---,m 9

The number of data points from y; (b) to fi is ny,



and the number of data points from g to yi(e) is
nz;
If yi(n) <yi(b), then

Yi(b)ZYi(n); i=12--,m (10)
If yi(n) >yi(e), then
yi(e):yi(n); i=12-m (11)

Then, new data series Zi(ny,ny) is constituted by
Z,(n,n,)={z,(m;n;,n,)} ; i=12,---,m
n=,2,--N (12)
(3) Mean #(n1,ny) of robust data series
Z-(nl,nz)

N .
1 n1vn2 izz. n n,n 2 ’ 1=12-m
N n=1
= 121.“ (13)

(4) The absolute value Di(ni,ny) of the
difference between median g; and mean 7(n,ny,)

nz):‘ﬁi_’?i(nwnz); i=12--m (14)

n; and nzcan be chosen according to the specific
requirements; in this paper,

n=n, :1,2,---,% or N2+1, nisevenorodd (1)

(5) Boundary values K;1 and Ki

Ki1 and Ki are the boundary values of the
series absolute difference Di(n1,nz2) obtained
according to the absolute value of the difference
between the median i and mean 7(ni,n2) of
equation (13). Dimin(n1,n2) is the min value of
Di(ny,ny), and the corresponding yi(b) and yi(e)
are Ki1 and K 2:

=y(b); i=12,-m (16)

,=Yi(e); i=12--m 17)
Therefore, ny and n, are determined
according to Di, min (N1, N2).

(6) Intrinsic interval [Ki, 1, Ki, 2]

The intrinsic interval [Kii1, Ki2] can be
obtained according to equations (13) and (14).
[Ki1, Kiz] is the intrinsic interval of the time
series and reflects the working performance of
the time series. A smaller value indicates better
working performance of the time series. Ki; and
Kio are the boundary values of the intrinsic
interval of the i™ rolling bearing, i is the order of
the rolling bearing, and m is the total number of
rolling bearings.

Thus, [Ki, K2], n1 and n; are determined
according to the above D, min (N1, N2).

a-:(l—%)%iﬁl,lm,m (18)
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The range of significance level «; is [0, 0.1],
where o is the significance level of the it
bearing.

The mathematical model of the fusion
method of the median estimate and Huber (M)
estimate is given as follows:

Kis X; (t)< Kis

P ={pt)}=1x(t) Kip< X (t)< Kiz
Ki. x(t)> Ki.

i=12,---,m, t=12---N (19)
Index of Robust Rolling Bearing Data

According to modern statistical theory,
unsteady test data lead to an increase in the
absolute value of the difference between the
largest and smallest value, the variance and the
absolute value of the difference between the
mean and the median of a data series. Therefore,
the absolute value of the difference between the
largest and smallest value, the variance and the
absolute value of the difference between the
mean and the median of a data series can reflect
the robustness of a data series.

(1) The absolute value W; of the difference
between max xi(t) and min x(t) of data series X;
is determined as follows:

W, =|max x;(t)-minx(t], i=12,---,m (20)

The absolute value Wk of the difference between
ki and ki1 of robust data series Y; is determined
as follows:

WR|:‘Ki,2_Ki,1 , 1=12,---,m (21)

(2) The variance S; of data series X is
given by

N

SE oy 2 )-APy T=R2m

y t=12,---,N

(22)

S, = sZ.i=12m, t=12 N  (23)

1ix. )oi=12,0m,t=12,, N (24)
=

The variance Sg; of robust data series X; is
given by

N

Séi=%§,(pi(t)—3i)2’izl*z'“"m’ t=12,--,N (2
5)
Spi =4/S& ,i=12,--,m, t=12--- N (26)
N (27)

1 o )
:ﬁZpi(t),l—l,Z,...,m, t=12-..,
=1

T (3) The absolute value U; of the
difference between the mean A; and median ;i of
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data series X; is as follows:
Ui =8 -A ,i=12,---,m (28)
The absolute value Ug; of the difference between

the mean B; and median S of robust data series X;
is as follows:

Ugi =|8 - B,i=12,---,m (29)
Assessment of the Working Performance of
Time Series with Unknown Distributions

(1) The variation ratio V; of a time series
can be obtained according to equation (30):

v_ Imax x,(t) - K, | + K; , — minx, (t)

1 Bi
i=12,---,m (30)
A larger Viindicates larger performance variation
of the time series. max xi(t) is the largest value of
data series X; in the it set of rolling bearings, and
min xi(t) is the smallest value of data series Xjinn
the it set of rolling bearings.

(2) The reliability U; of time series X; can

be obtained according to equation (31):
U=00-a)%i=12-m (31)
Ui is the reliability of the vibration data of a
rolling bearing and reflects the degree of
confidence of time series X;: a larger Ujindicates
higher confidence.

(3) The intrinsic interval [K; 1, Ki, 2] of the
time series can be obtained according to equation
(6) in section 1.3:
where [K; 1, Ki, 2] is the intrinsic interval of the
time series and reflects the working performance
of time series Xi:

Test

To test the above assessment results of the
fusion method for the working performance of
rolling bearings, the vibrations of 3 sets of
tapered roller bearings (30204) are measured
with special test equipment (designed by Henan
University of Science and Technology). The
objective of the test is to assess the working
performance of rolling bearings.

Test Conditions

The testing environment is clear, and the
foundation of the test equipment lacks vibration.
The environmental temperature is 20°C, and the
relative humidity is < 70%.

Test Theory

As shown in Fig. 4, in the measuring
device, a tapered 30204 roller bearing is installed
on the drive shaft, which is installed in the inner
ring, is driven by the motor. The axial load is
loaded by the force of the end face of the outer
ring, and in the experiment, the vibration data are
acquired by means of the speed of the outer ring.
The speed signal of the vibration of the rolling
bearing is collected by a B1010 acceleration
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sensor located in the bearing’s outer ring radius.
The inspection standards are JB/T10236-2001,
and the testing method follows JB/T5313-2001.

FRIEOY

load

-

- load
Fig. 4. Measurement principle for rolling bearing
vibration

Test Scheme

The test parameters are as follows:

(1) The rotating speed of the test
equipment was 1800 r/min. The axial load was
60 N.

(2) The time interval of the test data was
0.03 s. A total of 901 vibration data points of a
tapered 30204 roller bearing were collected
according to the test requirements.

Analysis of the Vibration Data of
Rolling Bearings

Robustness of the Test Data

The vibration of 3 sets of tapered 30204
roller bearings is tested over time using the
above test scheme. The vibration data are shown
in Fig. 5.

m/s)

X1/

0 101 202 303 404 505 606 707 808 909
n

(a) First rolling bearing

m/s)

Xy

0 101 202 303 404 505 606 707 808 909

n

(b) Second rolling bearing

X al(ums)

0 101 202 303 404 505 606 707 808 909

n



(c) Third rolling bearing
Fig. 5. Rolling bearing vibration data

The vibration of the 30204 rolling bearings
is shown in Fig. 5. Vibration data of the first and
second rolling bearings are in the interval [-0.7,
0.7], and the data of the third rolling bearing are
in the interval [-0.4,0.4]. As time passes, the
vibration of the first, second and third bearings
increases slightly, indicating a change in the
performance of the tapered 30204 roller bearings.
The type of change is not easy to identify. To
study the performance of the vibration data of a
tapered 30204 roller bearing, the data
distribution of the test data is studied via
histogram. The results are shown in Fig. 6.
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(a) First rolling bearing
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(b) Second rolling bearing
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(c) Third rolling bearing
Fig. 6. Histograms of the rolling bearing
vibration data

A total of 901 vibration data points are
collected, which surpasses the 800 required
according to modern statistics, so the vibration
data can be considered to follow a normal
distribution. If the vibration data do not follow a
normal distribution, then the vibration data are
not robust, that is, the performance of the rolling
bearing varies. According to the results in Fig. 6,
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the histogram of the rolling bearing vibration
does not agree with the normal distribution; thus
the vibration is non-robust. To assess the
performance variation of the rolling bearing, the
vibration data must be tested for normality to
determine the extent of non-robust data. The
results of the normality test are shown in Fig. 7.

0.997) 2
7
098 e
/
050 /’

. o7

050

% o2

010 —f
0.05
oo

&
0.01

+

0. 7
0,001

06 04 02 04 06

o
Vibration/(umis)

(a) First rolling bearing

o. -
1.
0.997 ]

099 Lt
098
095

Pl

0.90
0.75 /
o0
o5

p 4
on
0.05 I

,

on

0.01
w"

0
0001

robability

06 0.4 04 06

02 [} 02
Vibration/(umis)

(b) Second rolling bearing

g

#

098
y 4

N

Probability
8

N

002 #

0.01
7

g

g

ibration/(umis)

(c) Third rolling bearing

Fig. 7. Normality tests of the rolling bearing
vibration

If the probability of vibration data deviates
from the line representing a normal distribution,
then that part of the vibration data is not robust.
According to the results in Fig. 7, non-robust
data are observed at both ends of the distribution.
On the basis of the extent of non-robust data, the
rolling bearing vibration data are robustly
processed via the fusion method of the median
estimate and the Huber (M) estimate. The
parameter Di(n1,nz) represents the robustness of
the vibration data: and smaller Di(ns1,n2) indicates
more robust vibration data. The results of
Di(n1,n2) are shown in Fig. 8.
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Fig. 8. Comparison of Di(ny,n,) of the rolling
bearing vibration data

As the significance level increases, Di(n1,n2)
for the first, second and third bearings decreases,
showing that the robustness of the vibration data
increases with increasing significance level.
According to the fusion method combining the
median estimate and the Huber (M) estimate, a
smaller Di(n,nz) value corresponds to more
robust vibration data, so the significance level of
the first, second and third bearings is 0.1.

According to the 0.1 significance level of
the first, second and third bearings, based on the
fusion method that combines the median estimate
and the Huber (M) estimate, the boundary value
is calculated according to equations (10)-(11)
and (16)-(17). Robust rolling bearing vibration
data can be obtained according to the boundary

values. The results of the robustness of the test
data are shown in Fig. 9.
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Fig. 9. Distribution functions of the rolling
bearings under the 0-0.1 significance level

At a significance level of 0.1, the results in
Fig. 9 show the distribution functions of the first,
second and third bearings, and the robust test
data have a median at the centre, exhibit
continuity, and are not decreasing, which meets
the requirement of the fusion method combining
median estimate and Huber (M) estimate.
Characteristics of Robust Data

To characterize the robust data of the
vibration data of a rolling bearing, according to
equations (20)-(29), the discreteness, stability
and robust parameters of the robust data are
listed in Table 1.

Table 1. Parameters of the robust rolling bearing vibration data

No | Discreteness parameter Stability parameter Robustness parameter
Wri/(um/s) Wi/(um/s) Sgi/(Lm/s) Si/(um/s) Uri/(nm/s) Ui/(um/s)
1 0.714156 1.360751 0.196915 0.214754 0.000379 0.001734
2 0.629924 1.276149 0.170684 0.188037 0.002336 0.004569
3 0.284889 0.647092 0.077466 0.086610 0.000154 0.000652
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According to the results in Table 1, Wi, Sgi
and Sg; of the robust data are smaller than Wi, S;
and S; of the vibration data, indicating that the
discreteness, stability and robustness of the
robust data are better than those of the vibration
data, according to equations (20)-(29). For the
robust vibration data, the intrinsic interval and
variation ratio of the rolling bearings are shown
in Table 2. The reliability of the 2 bearings is
90%, indicating that the test data are high quality
and reflect the characteristics of rolling bearings.

J. CSME Vol.40, No.1 (2019)

The variation ratio of the first bearing is smaller
than that of the other two bearings, showing that
the variation performance of the first bearing is
the best. The working performance of the first
bearing does not change easily. The intrinsic
interval of the third bearing is smaller than that
of the other two bearings, indicating that the
running performance of the third bearing is the
best. Therefore, the third bearing is suitable for
high-precision equipment, and the first bearing is
suitable for equipment with high reliability.

Table 2. Assessment parameters of the rolling bearing vibration data

No Reliability U;(%) Intrinsic interval[Ki 1, Ki,] (um/s) Variation ratio V; (%)
1 90 [-0.37909, 0.336541] 30.72014
2 90 [-0.31033, 0.325981] 123.0462
3 90 [-0.13672, 0.151494] 52.01116

Discussion

The fusion method of histogram and the
normality test of modern statistics provide a
solution to assess the robustness of test data with
an unknown distribution. Because the total
number of data points is 901, according to
statistics, the distribution of the test data can be
assumed to follow a normal distribution. The
results of the vibration data in Fig. 6 and Fig. 7
show confirm this assumption. Furthermore, the
results of the normality test in Fig. 7 show that
both ends of the order statistics of the vibration
data deviate from the normal distribution line,
and these data are unsteady data.

A fusion method combining the median
estimate and Huber (M) estimate, which do not
require information about the distribution and
trend of the test data, is proposed to solve
robustness problems of rolling bearing vibration
data. According to robust theory, the median is
robust to the data, so the median can be regarded
as an indicator of the robustness. According to
the test results of the first, second and third
bearings in Fig. 10, the means of the vibration
data do not equal the medians. Therefore, the test
data contain unsteady data or discrete values that
need a robust analysis process.

In addition, the results of the first, second
and third bearings in Fig. 8 show that the fusion
method combining median estimate and Huber
(M) estimate is correct. To reflect the boundary
value of the robust test data, the significance
level is introduced using the fusion method that
combines the median estimate and the Huber (M)
estimate. The range of the significance level is
determined according to the data requirements.
In this paper, the range of the significance level
is typically 0-0.1. According to the robust
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principal of the mean being close to the median,
Di(ny,n2), which is the absolute value of the
difference between the mean and median of the
data series in the 0-0.1 significance level range,
is a robust standard for rolling bearing vibration
data. According to the min Dj(ni,n2) value, the
significance level and boundary value can be
determined by equations (10)-(11) and (16)-(17).
Robust vibration data of a rolling bearing are
attained by equation (19), and the results of the
robust data are shown in Fig. 9. The discreteness,
stability and robustness of the robust data are
better than those of the vibration data according
to equations (20)-(29), as shown in Table 1.
Therefore, the fusion method can obtain robust
test data.

According to the analysis results of the
fusion method combining the median estimate
and the Huber (M) estimate, the intrinsic interval
of the test data is obtained, and the intrinsic
interval reflects the working characteristics of the
rolling bearing. The variation ratio, which
reflects unsteady data and robust data, can
represent the variation characteristics of the
working performance of the rolling bearing. Both
reflect that excellent working characteristics and
reliability are expected for the working state of a
rolling bearing; however, in practice, both values
are not usually available. Studies show the
presence of complexity and diversity. The
working characteristics of some rolling bearings
are good according to the intrinsic interval.
However, the performance variation is very
serious, according to the variation ratio, and the
performance of other rolling bearings is opposite.
The working characteristics and variation
characteristics commonly reflect the working
state of a rolling bearing.
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Conclusion

Fusion theory and the fusion method can
be used to obtain additional information to
compensate for a lack of information by making
full use of the data series information, thereby
providing a solution for poor information
systems.

Based on modern statistics, the fusion
method of histogram and normality test is
proposed to judge the robustness and the
direction of unsteady data of data series, as
shown in Figs. 8 and 9, when the number of
samples reaches a certain value.

The fusion method combining the median
estimate and Huber (M) estimate obtains robust
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