Logo

 
CSME 2022/10
Volume 43 No.5 : 349-388
 
Enhancing System Efficiency of Valveless Micropumps by Using Bio-inspired Chambers

Hsin-Yi Laia and Jing-Hao Kangb
aDepartment of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan, ROC
bDepartment of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan, ROC


Abstract: In order to expand the back pressure and increase the net flow rate of the micropump, so as to achieve the purpose of being applicable to high-performance industrial and medical micro-systems, a complete set of theoretical and numerical modeling methods are proposed in this paper to design for enhancing system efficiency of a bio¬inspired chamber for the valveless micropump. To ensure the design goal can be achieved, a two-way fluid-solid coupling interface system (FSIS) is adopted for design analysis of the bio-inspired chamber structure. The design and numerical simulation process indicates that when the peak voltage is of 100 V and working frequency is at 40 Hz, maximum net flow rate of the bio-inspired micropump is 1.89 ml/min and maximum back pressure is 720 PA (or 5.4 mmHg), which are better than that of the conventional micropump with circular geometry. Also, the net flow rate of the bio-inspired system is 44% higher than that of the conventional micropump. The results also reveal that the internal flow state of the bio-inspired valveless micropump possesses a significant impact on the increase of the natural frequency of the system. Since the system resonance frequency thus induced is much higher, the net flow rate of the bio-inspired micro-pump is thus effectively increased. By comparing with the measured data of the conventional circular valveless micropump system, it is proved that the bio-inspired chamber design proposed in this paper is highly feasible


Keywords:  valveless micropump, enhanced bio-inspired chamber, fluid-solid coupling system

Download PDF
*Corresponding author; e-mail: 
© 2022  CSME , ISSN 0257-9731 





TOP