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ABSTRACT 

 
The performance assessment of time series 

with unknown distributions, which belongs to the 
category of problems with poor information, is a 
key challenge for modern statistics. On the basis 
of modern statistics, the fusion method of 
histograms and a normality test to judge the 
robustness and the direction of unsteady data of 
time series, and the fusion method combines the 
median estimate and Huber (M) estimate obtains 
robust data, unsteady data and the significance 
level of the time series. These methods are used 
in the vibration analysis of rolling bearings to 
verify their effectiveness, and the results show 
that unsteady data exist in time series at both 
ends of the order statistics. The reliability reflects 
the significance level of the rolling bearing 
vibration data and avoids error due to artificial 
factors. The intrinsic interval and the variation 
rat io  accura tely represent  the working 
performance of rolling bearings, even in cases of 
complex and diverse running states. Additionally, 
the above fusion method provides a valuable 
solution to robustness problem for unknown 
distribution, the significance level test data and 
the boundary value of the Huber (M) estimate in 
m o d e r n  s t a t i s t i c a l  m e t h o d s . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
of the histogram and normality test provides 
rules to judge the performance variation of the 

rolling bearing; the fusion method combining the 
median estimate and Huber (M) estimate of the  

 
 

Introduction 
 
Research Status 

The working performance of a mechanical 
system has an important influence on the safe 
and reliable operation of equipment (Chen C, et 
al., 2007; Sun S H, et al., 2007). The working 
performance of a rolling bearing, a key part of a 
mechanical system, may directly influence the 
reliability and lifetime of a mechanical product. 
Vibration can reflect errors in bearing 
manufacturing, installation, and lubrication, 
affect the bearing’s noise, dynamic 
characteristics, time-life and reliability and 
represents a topic of wide concern to modern 
engineering and theory (Xia X, et al., 2007). 
Many studies have proposed various methods for 
assessing the vibration performance of rolling 
bearings. Time domain features, neural networks 
and spectral analysis (Srividya A, et al., 2009; 
Castejon C, et al., 2010; Antoni J, 2007) of 
vibration signals are used in bearing fault 
diagnosis. The grey bootstrap method is 
proposed and used in the dynamic assessment 
and diagnosis of bearing vibration data (Xia X, et 
al., 2007; Tzu-Li Tien, 2005; Efron B, 1979; 
Reeves J J, 2005; Yatracos Y, 2002; Deng J, 
1989). The Hilbert Huang method is used in the 
analysis of the vibration properties of rolling 
bearings (Xiong W, et al., 2006). The phase 
space method is proposed to analyse the 
characteristic parameters of rolling bearing 
vibration (Xia X, et al., 2007). The relationship 
of vibration and noise and measurements of 
decreasing vibration and reducing noise are also 
studied (Banda N, 2003; Wang P, et al., 2005; 
Arenas J P, 2005; Estocq P, et al., 2006; Xia X, et 
al., 2005). 

The above methods show that the vibration 
performance of rolling bearings is complex and 
diverse; does not follow a single distribution 
function and thus belongs to the category of 
problems with poor information. However, these 
methods focus on attaining information from 

Paper  Received  November,2017. Revised August, 2018.  
Accepled August, 2018. Author for Correspondence: Xintao Xia 

 
*. PhD student, School of Mechanical Engineering, Northwestern 

Polytechnical University, Xi’an 710072, China 
 
**. Professor and Doctoral Supervisor, School of Mechatronics 

Engineering, Henan University of Science and Technology, 
Luoyang 471003, China；Collaborative Innovation Center of 
Machinery Equipment advanced Manufacturing of Henan 
Province, Luoyang 471003, China, E-mail: 
xiaxt1957@163.com. 

 
***. PhD student, School of Mechanical Engineering, 

Northwestern Polytechnical University, Xi’an 710072, China  
 

 

mailto:xiaxt1957@163.com


J. CSME Vol.40, No.1 (2019) 
 

-64- 
 

vibration data and do not consider the robust 
performance of vibration data. In modern 
statistics, robust performance of test data is a 
premise of data analysis, and not considering the 
robustness of time series can lead to serious 
results. Therefore, this paper provides a fusion 
method to analyse the working performance of 
time series with unknown distributions based on 
robust theory and fusion theory. 
Fusion Theory 

Fusion theory originates from the tale of 
the blind man and the elephant. The tale shows 
that different conclusions result from different 
methods, that is, different methods provide 

different ways of observing an object. Therefore, 
the combination of results of multiple methods 
can more fully represent the characteristics of an 
object. This theory is named fusion theory, the 
principle of fusion theory is shown in Fig. 1. 
However, in practice application, due to the 
limitations of the adopted method, obtaining the 
characteristic of the object can lead to error in 
the data analysis results. A fusion method that 
alleviates the limitations of some methods is 
used to process time series according to the 
characteristics of various methods. The principle 
of the fusion method is shown in Fig. 2.

 
 

 

 

 

 
Fig. 1. Principle of fusion theory 

 
 

 
Fig. 2. Principle of the fusion method 

 
Selection of the Fusion Method 

 
Based on modern statistics theory, Fusion 

Method of Histogram and Normality Test and 

combining median estimate and Huber (M) estimate 
were proposed to analyse working performance of 
rolling bearings, the flow chart of the working 
performance of time series are shown in Fig. 3.
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Fig. 3. Flow chart of the working performance of time series 

 
 

Mathematical Model 
 
Basic Definition 

According to the above method analysis, 
the mathematical model of the fusion method is 
as follows: 

(1) In the real-time monitoring process, 
suppose that the original time series, which can 
be represented as a vector X, output by the 
measurement system is given by 

 

( ){ }tx=X ; Nt 2,1=               (1) 

where X is the vector of the time series, x (t) is 
the vibration value at time interval t, t is the time 
order, and N is the total number of time intervals. 

(2) The data of the ith set in X constitute the 
vector at moment t, and Xi is given by 

( ){ }txii =X ； Nt 2,1= ； mi 2,1=      (2) 

where i is the order number of bearings, Xi is the 
vector of the ith set, xi(t) is the vibration data of 
time interval t in set i, i is the order of the 
bearing set, and m is the total number of bearings, 
and m is the total number of sets. 

 (3) According to the order from the 
smallest to the largest data of time series Xi, 
order statistic Yi is given by 

( ){ }nyii =Y  mi ,,2,1 = ， Nn ,2,1=   (3) 

where Yi is the order statistics of Xi, yi (n) is the 
nth data of the ith set.  
Mathematical Model of the Fusion Method of 
Histogram and Normality Test 

Frequency of data series Xi  
(1) Calculating poor di of data series Xi, 

according to order statistics Yi. 

( ) ( )1iii yNyd −= ； mi ,,2,1 =        (4) 

where di is poor of data series Xi, yi (N) is the Nth 
value of the order statistic of the ith set of rolling 
bearings, yi (1) is the 1st value of order statistic of 
the ith set of rolling bearings. 

(2) Group number k of data series Xi  
Based on the N value of data series Xi, the 

group number k of Xi is determined according to 
N . 

 (3) Group width pi of data series Xi  
The group width pi of data series Xi is as 

follows: 
( ) ( )

k
yNy

k
dp iii

i
1−

== ; mi ,,2,1 =   (5) 

(4) Group interval of data series Xi  
a is the lower boundary value, which is 

slightly smaller than yi(1), and b is the upper 
boundary value, which is slightly larger than 
yi(N); thus, [a, b] of data series Xi is attained 
according to a, b. 

According to statistics, the group interval 
of data series Xi is (a, a+ pi], (a+ pi, a+2pi)], …, 
(a+(k-1)pi. 

(5) The frequency ωi of data series Xi is 
given by 

( ){ }lii ωω = ; mi ,,2,1 = ； kl ,,2,1 =   (6) 

Where, ωi is the frequency of the data series, ωi(l) 
is the frequency of the lth group interval of the 
data series, i is the order number of bearings, m 
is the total number of bearings, l is the order of 
the group interval of the data series, and k is the 
total number of group intervals. 

(6) Histogram of data series Xi  
According to the frequency ωi of data 

series Xi, a histogram of data series Xi can be 
obtained. 

The robust of data series Xi can be judged 
according to whether the histogram follows a 
normal distribution. If the histogram of data 
series Xi follows a normal distribution, then Xi is 
robust; otherwise, Xi is not robust, and a 
normality test is needed. 

A normality test can identify data that do 
not follow a normal distribution; these data are 
named non-robust data. The normality test of 
data series Xi can judge the direction of 
non-robust data. 
Mathematical Model of the Fusion Method 
Combining the Median Estimate and Huber 
(M) Estimate 

(1) Median βi of Yi 
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mi ,,2,1 =                        (7) 
where βi is the median of the ith set. 

(2) New data series Zi (n1, n2) 
Suppose that yi (b) and yi (e) are two data 

points of Yi,  

( ) ii by β≤ ; mi ,,2,1 =             (8) 

( )eyii ≤β ; mi ,,2,1 =             (9) 

The number of data points from yi (b) to βi is n1, 
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and the number of data points from βi to yi(e) is 
n2; 

If yi(n) ≤yi(b), then 

( ) ( )nyby ii = ; mi ,,2,1 =            (10) 

If yi(n) ≥yi(e), then 

( ) ( )nyey ii = ; mi ,,2,1 =         (11) 

Then, new data series Zi(n1,n2) is constituted by 
( ) ( ){ }2121 ,;, nnnznn ii =Z ; mi ,,2,1 =

Nn ,2,1=                 (12) 
(3) Mean η(n1,n2) of robust data series 

Zi(n1,n2) 

( ) ( )∑
=

=
N

n
ii nnnz

N
nn

1
2121 ,;1,η ; mi ,,2,1 =  

Nn ,2,1=             (13) 
(4) The absolute value Di(n1,n2) of the 

difference between median βi and mean η(n1,n2) 

( ) ( )2121 ,, nnnnD iii ηβ −= ; mi ,,2,1 =      (14) 

n1 and n2 can be chosen according to the specific 
requirements; in this paper, 

oddorevenisnNorNnn ,
2

1
2

,,2,121
+

==    (15) 

(5) Boundary values Ki,1 and Ki,2 
Ki,1 and Ki,2 are the boundary values of the 

series absolute difference Di(n1,n2) obtained 
according to the absolute value of the difference 
between the median βi and mean η(n1,n2) of 
equation (13). Di,min(n1,n2) is the min value of 
Di(n1,n2), and the corresponding yi(b) and yi(e) 
are Ki,1 and Ki,2:  

( )byK ii =1, ; mi ,,2,1 =           (16) 

( )eyK ii =2, ; mi ,,2,1 =        (17) 

Therefore, n1 and n2 are determined 
according to Di, min (n1, n2). 

(6) Intrinsic interval [Ki, 1, Ki, 2] 
The intrinsic interval [Ki,1, Ki,2] can be 

obtained according to equations (13) and (14). 
[Ki,1, Ki,2] is the intrinsic interval of the time 
series and reflects the working performance of 
the time series. A smaller value indicates better 
working performance of the time series. Ki,1 and 
Ki,2 are the boundary values of the intrinsic 
interval of the ith rolling bearing, i is the order of 
the rolling bearing, and m is the total number of 
rolling bearings. 

Thus, [K1, K2], n1 and n2 are determined 
according to the above Di, min (n1, n2). 

)%1( 21

N
nn

i
+

−=α ; mi ,,2,1 =       (18) 

The range of significance level αi is [0, 0.1], 
where αi is the significance level of the ith 
bearing. 

The mathematical model of the fusion 
method of the median estimate and Huber (M) 
estimate is given as follows: 
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mi ,,2,1 = , Nt 2,1=        (19) 
Index of Robust Rolling Bearing Data  

According to modern statistical theory, 
unsteady test data lead to an increase in the 
absolute value of the difference between the 
largest and smallest value, the variance and the 
absolute value of the difference between the 
mean and the median of a data series. Therefore, 
the absolute value of the difference between the 
largest and smallest value, the variance and the 
absolute value of the difference between the 
mean and the median of a data series can reflect 
the robustness of a data series. 

(1) The absolute value Wi of the difference 
between max xi(t) and min xi(t) of data series Xi 
is determined as follows: 

( ) ( )txtxW iii minmax −= , mi ,,2,1 =   (20) 

The absolute value WRi of the difference between 
ki,2 and ki,1 of robust data series Yi is determined 
as follows: 

1,2, iiRi KKW −= , mi ,,2,1 =      (21) 

 (2) The variance Si of data series Xi is 
given by 

( )( )∑
=

−=
N

t
iii Atx

N
S

1

22 1 , mi ,,2,1 = , Nt ,,2,1 =   

                                 (22) 

2
ii SS = , mi ,,2,1 = , Nt ,,2,1 =    (23) 

( )∑
=

=
N

t
ii tx

N
A

1

1 , mi ,,2,1 = , Nt ,,2,1 = (24) 

The variance SRi of robust data series Xi is 
given by 

( )( )∑
=

−=
N

t
iiRi Btp

N
S

1

22 1 , mi ,,2,1 = , Nt ,,2,1 =  (2

5) 

2
RiRi SS = , mi ,,2,1 = , Nt ,,2,1 =  (26) 

( )∑
=

=
N

t
ii tp

N
B

1

1 , mi ,,2,1 = , Nt ,,2,1 =  (27) 

T (3) The absolute value Ui of the 
difference between the mean Ai and median βi of 
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data series Xi is as follows: 
iii AU −= β , mi ,,2,1 =          (28) 

The absolute value URi of the difference between 
the mean Bi and median βi of robust data series Xi 
is as follows: 

iiRi BU −= β , mi ,,2,1 =      (29) 

Assessment of the Working Performance of 
Time Series with Unknown Distributions 

(1) The variation ratio Vi of a time series 
can be obtained according to equation (30): 

( ) ( )
i

iiii
i B

txKKtx
V

minmax 1,2, −+−
=  

mi ,,2,1 =             (30) 
A larger Vi indicates larger performance variation 
of the time series. max xi(t) is the largest value of 
data series Xi in the ith set of rolling bearings, and 
min xi(t) is the smallest value of data series Xi inn 
the ith set of rolling bearings. 

(2) The reliability Ui of time series Xi can 
be obtained according to equation (31): 

)%1( iiU α−= mi ,,2,1 =           (31) 
Ui is the reliability of the vibration data of a 
rolling bearing and reflects the degree of 
confidence of time series Xi: a larger Ui indicates 
higher confidence. 

(3) The intrinsic interval [Ki, 1, Ki, 2] of the 
time series can be obtained according to equation 
(6) in section 1.3: 
where [Ki, 1, Ki, 2] is the intrinsic interval of the 
time series and reflects the working performance 
of time series Xi:  
 

Test 
 

To test the above assessment results of the 
fusion method for the working performance of 
rolling bearings, the vibrations of 3 sets of 
tapered roller bearings (30204) are measured 
with special test equipment (designed by Henan 
University of Science and Technology). The 
objective of the test is to assess the working 
performance of rolling bearings. 
Test Conditions 

The testing environment is clear, and the 
foundation of the test equipment lacks vibration. 
The environmental temperature is 20°C, and the 
relative humidity is < 70%. 
Test Theory 

As shown in Fig. 4, in the measuring 
device, a tapered 30204 roller bearing is installed 
on the drive shaft, which is installed in the inner 
ring, is driven by the motor. The axial load is 
loaded by the force of the end face of the outer 
ring, and in the experiment, the vibration data are 
acquired by means of the speed of the outer ring. 
The speed signal of the vibration of the rolling 
bearing is collected by a B1010 acceleration 

sensor located in the bearing’s outer ring radius. 
The inspection standards are JB/T10236-2001, 
and the testing method follows JB/T5313-2001. 

 

 
Fig. 4. Measurement principle for rolling bearing 

vibration 
 
Test Scheme 

The test parameters are as follows: 
(1) The rotating speed of the test 

equipment was 1800 r/min. The axial load was 
60 N. 

(2) The time interval of the test data was 
0.03 s. A total of 901 vibration data points of a 
tapered 30204 roller bearing were collected 
according to the test requirements. 
 

Analysis of the Vibration Data of 
Rolling Bearings 

 
Robustness of the Test Data 

The vibration of 3 sets of tapered 30204 
roller bearings is tested over time using the 
above test scheme. The vibration data are shown 
in Fig. 5.  
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(c) Third rolling bearing 
Fig. 5. Rolling bearing vibration data 

 
The vibration of the 30204 rolling bearings 

is shown in Fig. 5. Vibration data of the first and 
second rolling bearings are in the interval [-0.7, 
0.7], and the data of the third rolling bearing are 
in the interval [-0.4,0.4]. As time passes, the 
vibration of the first, second and third bearings 
increases slightly, indicating a change in the 
performance of the tapered 30204 roller bearings. 
The type of change is not easy to identify. To 
study the performance of the vibration data of a 
tapered 30204 roller bearing, the data 
distribution of the test data is studied via 
histogram. The results are shown in Fig. 6.  
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(b) Second rolling bearing 
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(c) Third rolling bearing 

Fig. 6. Histograms of the rolling bearing 
vibration data  

 
A total of 901 vibration data points are 

collected, which surpasses the 800 required 
according to modern statistics, so the vibration 
data can be considered to follow a normal 
distribution. If the vibration data do not follow a 
normal distribution, then the vibration data are 
not robust, that is, the performance of the rolling 
bearing varies. According to the results in Fig. 6, 

the histogram of the rolling bearing vibration 
does not agree with the normal distribution; thus 
the vibration is non-robust. To assess the 
performance variation of the rolling bearing, the 
vibration data must be tested for normality to 
determine the extent of non-robust data. The 
results of the normality test are shown in Fig. 7. 
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(c) Third rolling bearing 

Fig. 7. Normality tests of the rolling bearing 
vibration  

 
If the probability of vibration data deviates 

from the line representing a normal distribution, 
then that part of the vibration data is not robust. 
According to the results in Fig. 7, non-robust 
data are observed at both ends of the distribution. 
On the basis of the extent of non-robust data, the 
rolling bearing vibration data are robustly 
processed via the fusion method of the median 
estimate and the Huber (M) estimate. The 
parameter Di(n1,n2) represents the robustness of 
the vibration data: and smaller Di(n1,n2) indicates 
more robust vibration data. The results of 
Di(n1,n2) are shown in Fig. 8. 
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(b) Second rolling bearing 
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(c) Third rolling bearing 

Fig. 8. Comparison of Di(n1,n2) of the rolling 
bearing vibration data  

 
As the significance level increases, Di(n1,n2) 

for the first, second and third bearings decreases, 
showing that the robustness of the vibration data 
increases with increasing significance level. 
According to the fusion method combining the 
median estimate and the Huber (M) estimate, a 
smaller Di(n1,n2) value corresponds to more 
robust vibration data, so the significance level of 
the first, second and third bearings is 0.1. 

According to the 0.1 significance level of 
the first, second and third bearings, based on the 
fusion method that combines the median estimate 
and the Huber (M) estimate, the boundary value 
is calculated according to equations (10)-(11) 
and (16)-(17). Robust rolling bearing vibration 
data can be obtained according to the boundary 

values. The results of the robustness of the test 
data are shown in Fig. 9. 
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(c) Third rolling bearing 

Fig. 9. Distribution functions of the rolling 
bearings under the 0-0.1 significance level 

 
At a significance level of 0.1, the results in 

Fig. 9 show the distribution functions of the first, 
second and third bearings, and the robust test 
data have a median at the centre, exhibit 
continuity, and are not decreasing, which meets 
the requirement of the fusion method combining 
median estimate and Huber (M) estimate.  
Characteristics of Robust Data 

To characterize the robust data of the 
vibration data of a rolling bearing, according to 
equations (20)-(29), the discreteness, stability 
and robust parameters of the robust data are 
listed in Table 1. 

 
Table 1. Parameters of the robust rolling bearing vibration data  

No Discreteness parameter Stability parameter Robustness parameter 

WRi/(μm/s) Wi/(μm/s) SRi/(μm/s) Si/(μm/s) URi/(μm/s) Ui/(μm/s) 

1 0.714156 1.360751 0.196915 0.214754 0.000379 0.001734 

2 0.629924 1.276149 0.170684 0.188037 0.002336 0.004569 

3 0.284889 0.647092 0.077466 0.086610 0.000154 0.000652 
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According to the results in Table 1, WRi, SRi 

and SRi of the robust data are smaller than Wi, Si 
and Si of the vibration data, indicating that the 
discreteness, stability and robustness of the 
robust data are better than those of the vibration 
data, according to equations (20)-(29). For the 
robust vibration data, the intrinsic interval and 
variation ratio of the rolling bearings are shown 
in Table 2. The reliability of the 2 bearings is 
90%, indicating that the test data are high quality 
and reflect the characteristics of rolling bearings. 

The variation ratio of the first bearing is smaller 
than that of the other two bearings, showing that 
the variation performance of the first bearing is 
the best. The working performance of the first 
bearing does not change easily. The intrinsic 
interval of the third bearing is smaller than that 
of the other two bearings, indicating that the 
running performance of the third bearing is the 
best. Therefore, the third bearing is suitable for 
high-precision equipment, and the first bearing is 
suitable for equipment with high reliability.

 
Table 2. Assessment parameters of the rolling bearing vibration data 

No Reliability Ui(%) Intrinsic interval[Ki,1, Ki,2] (μm/s) Variation ratio Vi (%) 

1 90 [-0.37909, 0.336541] 30.72014 

2 90 [-0.31033, 0.325981] 123.0462 

3 90 [-0.13672, 0.151494] 52.01116 
 

Discussion 
 

The fusion method of histogram and the 
normality test of modern statistics provide a 
solution to assess the robustness of test data with 
an unknown distribution. Because the total 
number of data points is 901, according to 
statistics, the distribution of the test data can be 
assumed to follow a normal distribution. The 
results of the vibration data in Fig. 6 and Fig. 7 
show confirm this assumption. Furthermore, the 
results of the normality test in Fig. 7 show that 
both ends of the order statistics of the vibration 
data deviate from the normal distribution line, 
and these data are unsteady data. 

A fusion method combining the median 
estimate and Huber (M) estimate, which do not 
require information about the distribution and 
trend of the test data, is proposed to solve 
robustness problems of rolling bearing vibration 
data. According to robust theory, the median is 
robust to the data, so the median can be regarded 
as an indicator of the robustness. According to 
the test results of the first, second and third 
bearings in Fig. 10, the means of the vibration 
data do not equal the medians. Therefore, the test 
data contain unsteady data or discrete values that 
need a robust analysis process. 

In addition, the results of the first, second 
and third bearings in Fig. 8 show that the fusion 
method combining median estimate and Huber 
(M) estimate is correct. To reflect the boundary 
value of the robust test data, the significance 
level is introduced using the fusion method that 
combines the median estimate and the Huber (M) 
estimate. The range of the significance level is 
determined according to the data requirements. 
In this paper, the range of the significance level 
is typically 0-0.1. According to the robust 

principal of the mean being close to the median, 
Di(n1,n2), which is the absolute value of the 
difference between the mean and median of the 
data series in the 0-0.1 significance level range, 
is a robust standard for rolling bearing vibration 
data. According to the min Di(n1,n2) value, the 
significance level and boundary value can be 
determined by equations (10)-(11) and (16)-(17). 
Robust vibration data of a rolling bearing are 
attained by equation (19), and the results of the 
robust data are shown in Fig. 9. The discreteness, 
stability and robustness of the robust data are 
better than those of the vibration data according 
to equations (20)-(29), as shown in Table 1. 
Therefore, the fusion method can obtain robust 
test data. 

According to the analysis results of the 
fusion method combining the median estimate 
and the Huber (M) estimate, the intrinsic interval 
of the test data is obtained, and the intrinsic 
interval reflects the working characteristics of the 
rolling bearing. The variation ratio, which 
reflects unsteady data and robust data, can 
represent the variation characteristics of the 
working performance of the rolling bearing. Both 
reflect that excellent working characteristics and 
reliability are expected for the working state of a 
rolling bearing; however, in practice, both values 
are not usually available. Studies show the 
presence of complexity and diversity. The 
working characteristics of some rolling bearings 
are good according to the intrinsic interval. 
However, the performance variation is very 
serious, according to the variation ratio, and the 
performance of other rolling bearings is opposite. 
The working characteristics and variation 
characteristics commonly reflect the working 
state of a rolling bearing. 
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Conclusion 
 

Fusion theory and the fusion method can 
be used to obtain additional information to 
compensate for a lack of information by making 
full use of the data series information, thereby 
providing a solution for poor information 
systems. 

Based on modern statistics, the fusion 
method of histogram and normality test is 
proposed to judge the robustness and the 
direction of unsteady data of data series, as 
shown in Figs. 8 and 9, when the number of 
samples reaches a certain value. 

The fusion method combining the median 
estimate and Huber (M) estimate obtains robust 

data, unsteady data and the significance level of 
data series and provides a valuable solution for 
robustness problems of test data with unknown 
distributions, significance levels and boundary 
values of the Huber (m) estimate in modern 
statistical methods. 

The reliability, intrinsic interval and 
variation ratio constitute an assessment system of 
the working state and reflect the reliability 
characteristics of the test data and the working 
performance of rolling bearings. 

The working performance of rolling 
bearings is complex and diverse and provides a 
way to select a suitable rolling bearing based on 
the requirements of different working states. 
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摘 要 

未知分佈時間序列的性能評估屬於乏

資訊範疇，是近代統計學中的重要問題，一

種融合方法被提出評估未知分佈時間序列

的工作性能。基於近代統計學，採用長條圖

與正態性檢驗相融合方法判斷時間序列的

穩健性及不穩健資料方向；採用中位數估計

與 Huber (M)估計相融合方法獲取時間序列

的穩健資料、不穩健資料以及顯著性水準.

上述方法對滾動軸承振動資料分析，結果顯

示滾動軸承振動資料中存在不穩健資料並

且在次序統計量兩端；在工作狀況複雜性多

樣性條件下，可靠度可以避免人為誤差反映

時間序列的置信水準；本征區間和變異率可

以很好的評估滾動軸承的工作性能和變異

性能。此外，長條圖與正態性檢驗融合方法

給出滾動軸承性能變異的判斷準則，中位數

估計與 Huber (M)估計相融合方法為分佈未

知、置信水準未知試驗資料的穩健處理以及

Huber (M)估計的邊界值確定提供了一種方

法。 

 


