
中國機械工程學刊第四十三卷第六期第 579~591 頁(民國一百一十一年) 
Journal of the Chinese Society of Mechanical Engineers, Vol.43, No.5, pp.579~591 (2022) 

-579- 
 

Workspace Analysis and Optimal Design of  
3-PRR Planar Parallel Manipulators 

 
 
 

M.R. Shivakumar, R. Srikrishna, R. Sriram, SreeSailesh, Manoj 
Kumar Reddy, Teja Prakash and Anjan Kumar Dash* 

 
 
 
Keywords: 3-PRR Planar parallel manipulators, 

Workspace, Geometrical method, 
Closed form expression 

 
ABSTRACT 

 
In the optimum design of parallel manipulators, 

workspace of the manipulator is of greater importance. 
The shape and area of the workspace are the main 
parameters under this. In this paper, a new geometrical 
approach is presented to determine the shape and size 
of the constant orientation workspace for the 3-PRR 
planar parallel manipulators. All possibilities of shapes 
of workspaces are determined with variation of differ-
ent parameters. For each shape of workspace corre-
sponding geometrical conditions are also put forth. 
Closed from area expression of workspace is derived 
by geometrical approach for each shape. Such closed 
form expression of area is not possible with non-
dimensional approach. This becomes extremely useful 
during optimal design procedure. A look-up table is 
also presented seeing which the designer can choose 
geometrical conditions between different parameters 
which will ensure a void free workspace. A case study 
is presented wherein a user gives his required work-
space area and an algorithm is presented which gives 
all possible combinations of geometrical parameters 
satisfying the workspace area requirement. Then based 
on various considerations including singularity analy-
sis an optimal parallel manipulator is offered for the 
task which does not have any void within the 
workspace having least/nil singularities. 
 

INTRODUCTION 
 

A parallel manipulator is a closed-loop 
kinematic mechanism whose end effecter is linked to 
 
 
 
 
 
 
 
 

the base by several independent kinematic chains 
(Merlet, 2006). A parallel robot is defined as a robot 
which is made up of an end-effecter with n degrees of 
freedom, and a fixed base, linked together by at least 
two independent kinematic chains. Actuation takes 
place through n simple actuators. Parallel robots for 
which the number of chains is strictly restricted to the 
number of DOF of the end effecter are called fully 
parallel manipulators (Chablat and Wenger, 2007).  
There are two main cases in the analysis of fully paral-
lel manipulators. They are: planar manipulators and 
spatial manipulators. In the present paper we consider 
3-PRR planar manipulator. The closed kinematic chain 
has potential applications where maneuverability and 
requirement of workspace is low but dynamic loading 
is severe and high speed and precision motions are of 
paramount importance (Yang et al., 2019). The appli-
cations of parallel manipulators include force-torque 
sensor, machining center, aircraft simulator, earth-
quake simulator, pointing device, mechanism design, 
path planning, conformational trajectory planning of 
proteins (Madden et al., 2009) and in many other cases 
(Yang et al., 2017) etc. The 3-PRR planar parallel 
manipulator, due to its inherent stiffness and accuracy, 
and less inertia of moving links is a suitable mecha-
nism for high-speed and high-accuracy robotic appli-
cations as a planar positioning and orientation device 
(Ren, 2005; Wang, 2005 and Xu et al., 2017). 

Workspace determination of parallel manipula-
tors has been described in many papers. In Bohigas et 
al. (2012), a complete method for determination of 
workspace boundary is described on general structure 
manipulators by using a branch and prune technique. 
Study of singular configurations of a three DOF planar 
parallel mechanisms with three identical legs is 
described in Bonev et al. (2003). Dynamics and vibra-
tion control of a 3-PRR parallel manipulator with three 
flexible links is analyzed by generating dynamic equa-
tions (Zhang, 2009). It also studies the buckling effect 
on links and developing an active vibration control 
strategy. A methodology was described in Binaud et al. 
(2010) to obtain sensitivity coefficients of the pose of 
the moving platform of the manipulator to variation in 
geometric parameters and actuated variables. A 
methodology to enlarge the workspace of parallel ma-
nipulators by using non-singular transitions has been 
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described in Arana (2012). Dynamics of a 3-PRR 
manipulator has been explained in many papers as in 
Staicu (2008). 

In case of 3-DOF planar parallel manipulators, 
it is extremely difficult to determine the workspace 
area with the help of non-dimensional parameters 
especially when the shape of workspace is very com-
plex as shown in (Merlet, 2006; Arockia, 2014; Bonev, 
2000; Merlet, 2006; Merlet et al., 1998 and Gao et al., 
2001).  Especially in case of 3-PRR planar parallel 
manipulator, the workspace shape becomes very com-
plicated with combinations of straight lines, circles 
and arcs and consequently determination of area also 
becomes very difficult. Sometimes, researchers adopt 
to approximate algebraic or numerical method to 
determine the workspace area in the absence of such 
closed from expression of workspace area (Hrishi, 
2010).  One disadvantage of such approach is that it 
would be computationally tasking and involves error. 

A typical optimum design cycle for a parallel 
manipulator involves following steps: 1). specification 
of workspace area by the user and other specifications; 
2). determination of possible parallel manipulators 
(combination of link lengths) satisfying this area and 
other constraints; 3). determination of singularity 
points in each possible parallel manipulator; 4). select 
the one with least singularity points. 

Singularity analysis of parallel manipulators in 
general and specifically that of 3-PRR planar parallel 
manipulator has been addressed by many researchers 
(Bonev and Gosselin, 2001; Firmani and 
Podhorodeski, 2005; Huijing et al., 2018; Paskevich et 
al., 2006; Liu et al., 2004; Yang et al., 2018; Masouleh 
and Gosselin, 2006). Workspace analysis of this 
manipulator has also been addressed (Xu et a, 2017; 
Bonev et al., 2003 and Merlet et al., 1998), however 
shapes of the workspace with variation in the value of 
the parameters has not been reported. Also closed form 
expression of workspace area of 3-PRR planar parallel 
manipulators has not been reported so far. Such closed 
form expression of workspace area becomes very 
useful for parallel manipulators because they are 
mostly proposed for high accuracy applications. 

In this paper, effect of all possible variation of 
link lengths on the shape and area of workspace 
(constant orientation) of a 3-PRR planar parallel 
manipulators is studied and specific mathematical 
conditions for each workspace shape is determined. 
For each shape of the workspace, workspace area is 
also calculated in a geometrical way in closed form 
expression. Such geometrical expressions for determi-
nation of workspace area are very helpful for optimal 
design of such manipulators. A flow chart is presented 
to determine optimal parallel manipulator(s) for a 
given workspace area which free of singularities. A 
case study is given to verify this. 

 
KINEMATICS OF A 3-PRR 

MANIPULATOR 

As shown in Fig. 1, each kinematic chain of 
such a manipulator is of PRR type. The triangular 
shaped platform 𝐶𝐶1𝐶𝐶2𝐶𝐶3  is to be oriented by the 
manipulator. The triangle 𝐴𝐴1𝐴𝐴2𝐴𝐴3  forms the base. 

 
Figure 1: 3-PRR planar parallel manipulator 

Generally, the workspace is determined on different 
parameters as follows. 
l=maximum length that each slider can move 
r= radius of the revolute link  
b= side length of the base triangle 
a= distance from the centroid of the platform to its 
vertex of the mobile platform 
Determination of constant orientation workspace is 
shown in a step by step method in Fig. 2 using Vertex 
space method (Bonev and Gosselin, 2002). Figure 2(a) 
shows the line diagram of the same manipulator as in 
Fig. 1 and Fig.2(b) shows the individual workspace of 
each PRR chain i.e. WS1 is the workspace of 1st serial 
chain (A1-slider-C2); WS2 is the workspace of 2nd 
serial chain (A2-slider-C3) and WS3 is the workspace 
of 3rd serial chain (A3-slider-C1). Then, these 
workspace are moved in a direction determined by the 
orientation of the mobile platform by a distance ‘a’ as 
shown in Fig. 2(c). Consequently, the intersection of 
the three workspaces make up the total workspace of 
the manipulator as shown in Fig. 2(d). This procedure 
is followed in all the cases and please note that in all 
the cases, the location of the coordinate system is at 
A1 i.e. at the left vertex of the base triangle. Also it is 
to be observed that to determine the actual area of the 
workspace and have a comparison amongst them, all 
the figures are to be drawn to a fixed scale which is not 
the case here; however the numerical value of area of 
workspace can be determined from the algebraic 
expression given for area for each workspace. 
Each parameter has its own effect on the shape and, 
hence, area of workspace. The variation of parameter 
is classified as follows: 

Case 1: l=b 
Case 2: l<b 
Case 3: l>b  

Among all the three cases, l=b is the simple one 
because two parameters are taking only one value. The 
third case of l>b is physically impractical to fabricate; 
however, this case is also investigated for academic 
interest and, as it would be found out, there exists 
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definite workspace even when l>b. In general, for 
every set of links on the PRR, maximum workspace is 
drawn and void area is subtracted from it. The inter-
section of workspaces of each link gives rise to total 
workspace of the manipulator. This is done for each 
and every individual case. The intersection area is 

determined by the integration of intersecting areas. In 
all the subsequent figures, workspace is generated 
without showing the step by step procedure and in 
each case, coordinate system is chosen at left vertex of 
the base platform. 
 

 
 

    
(a) Line diagram (b) Individual workspaces (c) Workspaces after 

translation (d) Final Workspaces 
Figure 2: Generation of constant orientation workspace for 3-PRR manipulator 

 
 

   
(a) Workspace with vertex down (b) Workspace with vertex upwards (c) Hexagonal workspace 

Figure 3: Workspace shapes for case 1 (l=b) 
 
 

Table 1: Workspace shapes when l<b  
 For b=r 

    
l<b=r=a l<b=r<a l<b=r>a, l>a l<b=r>a, l=a 

 

   

l<b=r>a, l<a    
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 For b>r 

    
l<b>r=a, l=r l<b>r<a, l<r, b>a l<b>r>a, a=l<r l<b>r=a, l>r 

    
l<b>r<a, l=r, b=a l<b>r<a, l=r, b>a l<b>r>a, l<a<r l<b>r=a, l<r 

    
l<b>r>a, a<l<r l<b>r<a, l=r, b<a l<b>r>a, a<r<l l<b>r<a, l<r, b=a 

    

l<b>r>a, a<l=r l<b>r<a, l=r, b<a l<b>r<a, l>r, b>a l<b>r<a, l>r, b<a 

 

   

l<b>r<a, l>r, b=a    
 
 FOR b<r 

     
l<b<r>a, a= b>l l<b>r=a l<b<r>a, a> b>l l<b<r>a, a> b>l l<b<r>a, b> l>a 
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NOTE: 
1. The colors green, pink and blue represent the 

workspace for each PRR chain. 
2. The maroon color represents the workspace of the 

manipulator. 
3. The empty space represents the void 
 
CASE 1: When l=b 

In this case, workspace of triangle shape starts 
to form when the lines are moved by a distance greater 
than 𝑙𝑙

2√3
− 𝑟𝑟  i.e; (𝑎𝑎 > 𝑙𝑙

2√3
− 𝑟𝑟) and beyond 𝑙𝑙

2√3
+ 𝑟𝑟  

i.e.,(𝑎𝑎 > 𝑙𝑙
2√3

+ 𝑟𝑟) there is no more workspace, thus in 
this case(𝑙𝑙 = 𝑏𝑏) workspace is formed only when  
𝑙𝑙

2√3
− 𝑟𝑟 < 𝑎𝑎 < 𝑙𝑙

2√3
+ 𝑟𝑟  

Three types of workspaces are formed before “𝑎𝑎 ” 
reaches 𝑙𝑙

2√3
+ 𝑟𝑟 

 
CASE 1.1: A triangle with its vertex downwards as 
shown in Fig.3(a) ( 𝑙𝑙

2√3
− 𝑟𝑟 < 𝑎𝑎) 

Area = √3
4
∗ 𝐵𝐵𝐶𝐶2 = √3(𝑎𝑎 + 𝑟𝑟)2 + √3

4
𝑙𝑙2 − 3𝑙𝑙(𝑎𝑎 + 𝑟𝑟)  

(1) 

CASE 1.2: A triangle with its vertex upwards when   
𝑙𝑙

2√3
+ 𝑟𝑟

3
< 𝑎𝑎 < 𝑙𝑙

2√3
+ 𝑟𝑟 as shown in Fig.3(b) 

Area = √3
4
∗ 𝐵𝐵𝐶𝐶2 = √3(𝑎𝑎 − 𝑟𝑟)2 + 𝑙𝑙2 − 3𝑙𝑙(𝑎𝑎 − 𝑟𝑟)  

(2) 

CASE 1.3: In between, when 𝑙𝑙
2√3

− 𝑟𝑟
3

< 𝑎𝑎 < 𝑙𝑙
2√3

+
𝑟𝑟 3⁄  , a hexagonal workspace is formed as shown in 
Fig.3(c). Different points are obtained by solving 
equations of different lines and the total area is 
obtained by determining the area of two trapeziums.  

Area = 6𝑎𝑎𝑙𝑙 + 2𝑙𝑙𝑟𝑟 − 4√3𝑎𝑎𝑟𝑟 − √3
2
𝑙𝑙2 − 6√3𝑎𝑎2 + 2𝑟𝑟2

√3
  

(3) 
CASE 2: (l<b): 
All the workspace shapes under this case are shown in 
the following table-1. 
 
Drawing workspaces of Table 1 
It is to be noted that all the workspaces shown in Table 
1 are constant orientation workspace and they are 
drawn using vertex space method as described in the 
beginning of Section 2 (refer Fig. 2). Existence of 
workspace depends upon two conditions: 
• 𝑟𝑟 + 𝑎𝑎 ≥ √3𝑏𝑏: This is the geometric condition for the 

existence of the 3-PRR parallel manipulator. Unless 
this condition is satisfied, the parallel manipulator 
cannot be constructed. 

• When a<<r, l: This is the condition where the radius 
of the mobile platform is very small compared to 
other dimensions such that when the individual 
workspaces are advanced following the vertex space 
method there is no common intersection among the 

individual workspace. This results in a no 
workspace situation. 

In Table 1 there are some places where it is mentioned 
‘workspace does not exist’ and that refers to either of 
the above two cases. 
Case 3: l>b 
Although case l>b is physically not preferable, for 
academic interest this case is presented in Table 2. 
 
DETERMINATION OF CLOSED FORM 
EXPRESSION OF WORKSPACE AREA 

BY GEOMETRICAL METHOD 
 

From section 2, it can be inferred that the 
general shape of the workspace obtained is as shown 
in Fig. 4. 

 
Figure 4: General shape of the workspace 

 
The points P1, P2…, P11 are the points that form the 
vertices of the workspace. They are obtained by 
solving the below given combinations using the 
standard formulae for circle-circle intersection or 
circle-line intersection: 

P1: 𝐶𝐶1 ∩ 𝐿𝐿1 P7:𝐶𝐶6 ∩ 𝐿𝐿5 
P2:𝐶𝐶1 ∩ 𝐶𝐶4 P8:𝐶𝐶5 ∩ 𝐿𝐿5 
P3:𝐶𝐶4 ∩ 𝑋𝑋𝑎𝑎𝑋𝑋𝑋𝑋𝑋𝑋 P9:𝐶𝐶5 ∩ 𝑋𝑋𝑎𝑎𝑋𝑋𝑋𝑋𝑋𝑋 
P4:𝐶𝐶4 ∩ 𝐿𝐿2 P10:𝐶𝐶2 ∩ 𝐶𝐶5 
P5:𝐶𝐶3 ∩ 𝐿𝐿3  P11:𝐶𝐶2 ∩ 𝐿𝐿1 
P6:𝐶𝐶3 ∩ 𝐶𝐶6  

The total area is separated into four parts as shown by 
red, green, blue and yellow colors above. The area of 
the red colored part is given by 

∆1 = ∫ 𝐶𝐶4�𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖𝑋𝑋 = 𝑖𝑖(𝑦𝑦)�𝑑𝑑𝑦𝑦𝑃𝑃𝑃𝑃2
𝑃𝑃𝑃𝑃3 +

∫ 𝐶𝐶1𝑃𝑃𝑃𝑃1
𝑃𝑃𝑃𝑃2 �𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖𝑋𝑋 = 𝑖𝑖(𝑦𝑦)�𝑑𝑑𝑦𝑦             (4) 

The area of the green colored part is given by: 
∆2 = 𝑎𝑎𝑟𝑟𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖𝑟𝑟𝑖𝑖𝑎𝑎𝑖𝑖𝑎𝑎𝑖𝑖𝑔𝑔𝑙𝑙𝑖𝑖 = 𝑙𝑙(𝑟𝑟 + 𝑎𝑎)           (5) 
The area of blue colored part is given by: 

∆3 = ∫ 𝐶𝐶2�𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖𝑦𝑦 =𝑃𝑃𝑃𝑃10
𝑃𝑃𝑃𝑃11

𝑖𝑖(𝑋𝑋)�𝑑𝑑𝑋𝑋 –∫ 𝐶𝐶5�𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖𝑦𝑦 = 𝑖𝑖(𝑋𝑋)�𝑑𝑑𝑋𝑋𝑃𝑃𝑃𝑃10
𝑃𝑃𝑃𝑃9      (6) 

The area of the yellow colored part is given by 

∆4 = ∫ 𝐶𝐶4� 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑖𝑖𝑋𝑋 𝑖𝑖𝑖𝑖𝑦𝑦 = 𝑖𝑖(𝑋𝑋)�𝑑𝑑𝑋𝑋 𝑃𝑃𝑃𝑃4
𝑃𝑃𝑃𝑃3 +

∫ 𝐿𝐿3� 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑖𝑖𝑋𝑋 𝑖𝑖𝑖𝑖𝑦𝑦 = 𝑖𝑖(𝑋𝑋)�𝑑𝑑𝑋𝑋 +𝑃𝑃𝑃𝑃5
𝑃𝑃𝑃𝑃4
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∫ 𝐶𝐶3� 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑖𝑖𝑋𝑋 𝑖𝑖𝑖𝑖𝑦𝑦 =𝑃𝑃𝑃𝑃6
𝑃𝑃𝑃𝑃5

𝑖𝑖(𝑋𝑋)�𝑑𝑑𝑋𝑋 +∫ 𝐿𝐿5� 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑖𝑖𝑋𝑋 𝑖𝑖𝑖𝑖𝑦𝑦 = 𝑖𝑖(𝑋𝑋)�𝑑𝑑𝑋𝑋 𝑃𝑃𝑃𝑃8
𝑃𝑃𝑃𝑃7 +

∫ 𝐶𝐶5� 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑖𝑖𝑋𝑋 𝑖𝑖𝑖𝑖𝑦𝑦 = 𝑖𝑖(𝑋𝑋)�𝑑𝑑𝑋𝑋 +𝑃𝑃𝑃𝑃9
𝑃𝑃𝑃𝑃8

∫ 𝐶𝐶6� 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑖𝑖𝑋𝑋 𝑖𝑖𝑖𝑖𝑦𝑦 = 𝑖𝑖(𝑋𝑋)�𝑑𝑑𝑋𝑋 𝑃𝑃𝑃𝑃7
𝑃𝑃𝑃𝑃6             (7) 

 
Total area is given by:∆= ∆1 + ∆2 + ∆3 + ∆4    (8) 
 
Now, observing the shapes of the workspace as 
described in section 2, it can be classified into 
following categories. 
 
a) Workspace having no void within it 
Under this category comes the following cases: 

Table 3: Workspace shapes having no voids within it 

 
b) Workspace shapes having voids in it, but the 

voids do not intersect with each other 

This is as shown in Fig.5: 

 
Figure 5: Shape of the workspace having non-

intersecting voids 

The area of void caused for each serial chain is same 
for each of the chains. The void area is given by: 
∆′= 3[𝜋𝜋(𝑟𝑟 − 𝑎𝑎)2 + 𝑙𝑙(𝑟𝑟 − 𝑎𝑎)]                  (9) 
So, the workspace area can be determined by 
subtracting the area as given in Eqn. (9) from that of 
Eqn. (8). 
 
c) The voids are intersecting-Type 1 (Fig. 6a) 

  

P1'

P3'

P4'

P5'

P6'

P2'

  
Figure 6: Types of voids when they are intersecting 

 
Table 4: Workspace shape having voids of type 1; 

      
The area of above shape of type 1 void is given 

by: 

∆′′= ∫ 𝐶𝐶1�𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖𝑋𝑋 = 𝑖𝑖(𝑦𝑦)�𝑑𝑑𝑦𝑦𝑃𝑃𝑃𝑃1′
𝑃𝑃𝑃𝑃2′ +

∫ 𝐿𝐿1′�𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖𝑦𝑦 = 𝑖𝑖(𝑋𝑋)�𝑑𝑑𝑋𝑋𝑃𝑃𝑃𝑃7′
𝑃𝑃𝑃𝑃1′ +
∫ 𝐶𝐶2′�𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖𝑦𝑦 = 𝑖𝑖(𝑋𝑋)�𝑑𝑑𝑋𝑋𝑃𝑃𝑃𝑃6′
𝑃𝑃𝑃𝑃7′ +
∫ 𝐶𝐶6′�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑃𝑃=𝑖𝑖(𝑃𝑃)�𝑑𝑑𝑋𝑋 +𝑃𝑃𝑃𝑃4′
𝑃𝑃𝑃𝑃3′

∫ 𝐶𝐶6′�𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖𝑦𝑦 = 𝑖𝑖(𝑋𝑋)�𝑑𝑑𝑋𝑋𝑃𝑃𝑃𝑃2′
𝑃𝑃𝑃𝑃3′ +

∫ 𝐿𝐿5′�𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖𝑦𝑦 = 𝑖𝑖(𝑋𝑋)�𝑑𝑑𝑋𝑋𝑃𝑃𝑃𝑃5′
𝑃𝑃𝑃𝑃4′    

Now, the total void area is given by: 
∆′ = 3[𝜋𝜋(𝑟𝑟 − 𝑎𝑎)2 + 𝑙𝑙(𝑟𝑟 − 𝑎𝑎)] − 3∆′′′       (10) 

d) The voids are intersecting of type 2 (Fig. 6(b)) 
The intersected shape is as shown in Fig.6(b). The area 
of the shape in Fig.8(b) is given by: 
∆′′= ∫ 𝐶𝐶4′ − 𝐿𝐿3′𝑑𝑑𝑋𝑋𝑃𝑃𝑃𝑃2′

𝑃𝑃𝑃𝑃1′   
Total void area is given by: 

∆′= 3[𝜋𝜋(𝑟𝑟 − 𝑎𝑎)2 + 𝑙𝑙(𝑟𝑟 − 𝑎𝑎)] − 3∆′′        (11) 
The cases under this category are shown in table 5. 

e) The voids are intersecting of type 3 (Fig. 6(c)) 
The area of this shape is given by: 

∆′′= ∫ 𝐿𝐿1′𝑑𝑑𝑋𝑋 + ∫ 𝐿𝐿4′𝑑𝑑𝑋𝑋 + ∫ 𝐶𝐶3′𝑑𝑑𝑋𝑋 +𝑃𝑃𝑃𝑃4′
𝑃𝑃𝑃𝑃5′

𝑃𝑃𝑃𝑃5′
𝑃𝑃𝑃𝑃6′

𝑃𝑃𝑃𝑃6′
𝑃𝑃𝑃𝑃1′

∫ 𝐶𝐶3′𝑑𝑑𝑋𝑋 + ∫ 𝐿𝐿3′𝑑𝑑𝑋𝑋 − ∫ 𝐿𝐿3′𝑑𝑑𝑋𝑋𝑃𝑃𝑃𝑃2′
𝑃𝑃𝑃𝑃1′

𝑃𝑃𝑃𝑃3′
𝑃𝑃𝑃𝑃2′

𝑃𝑃𝑃𝑃3′
𝑃𝑃𝑃𝑃4′       (12) 

 
The cases under this category are shown in table 6: 
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Table 5: Workspace shape having voids of type 2

 
 

Table 6: Workspace with voids of type 3 

 
 

Table 7: Workspace with voids of type-4 

 
 
f) The voids are intersecting of type 4 (Fig. 6(d))   
The area of this shape is given by: 
∆′′= ∫ 𝐿𝐿1′𝑑𝑑𝑋𝑋 + ∫ 𝐿𝐿4′𝑑𝑑𝑋𝑋 + ∫ 𝐶𝐶3′𝑑𝑑𝑋𝑋 +𝑃𝑃𝑃𝑃5′

𝑃𝑃𝑃𝑃6′
𝑃𝑃𝑃𝑃6′
𝑃𝑃𝑃𝑃7′

𝑃𝑃𝑃𝑃7′
𝑃𝑃𝑃𝑃1′

∫ 𝐶𝐶3′𝑑𝑑𝑋𝑋 + ∫ 𝐿𝐿3′𝑑𝑑𝑋𝑋 + ∫ 𝐶𝐶4′𝑑𝑑𝑋𝑋𝑃𝑃𝑃𝑃1′

𝑃𝑃𝑃𝑃2′ −𝑃𝑃𝑃𝑃4′
𝑃𝑃𝑃𝑃3′

𝑃𝑃𝑃𝑃4′
𝑃𝑃𝑃𝑃5′

∫ 𝐿𝐿3′𝑑𝑑𝑋𝑋𝑃𝑃𝑃𝑃3′
𝑃𝑃𝑃𝑃2′                               (13) 

The cases under this category are shown in Table 7. 

g) The voids are intersecting of type 5 (Fig. 7)  
The area of this shape is given by: 
∆′′= ∫ 𝐶𝐶1′𝑑𝑑𝑋𝑋 + ∫ 𝐿𝐿1′𝑑𝑑𝑋𝑋 − ∫ 𝐿𝐿5′𝑑𝑑𝑋𝑋 −𝑃𝑃𝑃𝑃6′

𝑃𝑃𝑃𝑃5′
𝑃𝑃𝑃𝑃6′
𝑃𝑃𝑃𝑃1′

𝑃𝑃𝑃𝑃1′
𝑃𝑃𝑃𝑃2′

∫ 𝐶𝐶6′𝑑𝑑𝑋𝑋 + ∫ 𝐶𝐶6′𝑑𝑑𝑋𝑋 − ∫ 𝐶𝐶6′𝑑𝑑𝑋𝑋𝑃𝑃𝑃𝑃3
𝑃𝑃𝑃𝑃2′

𝑃𝑃𝑃𝑃4′
𝑃𝑃𝑃𝑃3′

𝑃𝑃𝑃𝑃5′
𝑃𝑃𝑃𝑃4′      (14) 

The case under this category is shown in Fig.8. 

 
Figure 7: Intercepted shape of the voids-type 5 

 
   Figure 8: The workspace with void of type 5 

h) Void area exceeding the workspace area 
Remaining cases in which the void area is 

exceeding the workspace area are as shown in Fig.9 
and Fig. 10.  

 
Figure 9: Workspace under case (h) (having 3 

symmetrical sections) 

 
Figure 10: Shape of each section of Fig.9 

The workspace area can be divided into three 
symmetric parts; each part is as shown in Fig.10. 
∆= 3 �∫ 𝐶𝐶3𝑑𝑑𝑋𝑋𝑃𝑃𝑃𝑃3

𝑃𝑃𝑃𝑃2 + ∫ 𝐶𝐶6𝑑𝑑𝑋𝑋𝑃𝑃𝑃𝑃4
𝑃𝑃𝑃𝑃3 –∫ 𝐶𝐶3′𝑑𝑑𝑋𝑋 −𝑃𝑃𝑃𝑃5

𝑃𝑃𝑃𝑃4

∫ 𝐶𝐶2′𝑑𝑑𝑋𝑋 − 𝑙𝑙(𝑟𝑟 − 𝑎𝑎)𝑃𝑃𝑃𝑃6
𝑃𝑃𝑃𝑃5 − ∫ 𝐶𝐶1′𝑑𝑑𝑋𝑋𝑃𝑃𝑃𝑃1

𝑃𝑃𝑃𝑃2 �       (15) 

The cases under this category are shown in table 8 and 
9 in two parts. 
    Table 8: Workspace under case (h)_Part 1                  
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Table 9: Workspace under case (h)_Part 2 

 
 

PARAMETER OPTIMIZATION 
 

Normally, user comes with a requirement of 
workspace area and the designer has to give an 
optimized parallel manipulator which has no/least 
number of singularities. In section 3, geometrical and 
closed form expressions of all kinds of shapes of 
workspace areas are determined and based on that 
individual parameters can be optimized. 

However, it can be decided that workspace 
shapes in which there is void at the center of the 
workspace are not much preferable compared to those 
where there is no void. Considering this, the possible 
conditions of the parameters, as can be determined 
from Table 1 and 2 are as follows: 

Table 10: Conditions of parameters for no void area  
Sl No Mathematical Condition 
1 l>b=r=a 
2 l>b>r=a 
3 l<b<r=a 
4 l>b<r=a 
5 l>b<r=a(l=r) 
6 l>b<r=a(l>r) 
7 l>b<r=a(l<r) 
8 l<b>r=a(l=r) 
9 l<b>r=a(l<r) 
10 l<b>r=a(l>r) 

 

For all other cases, there would be voids in the 
workspace, hence not preferable. This is the great 
advantage of the look-up table looking at which one 

can determine which geometrical conditions of the 
parameters can give the designer a workspace free of 
voids. The workspace area in all the above cases is 
determined in the following way (please refer to Fig. 
6). 
 
Δ=A1+A2+A3+A4                        (16) 
where  
1. A1 =

∫ �(𝑟𝑟 + 𝑎𝑎)2 − (𝑦𝑦 − √3𝑙𝑙
2

)2 + �𝑏𝑏 − 𝑙𝑙
2
� + �(𝑟𝑟 + 𝑎𝑎)2 + 𝑦𝑦2 𝑑𝑑𝑦𝑦𝑃𝑃1

𝑃𝑃2   

2. A2 = 𝑙𝑙(𝑟𝑟+ 𝑎𝑎) 
3. A3 = ∫ (𝑃𝑃−𝑙𝑙)�((𝑟𝑟+𝑎𝑎)2+(𝑃𝑃−𝑙𝑙)2)

2
𝑃𝑃10
𝑃𝑃11 𝑑𝑑𝑋𝑋 +

∫ �
(𝑃𝑃−𝑏𝑏/2)�(𝑟𝑟+𝑎𝑎)2−(𝑃𝑃−𝑏𝑏/2)2

2
+ (𝑟𝑟+𝑎𝑎)2

2
𝑆𝑆𝑋𝑋𝑖𝑖−1(𝑃𝑃−𝑏𝑏/2

𝑟𝑟+𝑎𝑎
) +

√3
2
𝑏𝑏𝑋𝑋

� 𝑑𝑑𝑋𝑋𝑃𝑃9
𝑃𝑃10  

4. A4 = ∫ �√3𝑃𝑃
2

2
− 2(𝑟𝑟 + 𝑎𝑎)𝑋𝑋� 𝑑𝑑𝑋𝑋𝑃𝑃8

𝑃𝑃7 + ∫ �√3𝑏𝑏 −𝑃𝑃5
𝑃𝑃4

2(𝑟𝑟 + 𝑎𝑎)𝑋𝑋 − √3𝑃𝑃2

2
� 𝑑𝑑𝑋𝑋 +

∫ ��(𝑟𝑟 + 𝑎𝑎)2 − (𝑋𝑋 − 𝑏𝑏/2)2 + √3𝑏𝑏/2�𝑃𝑃9
𝑃𝑃8 𝑑𝑑𝑋𝑋 +

∫ ��3(𝑏𝑏−𝑙𝑙)
2

� 𝑋𝑋𝑃𝑃7
𝑃𝑃6 𝑑𝑑𝑋𝑋 +

∫ ��(𝑟𝑟 + 𝑎𝑎)2 − (𝑋𝑋 − 𝑙𝑙)2�𝑃𝑃6
𝑃𝑃5 𝑑𝑑𝑋𝑋 +

∫ ��(𝑟𝑟 + 𝑎𝑎)2 + (𝑋𝑋 − 𝑏𝑏/2)2 + √3𝑏𝑏
2
�𝑃𝑃9

𝑃𝑃8 𝑑𝑑𝑋𝑋  
 

The algorithm that is followed to determine the 
optimal parameters of the parallel manipulator suitable 
for a given workspace area is described in Fig.11. 

In this algorithm, the designer first gets the 
required workspace area from the user. Then he varies 
the parameters l, r, b and a within certain ranges 
(different ranges for different parameters). Then he 
checks which values of these parameters satisfy the 
conditions mentioned in Table 10. By this he ensures 
that for these values of the parameters there is no voids 
inside the workspace. Out of these sets of parameters, 
he eliminates those cases in which l>b considering 
feasibility of fabricating such manipulators. Then from 
the remaining sets of the values, he applies the Eqn. 16 
to determine the workspace and selects those values of 
the parameters for which the workspace area satisfies 
the required workspace area considering the factor of 
safety depending upon the type of application, or any 
other consideration as demanded by the user. These 
sets of values are the feasible values of the parallel 
manipulators which will give the required workspace 
area without any void in the workspace. Then he 
applies singularity conditions to each one of these 
parallel manipulators to determine the best parallel 
manipulator having least or no singularity points 
within the workspace. 

The formulation of the optimization algorithm is 
as follows: 
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Figure 11: Flowchart describing the algorithm which is followed to determine the optimal parallel manipulator 

 
maximize f(x) = Rw  
over x = [l r b a]T  
subject to g1: r+a ≥ √ 3b  

    g2: 0 < l < b  
    g3: Abs (det(J)) ≥ 0.001  
    xlb ≤ x ≤ xub, where xlb and xub are the 

lower and upper bounds of x, respectively 
Here x= set of design variables l, r, b, a as mentioned 
in section 2. 
Rw=Workspace of the manipulator as described in 
Eqn. (16). 
 
The constraints g1 and g2 are related to the geometric 

conditions required for the assembly of the manipula-
tor. These are the basic requirements which are 
required for the assembly of the 3-PRR manipulator 
without which it cannot be assembled. Constraint g3 is 
to eliminate conditions of singularity. And finally the 
design variables vary between set of lower bound and 
upper bound. 
 

CASE STUDY 
 

In the case study, the user wants to 3-PRR planar 
parallel manipulator having workspace area of 300 sq. 

START 

Varying the parameters l, r, b, and a within a range 

Do different values of l, r, 
b and a satisfy the 

conditions mentioned in 
  

Eliminate the cases in which l>b 

Is calculated workspace 
area same as the desired 
workspace area (within 

    

Save the Possibilities 

Optimal manipulator(s) 

Apply singularity and other 
 

Calculate the workspace area using Eqn.16 for remaining cases 

N
 

Ye
 

N
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units. The task is thus to give him a 3-PRR planar 
parallel manipulator having following features: 
• The workspace area is 300±10 square units (This 10 

square units depends upon the user’s requirement. If 
it is a precision application then we may give zero 
tolerance. The algorithm has the capability to work 
on such close tolerances) 

• All the proposed parallel manipulators do not have 
any void within the workspace. 

• The proposed optimal parallel manipulator(s) has 
zero or least number of singularities. 

• The solution gives us the optimal length of l, r, b and 
a. They are respectively the maximum displacement 
of the slider at the base joint, the length of the 
intermediate link, the base length of the base 
platform assumed to be a triangle and the radius of 
the top platform. 

Based on the flowchart shown in figure 14, the 
following sets of parameters satisfy the workspace 
area constraint and each one of them are having no 
void within the workspace. Table 11 shows this result. 
 
 

 
Table 11: Optimal parameters matching with workspace area requirement and having no voids within 

Sl 
No. 

l (max 
slider 

length in 
unit) 

b (base length of the 
triangular base 

platform in unit) 

r (link connecting to 
slider to the mobile 

platform in unit) 

a (radius of the 
mobile platform 
in unit) 

Workspace 
area (unit2) 

1 20 20 6 8 301 
2 20 20 8 10 301 
3 20 20 10 12 301 
4 20 20 12 14 301 
5 20 20 14 16 301 
6 20 20 16 18 301 
7 20 20 18 20 301 
8 10 50 10 10 281 
9 50 50 12 12 307 

 
Out of the 9 shown parallel manipulators, serial 
numbers 3, 5, 7, 8, 9 are chosen for the singularity 
analysis. The rest are all very close to these dimensions. 
Singularity analysis for 3-PRR planar parallel 
manipulators are very much studied in the literature. 
So based on that singularity analysis is performed and 
the singularities are plotted in the following figure 12. 
The circles in the figure represent the forward 
singularities, the triangle represents the base platform 
with the three lines connecting the vertices to the 
centroid of the base platform. 
 

 
(a) Singularities of manipulator of Sl. No. 3 

 

 
(b) Singularities of manipulator of Sl. No. 5 

 

 
(c) Singularities of manipulator of Sl. No. 7 
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(d) Singularities of manipulator of Sl. No. 8 

 

 
(e) Singularities of manipulator of Sl. No. 9 

Figure 12: Singularity distribution of selected 
manipulators from table 11 (Sl. No 3, 5, 7, 8 and 9) 

 
Considering the number of singularities, except 

Sl. No. 3, 8 and 9 (Fig. 12 (a), (d), (e)), the other two 
parallel manipulators can be proposed to the user as 
suitable parallel manipulators for his application 
requiring 300 sq. units area. These two manipulators 
are shown in Fig. 13 (a) and (b) respectively. Out of 
them Sl. No. 5 (Fig.13(a)) contains two singularities 
and Sl. No. 7 (Fig.13(b)) contains 3 singularities only. 
Both these manipulators can be proposed to be optimal 
parallel manipulators to the user for his required 
workspace area.  

 
(a) Solid model of the parallel manipulator of serial 

no. 5 (Table 11) 

 
(b) Solid model of the parallel manipulator of serial 

no. 7 (Table 11) 
Figure 13: The optimal 3-PRR parallel manipulators 

 
CONCLUSIONS 

 
1. This paper presents a geometrical method of 

determination of the shape of the constant 
orientation workspace for any kind of variation of 
its parameters. A look up table is also proposed 
which shows all kinds of shapes of the workspaces 
for any variation in the parameters of 3-PRR planar 
parallel manipulator. For each shape of the 
workspace, geometrical conditions are also men-
tioned. This helps a lot in choosing geometrical 
parameters for a required shape of the workspace; it 
also helps to visualize which geometrical relation-
ship between the parameters results in voids inside 
the workspace. Thus, the look-up table is of a great 
help to the designer for optimal design of such 
parallel manipulators. 

2. For each shape of the workspace, closed form 
mathematical expressions are obtained to determine 
the area of the workspace. This helps a lot for 
optimal design; this also helps a lot for applications 
where precision is of more importance. This is more 
pronounced in case of parallel manipulators 
because parallel manipulators are preferred for 
precision applications. 

3. A case study is presented wherein the user gives his 
requirement of workspace area. A flowchart is 
presented wherein it is shown, in a step by step 
method, how to get singularity free (or minimum 
singularity) optimal parallel manipulators satisfy-
ing the workspace area requirement of the user and 
having no voids within the workspace. 

4. For the case study, initially 9 sets of parameters are 
chosen which satisfy the workspace area require-
ment and having no voids. Out of them best 5 are 
selected and they are tested for singularity analysis 
and out of them 2 parallel manipulators are chosen 
finally having minimum singularities, satisfying 
workspace area constraint and having no voids 
within the workspace. Thus the algorithm is 
successfully tested for a specific application.  
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