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ABSTRACT 

 
This paper presents in-depth kinematic, work-

space and singularity analysis of a six-degree-freedom 
parallel robot having 3-PR�R�S structure. The robot has 
three identical link chains connected together by a 
triangular moving platform. Each link chain composes 
of three rigid bodies connected by two actuating 
revolute joints. These link chains are connected to base 
with passive prismatic joint and to the moving platform 
by passive spherical joints. Explicit inverse kinematic 
solutions are provided and forward kinematic solutions 
are determined by dialytic elimination technique. 
Through its special structure, geometrical method for 
finding three types of workspace (constant orientation, 
reachable and dexterous) are given. By using 
Grassmann-Cayley Algebra, planes can be formed 
geometrically to determine singularity configurations of 
the robot. The method presented is advantageous as it 
provides geometrical insight to singularity conditions 
which help to avoid their occurrence in the design stage. 
 

INTRODUCTION 
 

Robot manipulator design is one the topics that 
has attracted researchers all over the world.  Mainly, 
there are two types of robot structure: serial and 
parallel. Serial robot is an open chain of links connected 
in series with one link connected to ground. This open chain 
structure inherits large workspace with high degree of 
freedom (DOF). However, the structural stiffness of this 
type of robot is low and hence cannot operate at high 
bandwidth. Parallel robots, on the other hand, have more 
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than one links connected to ground. Due to its parallel 
structure, parallel robots have higher stiffness and are 
more accurate than the serial counterpart. 

For parallel robots, inverse kinematic solutions 
can be found straightforwardly. Forward kinematic 
solutions, however, are more difficult to solve. There 
are 3 approaches to obtain solutions for forward 
kinematic: closed-form analysis, numerical technique 
and analytical technique. The closed-form solutions of 
forward kinematic may be determined for parallel robots 
with special structure. For example, the structure of 
Gough platform (Ping and Houngtao, 2001; Kai, 
Fitzgerald and Lewis, 1993; Xiguang and Guangping, 
2009) are symmetrically arranged such that the solutions 
resolve into closed-form. For most other parallel robots, 
closed-form solutions do not exist. Most forward 
kinematic relations are in the form of a set of nonlinear 
equations which are solved simultaneously by 
numerical techniques. The method such as Newton-
Raphson (Melet, 2006) and Global Newton Raphson 
(Chifu et al., 2009) have been shown to effectively 
obtain the solutions. However, for some special 
structure, the form of equations can be arranged into 
polynomial equations which is referred as analytic form. 
Then, in this case, the solutions can be solved using 
standard techniques such as dialytic elimination method 
(Tsai, 1999; Chen, et al., 2012; Tongtib, et al., 2016). 

In robot design, workspace is one of the main topics 
to consider. Generally, there are four main types of 
workspace (Gosselin, 1990; Merlet, 1999): 1) Constant 
orientation workspace 2) Orientation workspace 3) 
Inclusive orientation workspace 4) Total orientation 
workspace. There are mainly two approaches to obtain 
the workspace of a robot: numerical and geometrical. In 
the numerical approach, the area/volume in the scope of 
interest is divided into grids of data points. All data 
points will be checked with kinematic equations of the 
robot. For each data point, if the constraints are satisfied, 
it is then located in the workspace. This technique is 
simple and accurate but it is numerical intensive. On the 
other hand, for some structures, geometrical approach 
(Gosselin, 1990; Merlet, 1999) can determine the 
workspace with less calculation. This geometrical 
approach has advantages in that it gives preliminary idea 
of how the workspace will look like before entering into 
the calculation. 
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Singularities may exist at the boundary as well as 
inside of the robot’s workspace. At singularity 
configurations, the robot losses either its degree of 
freedom or controllability depending on type of 
singularity. The singularity can be analyzed from the 
velocity transformation matrix between inputs and 
outputs (Gosselin and Angels, 1990) called the 
“Jacobian” matrix. Both numerical and geometrical 
approaches have been used to find the singularity 
configurations. For numerical method, e.g. in Qian et al., 
(2013), the ranks of the Jacobian matrices for all tested 
positions in the workspace are checked. The position at 
which the rank of the Jacobian matrix is deficit reflects 
the singular position. For geometrical approach, 
imaginary lines and planes formed from the passive 
joints of the robot are used to describe the singular 
configurations (see Ben-Horin and Shoham, 2006; 
Monsarrat and Gosselin, 2001; Kefei et al., 2017). The 
advantage of this approach is that it gives visual 
information which can be used to analyze the structure 
of the robot in early stage of design. 

Although, parallel robots have desirable 
advantages in higher stiffness, more accurate and low 
inertia, its drawbacks are also significant in terms of 
workspace and singularity. The number of legs in 
parallel robot plays an important role in limiting the size 
of the workspace. For example, a popular 6-DOF 
Stewart platform has six legs causing its workspace to 
be very small. In this study, we aim to design a 6-DOF 
parallel robot that has larger workspace by employing a 
three-leg structure with 3-PR�R�S configuration. To the 
best of our knowledge, in-depth kinematic analysis, 
workspace and singularity of this type of structure have 
not been covered elsewhere and this paper aims to make 
this contribution. 

The remainder of the paper is organized as 
follows. Section 2 presents the description and 
kinematic analysis of 3-PR�R�S parallel robot. In Section 
3, the workspace determination will be explained. The 
procedure to obtain dexterous, reachable and constant 
orientation workspaces will be covered. In Section 4, the 
singularity conditions of this robot are analyzed using 
geometrical technique based on Grassmann-Cayley 
Algebra. Finally, conclusions are provided in Section 5. 
 

A 3-PR�R�S PARALLEL ROBOT 
 
Description 

Figure 1 (a) shows the schematic diagram of a 3-
PR�R�S parallel robot. The robot consists of a mobile 
platform shown as a triangle plate connected to a fixed 
base with three  PR�R�S  link chains. Each link chain 
consists of three rigid bodies connected serially by two 
actuating revolute joints. They are connected to the 
mobile platform with passive spherical joints and 
connected to a fixed base by passive prismatic joints. 
Each link chain operates on a plane that can translate 
along a fixed perpendicular axis. Link-chain 1 lies on 

the Y-Z plane and moves along the X-axis. Similarly, 
Link-chain 2 operates on the X-Z plane that can translate 
along the Y-axis and Link-chain 3 operates in the X-Y 
planes that can translate along the Z-axis. The end of 
each link chain is connected to the triangular moving 
platform by a passive spherical joint at Dn, n=1,2,3. The 
coordinates of Dns are denoted by (X, Dy1, Dz1), (Dx2, Y, 
Dz2) and (Dx3, Dy3, Z), respectively where X, Y and Z are 
passive positions along X-axis, Y-axis and Z-axis, 
respectively. 
 

 
Fig. 1. (a) Schematic description of a 3- PR�R�S parallel 

robot; (b) vector loop of Link-chain 1. 
 
The degree of freedom )mobility number (of this robot 
can be determined by 
M=6(n-1)-5f1-4f2-3f3,                             (1) 
where 

M = degree of freedom (D.O.F.)  
n = number of links (including the base)  
fi = number of joint with i D.O.F. 

 
Here, n=11, f1 = 9, f2 = 0 and f3 = 3. Therefore, the robot 
has 6 degrees of freedom which allows it to perform 
tasks that require positioning and orientating an object 
in three-dimensional space. 
 
Kinematic of a 3-PR�R�S parallel robot 

In Fig. 1 (b), let O(0,0,0) be the origin of the fixed 
frame and E(ex,ey,ez) be the origin of the x-y-z frame 
which is attached to the moving platform. Let R be the 
rotation matrix which maps the moving x-y-z frame 
onto the fixed X-Y-Z frame. The basic rotation matrices 
about X, Y and Z-axes are given as 

(a) 

(b) 
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RX(θX)= �
1 0 0
0 cos θX - sin θX
0 sin θX cos θX

� , RY(θY)= �
cos θY 0 - sin θY

0 1 0
- sin θY 0 cos θY

�, 

RZ(θZ)= �
cos θZ - sin θZ 0
sin θZ cos θZ 0

0 0 1
�, 

 
where θX, θY and θZ are orientations of moving platform 
about X, Y and Z axes, respectively. The overall rotation 
matrix R can be determined by successive rotation 
operations about principal axes X, Y and Z and is given by 
R=RZ(θZ)RY(θY)RX(θX).                (2) 
For each link chain n: 

ODn+RDnE=OE.                (3) 
Note that, DnE  are the known local distance vectors 
fixed in the rotating frame. 
 
Inverse kinematic 

When the position E and orientation of the 
moving platform, represented by the rotation matrix R, 
are given, the positions of all Dns can be uniquely 
determined. For each link chain, 

ODn=OE-RDnE.                                            (4) 
Each link chain can be considered as a 3-DOF serial 
planar manipulator with two actuators and one passive 
joint. Once the coordinate of Dn is determined, one can 
find the input joint angles of the actuators. 

Figure 2 shows description of each link chain on 
a local r-s plane which is used to describe the planes X-
Z, Y-Z and X-Y, respectively. The coordinate of Dn (Dsn 
and Dtn) associated with link n can be directly 
determined by forward kinematic of serial structure as: 
Dsn=llncosθ1n+luncosθ2n                    (5) 
Dtn=llnsinθ1n+lunsinθ2n               (6) 
 

 
Fig. 2. Schematic description of each link chain. 
 
From Eqs. (5) and (6), the inverse kinematic solutions 
of each link chain can be determined from: 

θ2n=θ1n+tan-1 �±�1-tn2 tn� � ,                           (7) 

θ1n= tan-1 �Dtn
Dsn
� - tan-1 � lunsin(θ2n-θ1n)

lln+luncos(θ2n-θ1n)
� ,                     (8) 

where tn= �Dsn
2 +Dtn

2 -lln
2 -lun

2 � 2llnlun� . 

Components Dsn and Dtn are the projections of point D 
onto the s-t plane in leg n. lln and lun are the lengths of 
lower and upper segments of the link chain n. Note in 
Eqs. (7) and (8) that for a given pair of Dy1 and Dz1 there 
exist two solutions pairs of θ1n and θ2n. In inverse 
kinematic problem, X, Y and Z are variables that need 
not be determined directly. Their values will follow the 
constraints resulted from connecting the three link 
chains to the moving platform. 
 

Forward kinematic 
The opposite problem to the inverse kinematic is: 

given the six input variables θ11, θ21, θ12, θ22, θ13 and θ23, 
then find the three coordinates of Dis which together can 
be used to solve for the position of the end-effector point 
E and the rotation matrix R. Note that Dy1, Dz1, Dx2, Dz2 
Dx3, Dy3 can be directly determined from Eqs. (5)-(6). The 
remaining steps are to find X, Y and Z. These three 
variables are related through three following constraints:  
‖D1-D2‖=d1,  ‖D2-D3‖=d2,  ‖D1-D3‖=d3,              (9) 
where d1, d2 and d3 are the distances between 
corresponding points. Eq. (9) can be rearranged as 
k2X2+k1X+k0=0,               (10) 
m2Y2+m1Y+m0=0,              (11) 
k5Y2+k4Y+k3=0,              (12) 
where 
k0=-𝑑𝑑32+Dx1

2 +Dx2
2 -2Dx2Dy2+Dy2

2 +Z2-2ZDz2+Dz2
2 , 

k1=-2Dx1, k2=1, k4=-2Dx2,k5=1, m1=-2Dy2,m2=1, 

k3=-𝑑𝑑22+Dx1
2 +Dx2

2 -2Dx1Dx3+Dx3
2 +Z2-2ZDz3+Dz3

2 ,  
m0=-𝑑𝑑1

2+Dx3
2 +Dy2

2 -2Dz2Dz3+Dz3
2 +X2-2XDx3+Dz3

2 .   
Note that the coefficients k0, k3 are functions of Z, k1, k2, 
k4, k5, m1, m2 are constants and m0 is a functions of X. 
Dialytic elimination method can be used to eliminate Y 
and X in Eqs. (10), (11) and (12), resulting in a function 
of 8th-order polynomial in Z: 
∑ aiZi8

i=0 =0,              (13) 
where the coefficients ai (i =0, 1, …, 8) are constants 
(the symbolic forms of ai are shown in the Appendix). 
Note that the maximum number of possible solutions of 
Z is 8 (Tongtib, et.al. 2016). Once the solutions for Z are 
obtained, X can be directly calculated from Eq. (10) and 
Y can be obtained from Eq. (11) or (12). Note that for 
each value of Z, two real values (if exists) of X and two 
real values (if exists) of Y can be obtained. 
 

WORKSPACE ANALYSIS 
 

For the 3-  PR�R�S  parallel robot, the reachable 
workspace can be visually observed as an intersection of 
the working volumes of three link chains. The working 
volumes of these link chains are seen as tubes along X, 
Y and Z axes for Link-chain 1, 2 and 3, respectively (See 
Fig. 3). 
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Fig. 3. The tube-shape working volume of (a) Link-

chain 1; (b) Link-chain 2; (c) Link-chain 3; (d) 
three link chains. 

 
Constant orientation workspace 

The constant orientation workspace is a three-
dimensional space in which the end-effector can reach 
when the orientation of moving platform is held fixed. 
For the 3- PR�R�S parallel robot, the constant orientation 
workspace is determined by intersection of working 
volume of each link chain. For Link-chain 1, the 
working volume is confined between two surfaces 
represented by outer and inner cylindrical equations 
along X-axis: 

�y-y1�
2
+(z-z1)2=(ll1+lu1)2,            (14) 

�y'-y1�
2
+(z'-z1)2=(ll1-lu1)2.            (15) 

The working volume of Link-chain 2 and Link-chain 3 
can be obtained similarly: 
(x-x2)2+(z-z2)2=(ll2+lu2)2 ,            (16) 
(x'-x2)2+(z'-z2)2=(ll2-lu2)2, (17) 

(x-x3)2+�y-y3�
2
=(ll3+lu3)2, (18) 

(x'-x3)2+�y'-y3�
2
=(ll3-lu3)2 . (19) 

Here, x𝑛𝑛 y𝑛𝑛 and z𝑛𝑛 are the effective centers of the circle 
which are dependent on the orientation of the mobile 
platform. The workspace is considered first individually 
for each leg. For Link- chain 1 and Link-chain 2, they 
are cylindrical shape along x- and y-axes, respectively. 
As viewed in the X-Y plane, the workspace is 
determined by the intersection of two rectangles as 
shown in Fig. 4 (a). Fig. 4 (b) describes the intersection 
of the working area of Link-chain 1 and Link-chain 2. 
For Link-chain 3, the workspace is cylindrical shape 
along Z-axis. 
Fig. 5 shows the boundary workspace of each link chain 
and the result of intersection of the boundaries on X-Y 
plane for example case of lln=600 mm, lun=200 mm, 
lbn=0 mm and dn=110 mm (n=1, 2, 3) and orientations 

of moving platform (Ox,Oy,Oz)=(90º,0,0). Then, the 
working volume of this robot can be determined by 
intersection of these three volumes as shown in Fig. 6. 
 

 
Fig. 4. (a) working volume of Link-chain 1 and Link-

chain 2; (b) intersection of working volume on 
the X-Y plane. 

 

 
Fig. 5. Example of constant orientation workspace on X-

Y plane (Z=100 mm). 
 

 
Fig. 6. The intersection of these three volumes forms a 

constant orientation workspace. 
 
Reachable workspace 

The reachable workspace consists of all locations 
of the end-effector that the robot can reach regardless of 
its orientation value. For this workspace, similar concept 
for determination of the constant orientation workspace 
can be used with the radius of the tube changed to 
�lln+lun+rp�

2
for outer cylinder and �lln+lun-rp�

2
for 

inner cylinder. Therefore, Eqs. (14) – (19) can be 
rewritten as 

  y2+z2=�ll1+lu1+rp�
2
,  y'2+z'2=�ll1-lu1-rp�

2
,     

  x2+z2=�ll2+lu2+rp�
2
,  x'2+z'2=�ll2-lu2-rp�

2
,    (20) 

(c)  (d)  

(a)  

(b)  

Boundary 
workspace of 
Link-chain 1  

Boundary 
workspace of 
Link-chain 2 

Boundary 
workspace of 
Link-chain 3  

The result of intersection of 
the boundaries 

(b)  (a)  
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  x2+y2=�ll3+lu3+rp�
2
,  x'2+y'2=�ll3-lu3-rp�

2
.      

Here, rp is the distance from the end-effector to the end-
point of moving platform of each link chain. 
 
Dexterous workspace 

The dexterous workspace consists of all positions 
of the end-effector that the robot can reach with an 
arbitrary orientation. The radius of the tube in this 
workspace is �lln+lun-rp�

2
for outer cylinder and 

�lln+lun+rp�
2
 for inner cylinder. Again, Eqs. (14) – (19) 

can be rewritten as:  

 y2+z2=�ll1+lu1-rp�
2
, y'2+z'2=�ll1-lu1+rp�

2
,     

x2+z2=�ll2+lu2-rp�
2
, x'2+z'2=�ll2-lu2+rp�

2
,    (21) 

x2+y2=�ll3+lu3-rp�
2
, x'2+y'2=�ll3-lu3+rp�

2
.      

Fig. 7 compares the three workspaces in a selected cross 
section near the center of the workspace and Fig. 8 
compares the three working volumes of a 3- PR�R�S 
parallel robot. Clearly, the size of reachable workspace 
is the biggest and that of the dexterous workspace is the 
smallest. However, the workspace of the 3- PR�R�S 
parallel robot is generally bigger than the well-known 
Stewart platform. 
 

 
Fig. 7. Three types workspace on the plane: reachable 

workspace (solid line), constant orientation 
workspace (bold solid line), dexterous 
workspace (dashed lines) at Z=100 mm. 

 

  
Fig. 8. Comparison three types working volume. 
 

SINGULARITY ANALYSIS 
 

The singularity condition reflects the configura-
tions that the robot cannot provide motion in the 
workspace because either the degree of freedom is 

degenerated or the robot geometrically loses 
controllability. At these configurations, the robot cannot 
transmit force or torque to the end-effector to generate 
velocity. The singularity conditions relate to degeneracy 
of Jacobian matrix. One can numerically, check the rank 
of the Jacobian matrix at each position to test the 
singularity of that position. 
 
Jacobian of the 3-PR�R�S parallel robot 

The Jacobian matrix J is a transformation matrix 
between joint velocities and task velocities. The velocity 
kinematics of a parallel robot can be written as: 
AẊ=Bq̇,                         (22) 
q̇=JẊ                            (23) 
where J=B-1A  (see Tsai, 1999). Here �̇�𝑋  is the vector 
containing task velocities and �̇�𝑞  is the vector of joint 
velocities. A and B are the Jacobian matrices related to 
task velocities and joint velocities, respectively. Let us 
define the following notations: q=[θ11θ21θ12θ22θ13θ23]T 
are the of the joint variables, X = [x  y  z  θx  θy θz]T are 
of the end-effector pose variables, W = [Fx  Fy  Fz  Mx  
My  Mz]T are the forces and moments of the end-effector, 
and τ = [ τ11  τ21  τ12  τ22  τ13  τ23]T are the actuator torques. 
By force-velocity duality principle, the Jacobian matrix 
can also be determined from the relation: 
W=JTτ               (24) 
where W is a wrench (forces and moments) acting on the 
end-effector. Define rn-sn-tn as local frame attached to 
link n (see Fig. 9).  
 

 
Fig. 9. Vectors related to link n in local rn-sn-tn frame. 
 
The position of Dn is in rn-sn-tn frame is related to the 
actuating joint variables θ1n and θ2n by 

s̄Dn= �
0
0

lbn

�+lln⋅ �
0

cosθ1n
sinθ1n

�+lu1⋅ �
0

cosθ2n
sinθ2n

�+ �
Ln
0
0
�          (25) 

where 𝐿𝐿𝑛𝑛  is the passive prismatic distance from the 
origin of X-Y-Z frame. The torques from actuators in 
each link chain n transfer effective force fDn=[fDn,x, fDn,y, 
fDn,z]T through these Dn points (see Fig. 10) to the end-
effector to generate task-space wrench W. Consider 
attaching local frame r-s-t to each link chain as follow: 
Link-chain 1 – r, s, t are aligned with X,Y, Z axes, 
respectively; Link-chain 2 – r, s, t are aligned with Y, Z, 
X axes, respectively; Link-chain 3 – r, s, t are aligned 

(a)  
Constant  

orientation 
workspace 

(b)  
Dexterous 
workspace 

  

(c)  
Reachable      
workspace 
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with Z,Y, X axes, respectively. At equilibrium, the 
virtual work principle applies: 
 

 
Fig. 10. Forces acting on spherical joints. 
 
δw=∑ ∑ τjnδθjn

 2
j=1 + 3

n=1 ∑ (fDnδs̄Dn) 3
n=1 =0                (26) 

Note that the wrench 𝑊𝑊 = [𝐹𝐹 𝑀𝑀]𝑇𝑇 relates to  𝑓𝑓𝐷𝐷𝑛𝑛 by 

F=∑ fDn=∑ ∑ τjn
 2
j=1

 3
n=1

 3
n=1 vjn                         (27) 

M=∑ (R⋅EDn)×fDn=∑ ∑ τjn
 2
j=1

 3
n=1

 3
n=1 (R⋅EDn×vjn)   (28) 

where R is the rotation matrix from x-y-z frame to X-Y-
Z frame, from Eq. (2), and 

v11= 1
ll1sin(θ21-θ11)

�
0

-cosθ21
-sinθ21

�, v21= 1
lu1sin(θ21-θ11)

�
0

cosθ11
sinθ11

�, 

v12= 1
ll2sin(θ12-θ22)

�
cosθ22

0
-sinθ22

�, v22= 1
lu2sin(θ12-θ22)

�
-cosθ12

0
sinθ12

�, 

v13= 1
ll3sin(θ23-θ13)

�
-cosθ23
-sinθ23

0
�, v23= 1

lu3sin(θ23-θ13)
�
cosθ13
sinθ13

0
�. 

Hence from Eqs.  (27) and (28)

⎣
⎢
⎢
⎢
⎢
⎡
Fx
Fy
Fx
Mx
My
Mz⎦
⎥
⎥
⎥
⎥
⎤

= �
v11 v21 v12 v22 v13 v23

R⋅ED1×v11 R⋅ED1×v21 R⋅ED2×v12 R⋅ED2×v22 R⋅ED3×v13 R⋅ED3×v23
�

⎣
⎢
⎢
⎢
⎢
⎡
τ11
τ21
τ12
τ22
τ13
τ23⎦
⎥
⎥
⎥
⎥
⎤

, 

but  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ν11

T �R⋅ED1×v11�
T

ν21
T �R⋅ED1×v21�

T

ν12
T �R⋅ED2×v12�

T

ν22
T �R⋅ED2×v22�

T

ν13
T �R⋅ED3×v13�

T

ν23
T �R⋅ED3×v23�

T
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1
b11

0 0 0 0 0

0
1

b21
0 0 0 0

0 0
1

b12
0 0 0

0 0 0
1

b22
0 0

0 0 0 0
1

b13
0

0 0 0 0 0
1

b23⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡n11

T �R⋅ED1×n11�
T

n21
T �R⋅ED1×n21�

T

n12
T �R⋅ED2×n12�

T

n22
T �R⋅ED2×n22�

T

n13
T �R⋅ED3×n13�

T

n23
T �R⋅ED3×n23�

T
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

where  
 b11=ll1sin(θ21-θ11), b21=lu1sin(θ21-θ11)  

 b12=ll2sin(θ12-θ22), b22=lu2sin(θ12-θ22) (29) 

 b13=ll3sin(θ23-θ33), b23=lu3sin(θ23-θ33)  
 and  
 n11=ll1sin(θ21-θ11), v11=-Rx(θ21)j̄,  

 n21=lu1sin(θ21-θ11), v21=Rx(θ11)j̄,  

 n12=ll2sin(θ12-θ22), v12=Ry(θ22)k̄, (30) 

 n22=lu2sin(θ12-θ22), v22=-Ry(θ12)k̄,  

 n13=ll3sin(θ23-θ13), v13=-Rz(θ23)ī,  

 n23=lu3sin(θ23-θ13),v23=Rz(θ13)ī.  
From Eqs. (22) and (24), A and B in can then be 
expressed by: 

𝐴𝐴=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡n11

T R⋅ED1×n11
T

n21
T R⋅ED1×n21

T

n12
T R⋅ED2×n12

T

n22
T R⋅ED2×n22

T

n13
T R⋅ED3×n13

T

n23
T R⋅ED3×n23

T ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

,             (31) 

B=diag(b11,b21,b12,b22,b13,b23).            (32) 
 
Singularity condition 

The singularity condition can be analyzed from the 
property of matrices 𝐴𝐴 and 𝐵𝐵. For parallel robot, there 
are three types of singularities. The first type occurs 
when the determinant of A approaches zero. This is when 
the end-effector is locally movable even all the actuators 
are locked. Thus, the robot is uncontrollable. The second 
type occurs when the determinant of matrix B approaches 
zero. At this instance, the actuator motion does not affect 
the motion of the end-effector in some directions/ 
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orientations. The third type occurs when the first and 
second types occur simultaneously. There are generally 
two methods for determining singularity condition of a 
robot: numerical approach and geometry approach. The 
numerical approach is straightforward. The configura-
tion space is divided into grids of input variables. The 
configuration variables in those grid points are then 
substituted into Eqs. (31) and (32) to obtain numerical 
value of the Jacobian matrix. If the rank of the Jacobian 
matrix is not full, then that configuration is singular. This 
approach is simple but computationally intensive. 
Furthermore, the method does not provide geometrical 
insight that one can use to avoid singularity condition at 
the design stage. The geometrical approach proves to be 
more useful for design purpose. 

Grassmann-Cayley Algebra (Monsarrat and 
Gosselin, 2001) can be used to geometrically analyze 
these singularities in terms of arrangement of lines and 
planes. These lines are represented by Plucker vectors. 
For each leg, two of these vectors form a plane of action 
by local actuators. For the 3-PR�R�S parallel structure, 
from Eqs. (29) and (30), there are six unit vectors that 
represent these lines. For example, n11 and n21 represent 
the lines that belong to Link-chain 1.  
 

 
Fig. 11. Plane formed from Plucker vectors. 
 
Fig. 11 (a) shows these six lines that belong to all three 
legs. The plane for Link-chain 1 is perpendicular to the 
x-axis. For Link-chain 2 and Link-chain 3, the planes are 
perpendicular to Y-axis and Z-axis, respectively (see Fig. 
11 (b)). There is an additional plane which is formed 

from vector connecting three passive spherical joints of 
the moving platform. Therefore, there are a total of four 
planes. 

The singularity can be analyzed from the 
arrangement of these planes using Grassmann-Cayley 
Algebra. There are five cases of singularity condition 
that relate to these four planes. The singularity occurs 
when(1) all four planes intersects at a common point; (2) 
two or more planes are coplanar; (3) three or more planes 
intersect along a common line; (4) one of the planes 
degenerates into a line; (5) one of the planes degenerates 
into a point. 

Note that, case (4) and (5) will not occur because, 
due to its structure, the planes of this robot cannot 
degenerate to a line or a point. Therefore, only cases (1), 
(2) and (3) need to be considered. Figs. 12-14 show the 
configuration at which the singularity occur. In Fig. 12, 
three planes of Link-chain 1, Link-chain 2 and the plane 
of moving platform intersect along a common line 
(dashed line). In this configuration, two of the moving 
platform end points (in this case D1 and D2) will be on 
the intersection line. In this case, even when all the 
actuator joints are locked the moving platform will not 
be able to resist external moments that have component 
in the vertical direction (D1D2). In other words, at this 
instance D3 can still infinitesimally rotates about line 
D1D2.  
 

 
Fig. 12. First type of singularity condition: three or more 

planes intersecting along a common line. 
 
Fig. 13 shows the singularity condition in case of two 
planes being coplanar. Similar to the first case, even 
when all actuators are locked, the moving platform 
cannot resist external moments that have components in 
the D1D3 direction. Point D2 can momentarily move in the 
direction perpendicular to the planes. Fig. 14 shows the rare 
case where 4 planes intersect at a common point. At this 
configuration, one of the moving platform end-point will 
be at the intersection point (D3 in this case). Even when all 
the actuator joints are locked, the moving platform will not 
be able to resist external moment about the vertical axis 
passing the intersection point which in this case is the 
intersection line of planes of Link-chain 1 and Link-chain 
2. As shown in examples above, in the first type of 

(a)  All lines in the robot 

(b) Four planes 
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singularity, the actuator momentarily cannot affect end-
effector motion. This leads to end-effector being not 
completely controllable. The second type of singularity 
corresponds to the condition det(B)=0. This occurs when 
θ11 = θ21, θ12 = θ22 or θ13 = θ23 which means lln and lun are 
parallel.  
 

 
Fig.13. First type of singularity condition: two planes 

are coplanar. 
 

 
Fig.14. First type of singularity condition: four planes 

intersect at a common point. 
 
In other words, the singularity of the second type occurs 
when one of the legs is either fully extended or the upper 
arm folds back directly on the lower arm. The degree of 
freedom in this type are decreased. As shown above, the 
geometrical approach allows us to visualize and foresee the 
singularity configuration of the robot at the design stage 
where no numerical values of robot parameters such as 
link length and distances are given. With the known 
singularity configurations, one can design robot parame-
ter such as lengths and distance between legs to help 
avoid singularity condition. Alternatively, with a given set 
of robot parameters, one can choose the operating space to 
avoid singular configurations that exist within the system 
without checking the rank of Jacobian matrix in each grid 
points. This is an obvious advantage over the numerical 
approach. 
 

CONCLUSION 
 

There are only few studies on 6-DOF parallel robot 
with 3-leg structure. This study presents in-depth 
analysis on kinematic, workspace, and singularity of a 
particular type of parallel robot with 3-PRR����S structure. 
Detailed solutions are provided. The inverse kinematic 
solutions can easily be obtained similar to most other 
parallel robot structures. The forward kinematic can be 
arranged to analytical form where solutions can be found 
using Dialytic elimination method. The number of 
solutions depends on length parameters of the robot. The 
minimum number of possible solutions is 1 and the 
maximum is 8. The workspace of the 3-PRR����S robot can 
be determined geometrically by intersection of three 
tube-shape volumes formed from the reachable volume 
of each leg. Based on Grassmann-Cayley Algebra, four 
planes can be formed from the Jacobian matrix A. Based 
on the arrangement of these planes, three possible 
configurations correspond to the first type of singularity. 
The second type singularity occur when one or more legs 
is either fully extended or the upper arm folds back 
directly on the lower arm. 
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APPENDIX 

 
The symbolic forms of ai 
a0=-d18-d28-d38+8d36Dy12-16d34Dx12Dy12+32d34Dx1Dx3Dy12-
16d34Dx32Dy12-16d34Dy14-16d36Dy1Dy2+32d34Dx12Dy1Dy2-
64d34Dx1Dx3Dy1Dy2+32d34Dx32Dy1Dy2+64d34Dy13Dy2-
16d34Dx12Dy22+32d34Dx1Dx3Dy22-16d34Dx32Dy22+8d36Dy22 

-96d34Dy12Dy22+64d34Dy1Dy23-8d34Dx12Dz22-8d34Dx32Dz22-
32d32Dx12Dy12Dz22+64d32Dx1Dx3Dy12Dz22+16d34Dx1Dx3Dz22-
32d32Dx32Dy12Dz22+64d32Dx12Dy1Dy2Dz22+8d36Dz2Dz3-
128d32Dx1Dx3Dy1Dy2Dz22-128d32Dx32Dy1Dy2Dz2Dz3 
+64d32Dx32Dy1Dy2Dz22+64d34Dy1Dy2Dz2Dz3+32d32Dy14Dz32-
32d32Dx12Dy22Dz22+64d32Dx1Dx3Dy22Dz22-32d32Dx32Dy22Dz22-
16Dx14Dz24+64Dx13Dx3Dz24-96Dx12Dx32Dz24+64Dx1Dx33Dz24-
16Dx34Dz24-32d34Dy12Dz2Dz3+64d32Dx12Dy12Dz2Dz3-
128d32Dx1Dx3Dy12Dz2Dz3+64d32Dx32Dy12Dz2Dz3+32d32Dy12Dz22Dz32-
128d32Dx12Dy1Dy2Dz2Dz3+256d32Dx1Dx3Dy1Dy2Dz2Dz3-
32d34Dy22Dz2Dz3+64d32Dx12Dy22Dz2Dz3+192d32Dy12Dy22Dz32-
128d32Dx1Dx3Dy22Dz2Dz3+64d32Dx32Dy22Dz2Dz3+32d32Dx12Dz23Dz3-
64d32Dx1Dx3Dz23Dz3+32d32Dx32Dz23Dz3-8d34Dy12Dz32-
32Dx32Dy12Dz22Dz32+16d34Dy1Dy2Dz32-128d32Dy13Dy2Dz32-
8d34Dy22Dz32-128d32Dy1Dy23Dz32+64Dx12Dy1Dy2Dz22Dz32 

+32d32Dy24Dz32-24d34Dz22Dz32-32Dx12Dy12Dz22Dz32-
64d32Dy1Dy2Dz22Dz32+64Dx1Dx3Dy12Dz22Dz32-
128Dx1Dx3Dy1Dy2Dz22Dz32+64Dx32Dy1Dy2Dz22Dz32+32d32Dy22Dz

22Dz32-32Dx12Dy22Dz22Dz32+64Dx1Dx3Dy22Dz22Dz32-
32Dx32Dy22Dz22Dz32-32Dx12Dz24Dz32+64Dx1Dx3Dz24Dz32-
32Dx32Dz24Dz32+32d32Dy12Dz2Dz33+64Dy13Dy2Dz34-
64d32Dy1Dy2Dz2Dz33+32d32Dy22Dz2Dz33+32d32Dz23Dz33-
16Dy14Dz34-96Dy12Dy22Dz34+64Dy1Dy23Dz34-16Dy24Dz34-
32Dy12Dz22Dz34+64Dy1Dy2Dz22Dz34-32Dy22Dz22Dz34-
16Dz24Dz34+4d26{d32-2Dz2Dz3}+4d16{d22-d32+2{Dx12-
2Dx1Dx3+Dx32+Dz2Dz3}}+4d22{d32-2Dz2Dz3}{d34-4d32{Dy12-
2Dy1Dy2+Dy22+Dz2Dz3}+4{Dx12{2Dy12-4Dy1Dy2+2Dy22+ 
Dz22}-2Dx1Dx3{2Dy12-4Dy1Dy2+2Dy22+Dz22} 
+Dx32{2Dy12-4Dy1Dy2+2Dy22+Dz22}+{Dy12-2Dy1Dy2+Dy22 
+Dz22}Dz32}}-2d24{3d34-4d32{Dy12-2Dy1Dy2+Dy22+3Dz2Dz3} 
+4{Dx12{2Dy12-4Dy1Dy2+2Dy22+Dz22}-2Dx1Dx3{2Dy12-
4Dy1Dy2+2Dy22+Dz22}+Dx32{2Dy12-4Dy1Dy2+2Dy22+Dz22} 
+{Dy12-2Dy1Dy2+Dy22+3Dz22}Dz32}}-2d14{3d24+3d34-
4d32{2Dx12-4Dx1Dx3+2Dx32+Dy12-2Dy1Dy2+Dy22+3Dz2Dz3}+ 
d22{-6d32+8Dx12-16Dx1Dx3+8Dx32+12Dz2Dz3}+4{2Dx14-
8Dx13Dx3+2Dx34+{Dy12-2Dy1Dy2+Dy22+3Dz22}Dz32+ 
Dx32{2Dy12-4Dy1Dy2+2Dy22+Dz22+4Dz2Dz3}-2Dx1Dx3 
{4Dx32+2Dy12-4Dy1Dy2+2Dy22+Dz22+4Dz2Dz3} 
+Dx12{12Dx32+2Dy12-4Dy1Dy2+2Dy22+Dz22+4Dz2Dz3}}} 
+4d12{d26-d36+2d34{Dx12-2Dx1Dx3+Dx32+2Dy12-4Dy1Dy2 
+2Dy22+3Dz2Dz3}+d24{-3d32+2{Dx12-2Dx1Dx3+Dx32+ 
3Dz2Dz3}}-4d32{Dx12Dz2{Dz2+2Dz3}-2Dx1Dx3Dz2{Dz2+2Dz3} 
+Dx32Dz2{Dz2+2Dz3}+Dz3{3Dz22Dz3+Dy12[2Dz2+Dz3]-
2Dy1Dy2[2Dz2+Dz3]+Dy22[2Dz2+Dz3]}}+d22{3d34-4d32 
{Dx12-2Dx1Dx3+Dx32+Dy12-2Dy1Dy2+Dy22+3Dz2Dz3}+ 
4{[Dy12-2Dy1Dy2+Dy22+3Dz22]Dz32+Dx12[2Dy12-4Dy1Dy2 
+2Dy22+Dz22+2Dz2Dz3]-2Dx1Dx3[2Dy12-4Dy1Dy2+2Dy22 
+Dz22+2Dz2Dz3]+Dx32[2Dy12-4Dy1Dy2+2Dy22+Dz22+ 
2Dz2Dz3]}}+8{Dx14Dz22-4Dx13Dx3Dz22+Dx34Dz22+Dz2{Dy12-
2Dy1Dy2+Dy22+Dz22}Dz33+Dx32Dz3{Dy12[2Dz2-Dz3]+ 
Dy22[2Dz2-Dz3]+2Dy1Dy2[-2Dz2+Dz3]+Dz22[Dz2+Dz3]}-
2Dx1Dx3{2Dx32Dz22+Dz3[Dy12(2Dz2-Dz3(Dy22(2Dz2-Dz3) 
+2Dy1Dy2)-2Dz2+Dz3)+Dz22(Dz2+Dz3)]}+Dx12{6Dx32Dz22 
+Dz3[Dy12(2Dz2-Dz3)+Dy22(2Dz2-Dz3)+2Dy1Dy2(-2Dz2+Dz3) 
+Dz22(Dz2+Dz3)]}}} 
a1=8{{-d36}Dz2+2d34Dx12Dz2-4d34Dx1Dx3Dz2+2d34Dx32Dz2+ 
4d34Dy12Dz2-8d34Dy1Dy2Dz2+4d34Dy22Dz2-4d32Dx12Dz23+ 
8Dx14Dz23+8d32Dx1Dx3Dz23-32Dx13Dx3Dz23-4d32Dx32Dz23 
+48Dx12Dx32Dz23-32Dx1Dx33Dz23+8Dx34Dz23-d36Dz3+ 
6d34Dy12Dz3-8d32Dx12Dy12Dz3+16d32Dx1Dx3Dy12Dz3-
8d32Dx32Dy12Dz3-8d32Dy14Dz3+24d32Dx1Dx3Dz22Dz3 
+6d34Dz22Dz3-12d34Dy1Dy2Dz3+16d32Dx12Dy1Dy2Dz3-
32d32Dx1Dx3Dy1Dy2Dz3+16d32Dx32Dy1Dy2Dz3+32d32Dy13Dy2Dz3+6
d34Dy22Dz3-8d32Dx12Dy22Dz3+16d32Dx1Dx3Dy22Dz3-
8d32Dx32Dy22Dz3-48d32Dy12Dy22Dz3+32d32Dy1Dy23Dz3-
8d32Dy24Dz3-12d32Dx12Dz22Dz3-12d32Dx32Dz22Dz3-
8d32Dy12Dz22Dz3+8Dx12Dy12Dz22Dz3-16Dx1Dx3Dy12Dz22Dz3+ 
8Dx32Dy12Dz22Dz3+16d32Dy1Dy2Dz22Dz3+16Dx12Dz23Dz32-
16Dx12Dy1Dy2Dz22Dz3+32Dx1Dx3Dy1Dy2Dz22Dz3-
16Dx32Dy1Dy2Dz22Dz3-8d32Dy22Dz22Dz3+8Dx12Dy22Dz22Dz3-
16Dx1Dx3Dy22Dz22Dz3+8Dx32Dy22Dz22Dz3+8Dx12Dz24Dz3-
16Dx1Dx3Dz24Dz3+8Dx32Dz24Dz3+6d34Dz2Dz32-
20d32Dy12Dz2Dz32+8Dx12Dy12Dz2Dz32+16Dx32Dz23Dz32-
16Dx1Dx3Dy12Dz2Dz32+8Dx32Dy12Dz2Dz32+40d32Dy1Dy2Dz2Dz32-
16Dx12Dy1Dy2Dz2Dz32+32Dx1Dx3Dy1Dy2Dz2Dz32-
16Dx32Dy1Dy2Dz2Dz32-20d32Dy22Dz2Dz32+8Dx12Dy22Dz2Dz32-
16Dx1Dx3Dy22Dz2Dz32+8Dx32Dy22Dz2Dz32-12d32Dz23Dz32-
32Dx1Dx3Dz23Dz32-4d32Dy12Dz33+8Dy14Dz33+8d32Dy1Dy2Dz33-
32Dy13Dy2Dz33-4d32Dy22Dz33+48Dy12Dy22Dz33-
32Dy1Dy23Dz33+8Dy24Dz33-12d32Dz22Dz33+16Dy12Dz22Dz33-
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32Dy1Dy2Dz22Dz33+16Dy22Dz22Dz33+8Dz24Dz33+8Dy12Dz2Dz34-
16Dy1Dy2Dz2Dz34+8Dy22Dz2Dz34+8Dz23Dz34-d16{Dz2+Dz3} 
+d26{Dz2+Dz3}+d24{-3d32{Dz2+Dz3}+2{Dx12Dz2-2Dx1Dx3Dz2 
+Dx32Dz2+Dz3[Dy12-2Dy1Dy2+Dy22+3Dz2(Dz2+Dz3)]}}+ 
d14{3d22{Dz2+Dz3}-3d32{Dz2+Dz3}+2{Dx12[3Dz2+2Dz3]-
2Dx1Dx3[3Dz2+2Dz3]+Dx32[3Dz2+2Dz3]+Dz3[Dy12-2Dy1Dy2+ 
Dy22+3Dz2(Dz2+Dz3)]}}+d22{3d34{Dz2+Dz3}-4d32{Dx12Dz2-
2Dx1Dx3Dz2+Dx32Dz2+Dy12Dz2-2Dy1Dy2Dz2+Dy22Dz2+2Dy12Dz3- 
4Dy1Dy2Dz3+2Dy22Dz3+3Dz22Dz3+3Dz2Dz32}+4{Dz32[3Dz22 
(Dz2+Dz3)+Dy12(3Dz2+Dz3)-2Dy1Dy2(3Dz2+Dz3)+ 
Dy22(3Dz2+Dz3)]+Dx12[2Dy12(Dz2+Dz3)-4Dy1Dy2(Dz2+Dz3) 
+2Dy22(Dz2+Dz3)+Dz22(Dz2+3Dz3)]-2Dx1Dx3[2Dy12(Dz2+Dz3)-
4Dy1Dy2(Dz2+Dz3)+2Dy22(Dz2+Dz3)+Dz22(Dz2+3Dz3)]+ 
Dx32[2Dy12(Dz2+Dz3)-4Dy1Dy2(Dz2+Dz3)+2Dy22(Dz2+Dz3)+ 
Dz22(Dz2+3Dz3)]}}-d12{3d24{Dz2+Dz3}+3d34{Dz2+Dz3}-
4d32{Dy12Dz2-2Dy1Dy2Dz2+Dy22Dz2+2Dy12Dz3-
4Dy1Dy2Dz3+2Dy22Dz3+3Dz22Dz3+3Dz2Dz32+Dx12[2Dz2+Dz3]-
2Dx1Dx3[2Dz2+Dz3]+Dx32[2Dz2+Dz3]}+4{2Dx14Dz2-
8Dx13Dx3Dz2+2Dx34Dz2+Dx32Dz2{2Dy12-4Dy1Dy2+2Dy22+ 
Dz22+5Dz2Dz3+2Dz32}-2Dx1Dx3Dz2{4Dx32+2Dy12-4Dy1Dy2+ 
2Dy22+Dz22+5Dz2Dz3+2Dz32}+Dx12Dz2{12Dx32+2Dy12-
4Dy1Dy2+2Dy22+Dz22+5Dz2Dz3+2Dz32}+Dz32{3Dz22[Dz2+Dz3]+D
y12[3Dz2+Dz3]-2Dy1Dy2[3Dz2+Dz3]+Dy22[3Dz2+Dz3]}}+ 
2d22{-3d32{Dz2+Dz3}+2{Dx12[2Dz2+Dz3]-2Dx1Dx3[2Dz2+Dz3] 
+Dx32[2Dz2+Dz3]+Dz3[Dy12-2Dy1Dy2+Dy22+3Dz2(Dz2+Dz3)]}}}} 
a2=-8{-d16+d26-d36+d34Dx12-2d34Dx1Dx3+d34Dx32+5d34Dy12-
4d32Dx12Dy12+8d32Dx1Dx3Dy12-4d32Dx32Dy12-4d32Dy14-
10d34Dy1Dy2+8d32Dx12Dy1Dy2+8d32Dx32Dy1Dy2+16d32Dy13Dy2+5
d34Dy22-4d32Dx12Dy22+8d32Dx1Dx3Dy22-4d32Dx32Dy22-
24d32Dy12Dy22+16d32Dy1Dy23-4d32Dy24+3d34Dz22+12Dz22Dz34-
12d32Dx12Dz22+12Dx14Dz22+24d32Dx1Dx3Dz22-48Dx13Dx3Dz22-
12d32Dx32Dz22+72Dx12Dx32Dz22-48Dx1Dx33Dz22+12Dx34Dz22-
4d32Dy12Dz22+4Dx12Dy12Dz22-16d32Dx1Dx3Dy1Dy2+4Dy22Dz34-
8Dx1Dx3Dy12Dz22+4Dx32Dy12Dz22+8d32Dy1Dy2Dz22+4Dy12Dz34-
8Dx12Dy1Dy2Dz22+16Dx1Dx3Dy1Dy2Dz22-8Dx32Dy1Dy2Dz22-
4d32Dy22Dz22-8Dx1Dx3Dy22Dz22+4Dx32Dy22Dz22+4Dx12Dz24-
8Dx1Dx3Dz24+4Dx32Dz24+12d34Dz2Dz3+4Dx12Dy22Dz22-
12d32Dx12Dz2Dz3+24d32Dx1Dx3Dz2Dz3-12d32Dx32Dz2Dz3-
28d32Dy12Dz2Dz3+16Dx12Dy12Dz2Dz3-12d32Dz23Dz3-
32Dx1Dx3Dy12Dz2Dz3+16Dx32Dy12Dz2Dz3+56d32Dy1Dy2Dz2Dz3-
32Dx12Dy1Dy2Dz2Dz3+64Dx1Dx3Dy1Dy2Dz2Dz3+12Dz24Dz32-
32Dx32Dy1Dy2Dz2Dz3-28d32Dy22Dz2Dz3+16Dx12Dy22Dz2Dz3-
32Dx1Dx3Dy22Dz2Dz3+16Dx32Dy22Dz2Dz3+32Dx12Dz23Dz3-
64Dx1Dx3Dz23Dz3+32Dx32Dz23Dz3+3d34Dz32-16d32Dy12Dz32-
8Dx1Dx3Dy12Dz32+4Dx32Dy12Dz32+12Dy14Dz32+32d32Dy1Dy2Dz32-
8Dx12Dy1Dy2Dz32+16Dx1Dx3Dy1Dy2Dz32-8Dx32Dy1Dy2Dz32-
48Dy13Dy2Dz32-16d32Dy22Dz32+4Dx12Dy22Dz32+32Dz23Dz33-
8Dx1Dx3Dy22Dz32+4Dx32Dy22Dz32+24Dy22Dz22Dz32+72Dy12Dy22Dz32-
8Dy1Dy2Dz34+32Dy12Dz2Dz33+24Dy12Dz22Dz32-
12d32Dz2Dz33+12Dy24Dz32-48Dy1Dy2Dz22Dz32+32Dy22Dz2Dz33-
48Dy1Dy23Dz32+24Dx12Dz22Dz32+24Dx32Dz22Dz32+4Dx12Dy12Dz32-
48Dx1Dx3Dz22Dz32-64Dy1Dy2Dz2Dz33-36d32Dz22Dz32+d24{-
3d32+Dx12-2Dx1Dx3+Dx32+12Dz2Dz3+3Dz32+Dy22+3Dz22-
2Dy1Dy2+Dy12}+d14{Dy12+3d22-3d32+5Dx12-10Dx1Dx3+5Dx32-
2Dy1Dy2+Dy22+3Dz22+3Dz32}-d12{3d24+3d34-6d32{Dx12+Dy12-
2Dx1Dx3+Dx32+Dy22-2Dy1Dy2+Dz22+4Dz2Dz3+Dz32}+2d22{-
3d32+3Dx12-6Dx1Dx3+3Dx32+3Dz32+Dy12+Dy22+3Dz22-
2Dy1Dy2+12Dz2Dz3}+4{Dx14+Dx34-4Dx13Dx3+Dx32[Dy12-
2Dy1Dy2+Dy22+4Dz22+7Dz2Dz3+Dz32]-2Dx1Dx3[2Dx32+Dy12-
2Dy1Dy2+Dy22+4Dz22+7Dz2Dz3+Dz32]+Dx12[6Dx32+Dy12-
2Dy1Dy2+Dy22+4Dz22+7Dz2Dz3+Dz32]+3Dz3[Dy12(Dz2+Dz3)-
2Dy1Dy2(Dz2+Dz3)+Dy22(Dz2+Dz3)+Dz2(Dz22+3Dz2Dz3+Dz32)]}}+ 
d22{3d34-2d32{Dx12-2Dx1Dx3+Dx32+3[Dy12-2Dy1Dy2+ 
Dy22+4Dz2Dz3+Dz32+Dz22]}+4{Dx12[2Dy12+2Dy22+3Dz2 
(Dz2+Dz3)-4Dy1Dy2]-2Dx1Dx3[3Dz2(Dz2+Dz3)+2Dy22+ 

2Dy12-4Dy1Dy2]+Dx32[2Dy12+2Dy22+3Dz2(Dz2+Dz3)-4Dy1 
Dy2]+3Dz3[Dy12(Dz2+Dz3)-2Dy1Dy2+Dz2(Dz22+3Dz2Dz3 
+Dz32)]}}} 
a3=16{3d34Dz2-6d32Dx12Dz2+4Dx14Dz2+12d32Dx1Dx3Dz2-
16Dx13Dx3Dz2-6d32Dx32Dz2+24Dx12Dx32Dz2-10d32Dy12Dz3-
16Dx1Dx33Dz2+4Dx34Dz2-6d32Dy12Dz2+4Dx12Dy12Dz2-
8Dx1Dx3Dy12Dz2+4Dx32Dy12Dz2+12d32Dy1Dy2Dz2-
8Dx12Dy1Dy2Dz2+16Dx1Dx3Dy1Dy2Dz2-8Dx32Dy1Dy2Dz2-
6d32Dy22Dz2+4Dx12Dy22Dz2-8Dx1Dx3Dy22Dz2+4Dx32Dy2Dz2-
2d32Dz23+8Dx12Dz2Dz23-16Dx1Dx3Dz23+8Dx32Dz23+3d34Dz3-
2d32Dx12Dz3+4d32Dx1Dx3Dz3-2d32Dx32Dz3+4Dx12Dy12Dz3-
8Dx1Dx3Dy12Dz3+4Dx32Dy12Dz3+4Dy14Dz3+20d32Dy1Dy2Dz3-
8Dx12Dy1Dy2Dz3+16Dx1Dx3Dy1Dy2Dz3-8Dx32Dy1Dy2Dz3-
16Dy13Dy2Dz3-10d32Dy22Dz3+4Dx12Dy22Dz3+8Dx12Dz2Dz32-
8Dx1Dx3Dy22Dz3+4Dx32Dy22Dz3+24Dy12Dy22Dz3+8Dy12Dz33-
16Dy1Dy23Dz3+4Dy24Dz3-18d32Dz22Dz3+24Dx12Dz22Dz3-
48Dx1Dx3Dz22Dz3+24Dx32Dz22Dz3+8Dy12Dz22Dz3+4Dz2Dz34-
16Dy1Dy2Dz22Dz3+8Dy22Dz22Dz3+4Dz24Dz3-18d32Dz2Dz32-
16Dx1Dx3Dz2Dz32+8Dx32Dz2Dz32+24Dy12Dz2Dz32+24Dz22Dz33-
48Dy1Dy2Dz2Dz32+24Dy22Dz2Dz32+24Dz23Dz32-2d32Dz33-
16Dy1Dy2Dz33+8Dy22Dz33+3d14[Dz2+Dz3]+3d24[Dz2+Dz3]-
2d12[5Dx12Dz2-2Dy1Dy2Dz2+3Dx12Dz3-10Dx1Dx3Dz3+5Dx32Dz2-
6Dx1Dx3Dz2+3Dy12Dz3+3Dx32Dz3+Dy12Dz2+Dy22Dz2+Dz23-
6Dy1Dy2Dz3+3Dy22Dz3+9Dz22Dz3+9Dz2Dz32+Dz33+3d22(Dz2+   
Dz3)-3d32(Dz2+Dz3)]+2d22[3Dx32Dz2+Dy12Dz2+3Dy22Dz3-
2Dy1Dy2Dz2+Dy22Dz2+Dz23+Dx32Dz3+3Dy12Dz3+9Dz22Dz3-
6Dy1Dy2Dz3+9Dz2Dz32+Dz33Dx12(3Dz2+Dz3)-2Dx1Dx3(3Dz2+Dz3)]} 
a4=-8{3d14+3d24+3d34-4d32Dx12+2Dx14+8d32Dx1Dx3-4d32Dx32-
8Dx13Dx3+12Dx12Dx32-8Dx1Dx33+2Dx34-8d32Dy12+4Dx12Dy12-
8Dx1Dx3Dy12+4Dx32Dy12+2Dy14+16d32Dy1Dy2-
8Dx12Dy1Dy2+16Dx1Dx3Dy1Dy2-8Dx32Dy1Dy2-8Dy13Dy2-
8d32Dy22+4Dx12Dy22-8Dx1Dx3Dy22+4Dx32Dy22+12Dy12Dy22-
8Dy1Dy23+2Dy24+2Dz34-12d32Dz22+24Dx12Dz22-48Dx1Dx3Dz22 
+24Dx32Dz22+4Dy12Dz22-8Dy1Dy2Dz22+4Dy22Dz22-
36d32Dz2Dz3+32Dx12Dz2Dz3-64Dx1Dx3Dz2Dz3+32Dx32Dz2Dz3+ 
32Dy12Dz2Dz3+4Dx32Dz32-64Dy1Dy2Dz2Dz3+32Dz23Dz3-
12d32Dz32+4Dx12Dz32+2Dz24-8Dx1Dx3Dz32+32Dy22Dz2Dz3+ 
32Dz2Dz33+24Dy22Dz32-48Dy1Dy2Dz32+72Dz22Dz32+d22[-
6d32+4(Dx12+Dx32+Dy12-2Dy1Dy2+Dy22+3Dz22+9Dz2Dz3+ 
3Dz32-2Dx1Dx3)]-2d12[3d22-3d32+2(2Dx12-4Dx1Dx3+2Dx32 
+Dy12+9Dz2Dz3+3Dz32-2Dy1Dy2+3Dz22+Dy22)]} 
a5=-32[3d32Dz2- 4Dx12Dz2+ 8Dx1Dx3Dz2- 2Dy12Dz2+ 3d32Dz3-
4Dx32Dz2+ 4Dy1Dy2Dz2- 2Dy22Dz2- 2Dz23- 2Dx12Dz3- 2Dx32Dz3-
4Dy12Dz3+ 8Dy1Dy2Dz3- 4Dy22Dz3- 12Dz22Dz3- 12Dz2Dz32-
2Dz33+4Dx1Dx3Dz3+3d12(Dz2+Dz3)-3d22(Dz2+Dz3)] 
a6=32(d12-d22+d32-Dx12+2Dx1Dx3-Dx32-Dy12+2Dy1Dy2-Dy22-
3Dz22-8Dz2Dz3-3Dz32) 
a7=64(Dz2+Dz3) 
a8=-16 


